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Abstract

Background: The organization of the canonical code has intrigued researches since it was first described. If we
consider all codes mapping the 64 codes into 20 amino acids and one stop codon, there are more than 1.51 × 1084

possible genetic codes. The main question related to the organization of the genetic code is why exactly the
canonical code was selected among this huge number of possible genetic codes. Many researchers argue that the
organization of the canonical code is a product of natural selection and that the code’s robustness against mutations
would support this hypothesis. In order to investigate the natural selection hypothesis, some researches employ
optimization algorithms to identify regions of the genetic code space where best codes, according to a given
evaluation function, can be found (engineering approach). The optimization process uses only one objective to
evaluate the codes, generally based on the robustness for an amino acid property. Only one objective is also
employed in the statistical approach for the comparison of the canonical code with random codes. We propose a
multiobjective approach where two or more objectives are considered simultaneously to evaluate the genetic codes.

Results: In order to test our hypothesis that the multiobjective approach is useful for the analysis of the genetic code
adaptability, we implemented a multiobjective optimization algorithm where two objectives are simultaneously
optimized. Using as objectives the robustness against mutation with the amino acids properties polar requirement
(objective 1) and robustness with respect to hydropathy index or molecular volume (objective 2), we found solutions
closer to the canonical genetic code in terms of robustness, when compared with the results using only one objective
reported by other authors.

Conclusions: Using more objectives, more optimal solutions are obtained and, as a consequence, more information
can be used to investigate the adaptability of the genetic code. The multiobjective approach is also more natural,
because more than one objective was adapted during the evolutionary process of the canonical genetic code. Our
results suggest that the evaluation function employed to compare genetic codes should consider simultaneously
more than one objective, in contrast to what has been done in the literature.
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Background
Amino acids differ according to side chain properties such
as polarity, size and shape [1]. Proteins structural com-
plexity and biology function variety are due to the huge
number of possibilities that these building blocks can be
assembled. The particular sequence order of the amino
acids in the protein is dictated by the messenger RNA
according to the canonical genetic code. This code maps
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each triplet of nucleotides, known as codon, to amino
acids. The reason why the canonical code was selected
over the large number of possible codes has intrigued
researchers for decades [2-11].
Because some codons codify amino acids structurally

correlated to them, some authors argue that the code’s
organization is a result of stereochemical interactions
between amino acids and codons (or anticodons) [7]. Oth-
ers suggest that the organization of the code is a result
of symmetry breaking processes [12,13]. However, the
most popular theory is the adaptation of the genetic code
from a primitive code, possibly with a small subset of
precursors amino acids [14], via natural selection towards
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a frozen state [3], i.e., towards a local optimum if we view
the adaptability process as an optimization process. The
hypothesis that the genetic code has evolved is mainly
supported by the robustness of the canonical code against
mutations when some amino acids properties are consid-
ered [2]. Haig and Hurst [15], and some other authors
after them [5,16], showed that a very small percentage of
random codes are better than the canonical code in min-
imizing the deleterious effects of errors in the translation
process.
According to the authors in [16], two approaches can be

used to analyze the genetic code adaptability by natural
selection. In the first one, used by Haig and Hurst [15] and
known as the statistical approach, a huge set of random
codes are generated. Then, the number of random codes
better than the canonical genetic code is estimated using
a evaluation function with only one objective, usually the
robustness against mutations considering an amino acid
property. However, when evaluation functions with good
quality are used, it is very hard to find random codes
better than the canonical code. This occurs because the
space of all possible codes, called here genetic code space
or, using the terminology of the optimization area, search
space, is huge; there are more than 1.51 × 1084 possible
codes mapping the 64 codons into 20 amino acids and
three stop codons [17]. In order to identify regions in the
huge genetic code space where best codes according to a
given evaluation function can be found, the engineering
approach was proposed. In the engineering approach, the
canonical code is compared with the best codes obtained
by an optimization algorithm.
An example of the engineering approach is the work of

Santos and Monteagudo [18], where a Genetic Algorithm
(GA) was employed to search the best codes according
to an evaluation function. GAs are population meta-
heuristics used in optimization, i.e., instead of optimizing
one solution each time, a set of solutions (population) is
optimized in parallel [19]. The GA described in [18] uses
an evaluation function based on only one objective to
select the best solutions. The objective in this case is also
the robustness against mutations considering an amino
acid property. Other engineering and statistical methods
also use only one objective to evaluate the genetic codes,
generally also a robustness-based function [5,20].
In the paper of 1991, Haig and Hurst computed the code

robustness for four amino acid properties: polar require-
ment, hydropathy index, molecular volume and isoeletric
point. They observed that the canonical code is extremely
robust for the first three properties, but it is not robust
for isoeletric point. Santos and Monteagudo [18] reached
similar conclusions using the engineering approach. In
both papers, and also in other works found in the
literature, the amino acid properties are not used simulta-
neously, i.e., the evaluation of the codes is monoobjective.

In both works, polar requirement was considered the
most relevant property to compute the robustness of the
genetic codes.
Many real-world optimization problems involve con-

flicting objectives, having in this way a set of optimal
solutions [21]. In fact, according to [22], seldom problems
are monoobjective in practice. An example of multiobjec-
tive problem frequently found in industry is maximizing
the product’s quality while minimizing the production’s
cost. The natural selection process is also multiobjective.
The natural evolution occurs in a huge search space with
a large number of dynamic objectives being optimized
at the same time. However, the genetic code adaptability
problem has been addressed so far as a monoobjective
problem [18].
In this work, we propose that the multiobjective

approach for the genetic code adaptability problem is
more realistic and produces more interesting results than
the monoobjective approach. We propose that robustness
considering polar requirement is not the only objective
adapted during the evolutionary process and that other
objectives should be considered simultaneously when
searching for best codes and comparing them with the
canonical code. Here, we test our hypothesis using a
multiobjective approach where the evaluation function
considers two objectives at the same time: robust-
ness against errors considering the polar requirement
[5,15,18,20] and as second objective, we test robustness
against errors considering hydropathy or molecular
volume. These two properties have robustness levels
lower than polar requirement, but they can be still
relevant.
Following the methodology presented in [18], we use

a GA as optimization algorithm in order to obtain the
best genetic codes and compare them with the canon-
ical genetic code. It is important to observe that other
optimization algorithms could be employed. However,
since GAs use a population of solutions during opti-
mization, they represent a direct approach to deal with
more than one objective, being successfully employed in
several multiobjective problems [21,23]. When compared
with the monoobjective approach, more than one optimal
genetic codes are obtained in themultiobjective approach.
In the experimental results presented here, genetic codes
closer to the canonical code are generated by the
multiobjective GA.

Methods
In many optimization problems, more than one objec-
tive should be optimized at the same time [22]. When the
evaluation of only one objective should be minimized, a
solution x is considered better than a solution y if f (x) <

f (y), where f (x) is the evaluation of the objective that
should be minimized. For example, in the statistical and
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Table 1 Weights used in the computation ofMst

Weight First base Second base Third base

Transitions 1 0.5 1

Transversions 0.5 0.1 1

The weights represent the importance of the position base function when
computing the errors in the translation process.

engineering approaches, x represents a genetic code and
f (x) generally is based on the robustness of the code taking
in account one amino acid property.
When two objectives are considered, the comparison is

more complex because a solution x can have a better f1(x)
but a worse f2(x), where f1(x) and f2(x) are respectively the
evaluations of the objectives that should be minimized. In
the case where x has evaluations of all objectives equal or
better than y, and at least one better, we say that solution x
dominates y (Solution y dominates solution x in the oppo-
site case). Otherwise, x and y are nondominated solutions
or Pareto optimal solutions. In this way, while we are
interested in only one optimum solution in monoobjec-
tive optimization, the algorithm should find a set of Pareto
optimal solutions otherwise, i.e., the algorithm should
find a set of nondominated solutions in multiobjective
optimization [19].

Table 2 Amino acids properties [15]

Amino acid Polar Hydropathy Molecular
Requirement (PR) Index (HI) Volume (MV)

Ala 7 1.8 31

Arg 9.1 -4.5 124

Asp 13 -3.5 54

Asn 10 -3.5 56

Cys 4.8 2.5 55

Glu 12.5 -3.5 83

Gin 8.6 -3.5 85

Gly 7.9 -0.4 3

His 8.4 -3.2 96

Ile 4.9 4.5 111

Leu 4.9 3.8 111

Lys 10.1 -3.9 119

Met 5.3 1.9 105

Phe 5 2.8 132

Pro 6.6 -1.6 32.5

Ser 7.5 -0.8 32

Thr 6.6 -0.7 61

Trp 5.2 -0.9 170

Tyr 5.4 -1.3 136

Val 5.6 4.2 84

Figure 1 Example of part of an individual using the restrictive
encoding. Each individual of the GA represents a hypothetical
genetic code. The individual is composed by groups of codons
associated to amino acids. The groups are kept as found in the
canonical genetic code.

There are a variety of algorithms for multiobjective opti-
mization [24]. Among them, approaches based onGAs are
very popular because the set of nondominated solutions
can be represented in a natural way by the population
of solutions of the algorithm. In [23], more than 4000

Figure 2 Example of application of the swap operator. The swap
operator interchanges amino acids associated to two group of
codons.
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Table 3 Results for the experiment withMs considering polar requirement and hydropathy index

Obj. 1 Obj. 2

Hypothetical code (HC) PR HI Dist. Dom. pmd PR (%) pmd HI (%)

1 3.735 5.897 0.239 Yes 73.975 51.847

2 3.820 5.781 0.243 Yes 75.117 51.028

3 4.386 5.721 0.234 Yes 83.720 50.617

4 3.927 5.747 0.242 Yes 76.610 50.796

5 3.835 5.767 0.244 Yes 75.328 50.933

6 4.561 5.415 0.250 Yes 86.793 48.616

7 3.540 6.622 0.207 Yes 71.479 57.607

The values ofMs for the canonical genetic code are 5.19 for polar requirement and 9.39 for hydropathy index.

references of Evolutionary Computation applied to multi-
objective problems are listed. Here, we employ the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [19],
that is a state-of-art multiobjective approach when the
number of objectives is not high. The NSGA-II presents
good computational performance: its complexity is at
most O(MN2), where M is the population size and N is
the number of objectives. Moreover, the algorithm has a
mechanism for maintenance of solutions’ diversity and is
elitist [19].

Evaluation of the genetic codes
In the experiments presented in this work, the genetic
codes are simultaneously evaluated based on two objec-
tives. For each one, the robustness of the code against
mutations considering a given amino acid property should
be maximized, or, in a similar way, the mean squared
error, which is calculated using an amino acids prop-
erty, should be minimized. The mean squared error
is computed here as the mean value of the difference
of the amino acid property for all possible changes

Figure 3 Evaluation (Ms) for the best codes found by the GA and for the canonical code, when polar requirement and hydropathy index
are considered. The values ofMs for the canonical genetic code are 5.19 for polar requirement and 9.39 for hydropathy index. The small figure
includes the average evaluation value for a large number of random codes (random).
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Table 4 Results for the experiment withMst considering polar requirement and hydropathy index

Objective 1 Objective 2

HC PR HI Dist. Dom. pmd PR (%) pmd HI (%)

1 2.294 2.038 0.312 Yes 93.731 69.842

2 2.246 2.053 0.311 Yes 92.898 69.970

3 1.755 2.297 0.301 Yes 85.127 72.041

4 1.632 2.477 0.292 Yes 83.379 73.649

The values ofMst for the canonical genetic code are 2.63 for polar requirement and 4.6 for hydropathy index.

in the codons for a given code C [5,15,18,25,26],
i.e.:

Ms(C) =
∑

ij(X(i,C) − X(j,C))2
∑

ij N(i, j,C)
(1)

where X(i,C) is the amino acid property value for the
amino acid codified by the i-th codon for the genetic code
C, and N(i, j,C) is the number of possible replacements
between codons i and j for the code C. For example, when
the polar requirement is used, X(i,C) represents the polar
requirement for the amino acid codified by the i-th codon
for the genetic code C. When two objectives are mini-
mized, two values of Ms(C) are computed, one for each
amino acid property, e.g., polar requirement (objective
one) and hidropathy (objective two).
WhenMs is computed, the changes in codons base posi-

tions have the same importance. However, experimental
data [6] show that errors in the translational process vary

according to the base position within a codon. Freeland
and Hurst [5] summarized the dependence of the errors
based on the base positions by:

• Mistranslation of the second base is much less
frequent than mistranslation in the other two bases,
whereas mistranslation of the first base is less
frequent than mistranslation of the third base.

• Most mistranslations of the second base are
transitional.

• Most mistranslations of first base are transitional.
• The transition bias is very small in the third base

mistranslation.

In this way, Freeland and Hurst proposed that those
information should be added to the evaluation function
previously presented when the genetic code adaptabil-
ity is investigated. For this purpose, a mistranslation
weight matrix is used, as shown in Table 1. The mean

Figure 4 Evaluation (Mst) for the best codes found by the GA and for the canonical code, when polar requirement and hydropathy index
are considered. The values ofMst for the canonical genetic code are 2.63 for polar requirement and 4.6 for hydropathy index.
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Table 5 Results for the experiment withMs considering polar requirement andmolecular volume

Objective 1 Objective 2

HC PR MV Dist. Dom. pmd PR (%) pmdMV (%)

1 5.380 1550 0.181 No − -

2 4.493 1907.460 0.103 Yes 85.587 58.945

3 9.628 1206.300 0.414 No - -

4 4.480 1961.500 0.092 Yes 85.345 62.832

5 9.673 1198.390 0.418 No -

6 4.587 1784.450 0.129 Yes 87.280 51.670.832

7 4.111 2562.610 0.107 No - -

8 7.617 1299.320 0.299 No - -

9 4.693 1759.040 0.133 Yes 89.272 34.753

10 4.745 1687.680 0.149 Yes 90.284 50.385

11 5.565 1404.140 0.219 No 89.272 50.403

12 6.099 1303.940 0.251 No 90.284 47.097

13 8.599 1278.680 0.348 No - -

14 4.927 1557.320 0.180 Yes 94.012 42.080

The values ofMs for the canonical genetic code are 5.19 for polar requirement and 2266.13 for molecular volume.

Figure 5 Evaluation (Ms) for the best codes found by the GA and for the canonical code, when polar requirement andmolecular volume
are considered. The values ofMs for the canonical genetic code are 5.19 for polar requirement and 2266.13 for molecular volume.
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Table 6 Results for the experiment withMst considering polar requirement andmolecular volume

Objective 1 Objective 2

HC PR MV Dist. Dom. pmd PR (%) pmdMV (%)

1 3.884 632,507 1134.264 No - -

2 1.829 802,054 964.716 Yes 86.207 33.018

3 1.829 797,364 969.406 Yes 86.214 32.911

4 1.821 1269,770 497.001 Yes 86.086 48.897

5 3.241 732,760 1034.010 No - -

6 3.348 726,481 1040.289 No - -

7 1.828 881,415 885.355 Yes 86.192 34.944

8 4.001 628,784 1137.987 No - -

9 4.288 624,356 1142.415 No - -

10 4.866 551,263 1215.509 No - -

11 4.631 584,045 1182.727 No - -

The values ofMst for the canonical genetic code are 2.63 for polar requirement and 1766.77 for molecular volume.

squared error using the mistranslation information, i.e.,
incorporated with the weights given by Table 1, is also
tested in this paper. The new error measure is denoted
Mst .
Haig and Hurst [15] considered the following proper-

ties to compute the mean squared error: polar require-
ment, hydropathy index, molecular volume and isoeletric
point. They found that the canonical code is robust for
all properties, with exception for isoeletric point. Santos

and Monteagudo [18] also tested those properties using
the Percentage of Minimization Distance (pmd), which is
a sort of distance measure between the canonical code
and the hypothetical code (a complete description of pmd
is given in the Section Evaluation of the results). Higher
values of pmd means greater proximity between the eval-
uation value of the codes. They found the following pmd
values: 67% for polar requirement, 53% for hydropathy
property, 42% for molecular volume and 23% for isoeletric

Figure 6 Evaluation (Mst) for the best codes found by the GA and for the canonical code, when polar requirement andmolecular volume
are considered. The values ofMst for the canonical genetic code are 2.63 for polar requirement and 1766.77 for molecular volume.
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Table 7 Number of random codes better than the
canonical code

PR HI MV

Number of codes (Ms) 0 9 7466

Number of codes (Mst) 0 0 20

In this experiments, 10 million random codes were generated.

point. As a consequence, the authors used polar require-
ment in the subsequent experiments. It is important to
highlight that in both works the results obtained are
from monoobjective simulations. In the experiments pre-
sented here, we use the following amino acids properties
(Table 2) to compute robustness in the multiobjective
approach: polar requirement [2], hydropathy [27] and
molecular volume [28]. For each experiment, NSGA-II
uses two objectives each time, e.g., Ms for polar require-
ment (objective one) and Ms for hydropathy (objective
two).

Genetic algorithm
Two types of encodings for the solutions (genetic codes)
were tested for the GA in [18]. The first one is a non-
restrictive encoding, where the allowed genetic codes map
the 61 codons into 20 amino acids (three codons are
reserved for signaling the end of the transcription pro-
cess). The second one is a restrictive encoding, which
preserves the structure blocks of the canonical genetic
code, i.e., keeps the same groups of synonymous codons
found in the standard code. In this sense, the canonical
code information is used in the restrictive encoding to
reduce the number of possible genetic codes found in the
genetic code space.
In the restrictive encoding, each individual of the GA’s

population represents a code composed of 20 positions,
each one related to a group of codons associated to an
amino acid (Figure 1). These groups are the same found
in the canonical genetic code. The stop codons are kept
fixed, as in the canonical code. The restrictive encoding is
used in the implementation described here.

Figure 7 Empirical distribution for the evaluation function, whenMs is used with polar requirement. For each objective, the horizontal axis
shows ranges of the evaluation while the vertical axis gives the number of codes found in the respective range. The evaluation of the canonical
genetic code and the objective values of the solutions with the best pmd obtained in the previous experiments are also plotted.
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In the GA, a set of solutions (population) is allowed to
evolve according to selection and transformation opera-
tors. Here, tournament selection is employed to select the
individuals (solutions) to be transformed. In this operator,
a percentage of individuals is randomly selected and the
individual with the best evaluation is chosen. Moreover,
elitism is used to preserve the best individual of each pop-
ulation. Like the GA described in [18], the GA employed
here uses only swap as the transformation operator. As the
authors in [18], we also tested a crossover operator in pre-
vious experiments, but it did not statistically improved the
performance of the algorithm. In swap, amino acids asso-
ciated to two groups of codons are interchanged, i.e., two
positions are randomly selected and their amino acids are
swapped (Figure 2).
The NSGA-II used here employs an elitist nondomi-

nated sorting to define the Pareto set [19]. The algorithm
can be summarized by the following steps:

• Generate a population P(0), which is sorted in layers
according to dominance among the solutions. In this

sense, the first layer corresponds to the solutions
which are not dominated by other solutions. i.e.,
the first layer corresponds to the Pareto optimal
solutions set.

• Selection and transformation operators are
applied to the P(t) in order to generate another
population Q(t). A new population P(t) + Q(t) is
then sorted according to the dominance among the
solutions.

• A new population P(t+1) is created, adding the
initial layers of P(t) + Q(t). When the number of
individuals of the last layer exceeds the population
size, a crowding distance is used to choose the
most diverse individuals within a layer. The
individuals are ranked according to this distance
and the most diverse are added to complete the
population.

The pseudo-code for the non-dominated sorting genetic
algorithm II (NSGA-II) is shown in Algorithm 1.

Figure 8 Empirical distribution for the evaluation function, whenMs is used with hydropathy index.
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Algorithm 1 NSGA-II
1: P(0) = InitializePopulation() // A population P(0) is created, the size of P(0) is N
2: ObjectiveFunctions(P(0)) // Use the objective functions to evaluate the population
3: FastNondominatedSort(P(0)) // The population P(0) is sorted in fronts
4: Q(0) = SelectandTransform(P(0)) // Operators of selection and transformation are applied to P(0) and another population

Q(0) is generated. The transformation operator used is the swap operator
5: ObjectiveFunctions(Q(0))
6: for t ← 0toNumberGenerations do
7: P(t+1) = Merge(P(t) + Q(t))
8: // The size of P(t+1) is 2N
9: ObjectiveFunctions(P(t+1))

10: FastNondominatedSort(P(t+1))
11: for i ← 1toNumberFronts do
12: if (Size(P(t+1)) + Size(Fronti) < N) then
13: P(t+1) = P(t+1) + Fronti
14: else
15: CrowdingDistance(P(t+1), Fronti)
16: i = NumberFronts
17: end if
18: end for
19: Q(t+1) = SelectandTransform(P(t+1))
20: ObjectiveFunctions(Q(t+1))
21: end for

Figure 9 Empirical distribution for the evaluation function, whenMs is used with molecular volume.
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Evaluation of the results
In order to compare the canonical genetic code with codes
in the Pareto set generated in the experiments, we use four
approaches:

i Evaluation for each objective i for the codes in the
Pareto set found by the algorithm and comparison to
the evaluation of the canonical code: The values of
evaluation, as well the Euclidean distance between
the evaluation of the solutions in the Pareto set and
the evaluation of the canonical code for each
objective, are shown in tables. Also, a graphical
representation for the distribution is presented. The
graphical representation shows the distribution of
evaluations of the nondominated solutions found by
the algorithm. Each axis corresponds to one objective
considered by the algorithm and the codes are
represented by points.

ii Percentage of Minimization Distance (pmd) [4] for
all objectives: The pmd for objective i is computed as
follows:

pmdi = 100 ×
∣
∣
∣
∣
∣

f̄i − fi(Ccanonical)

f̄i − fi(C)

∣
∣
∣
∣
∣

(2)

where f̄i is the estimated average evaluation of
objective i for all the possible genetic codes, fi(C) is
the evaluation of objective i for the genetic code C,
and Ccanonical is the canonical genetic code. The
value of f̄i is computed as the mean evaluation of
objective i for a large number of random codes (here,
10 million codes were generated). Higher values of
pmdi means greater proximity between the
evaluation of objective i for code C and the canonical
code, relative to the estimated average evaluation for
all possible codes. In order to evaluate the solutions
of the Pareto set found by the algorithm, pmdi is
computed for all objectives minimized in the
experiment.

iii Dominance of the solutions in the Pareto set over
the canonical code: If a code C in the Pareto set
found by the NSGA-II dominates the genetic code,
it means that the evaluation of both objectives,
for the code C, is equal or better, and at least one is
better.

iv Comparison of codes of the Pareto set with the
canonical genetic code: some codes of the Pareto set
are shown in tables and their organization is

Figure 10 Empirical distribution for the evaluation function, whenMst is used with polar requirement.



de Oliveira et al. BMC Bioinformatics  (2015) 16:52 Page 12 of 20

compared with the organization of the canonical
code.

Results and discussion
In the experiments, the NSGA-II minimizes two objec-
tives each time. The mean squared error considering the
polar requirement property is always the first objective.
Results of experiments with two different second objec-
tives (mean squared error considering hydropathy index
or molecular volume) are presented in this section. For
each combination of objectives, experiments withMs and
Mst were generated. The values of polar requirement,
hidropathy index, and molecular volume for the amino
acids used here presented in Table 2.
The NSGA-II was implemented in C++ with popula-

tion size equal to 100, random initial population, swap
rate equal to 0.5 (each individual has a 50% change of
suffering swap), and size of the tournament pool equal
to 3% of the population size. For each second objective
and mean squared error (Ms and Mst), the NSGA-II is
executed 10 times during 1000 generations with different
random seeds. The results of the Pareto set obtained by

combining the nondominated solutions for the 10 runs are
here presented.

Polar requirement and hydropathy index
Table 3 shows the results for the nondominated codes
obtained by NSGA-II using Ms, considering the amino
acids properties: polar requirement and hydropathy index.
The values presented in columns 2 and 3 of Table 3
are also presented in Figure 3. The values of pmdi are
presented for all hypothetical codes, that dominate the
canonical code. When the code does not dominate the
canonical code the pmdi cannot be calculated, since its
values will be higher than 100%. The Euclidean distance
from the codes to the canonical code, considering both
objectives, is also presented in column 4. We use normal-
ized values ofMs andMst to compute the distances.
Figure 3 also presents the Ms value of an optimal code

obtained by a monoobjective GA and presented in [18].
We calculated for this code, the value of Ms using the
hydropathy index and molecular volume. It is possible to
observe that the code generated by the monoobjective
approach has a lower value forMs with polar requirement,

Figure 11 Empirical distribution for the evaluation function, whenMst is used with hydropathy index.
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but a higher value of Ms with hydropathy index, what is
expected, since only polar requirement was minimized in
the optimization process.
The best pmdi considering polar requirement obtained

among the nondominated codes was 86.793%, while the
best pmdi obtained for the hydropathy index was 57.607%.
It is important to highlight that, as two objectives are
considered in the Pareto approach, the best pmdi does
not necessarily correspond to the code with the lowest
evaluation for the i − th objective, but to the genetic code
in the nondominated set with evaluation of i-th objec-
tive closest to the evaluation of the same objective for the
canonical code. The best pmdi considering Ms with polar
requirement obtained by the monoobjective approach in
[18] was 71%. In this way, using two objectives instead of
one, we obtained best codes with evaluation of the mean
squared error considering polar requirement closer to the
evaluation of the canonical code.
Table 4 and Figure 4 show the results for the exper-

iment with Mst , i.e., considering weights for mistrans-
lation and base position errors. All the solutions found
by the algorithm dominate the canonical code. Figure 4

also shows the monoobjective code obtained by [18], the
monoobjective has a higher value of Mst with hydropathy
index when compared with the codes obtained with the
multiobjective approach.
The best pmdi considering polar requirement obtained

among the nondominated codes was 93.731%, while
73.649% was reached for the hydropathy index. Both
values are better than those obtained in the experiment
with Ms, indicating that using the weights for mistrans-
lation errors generates a much better evaluation. Here,
the best pmdi for Mst with polar requirement was also
better than that obtained in the monoobjective approach
presented in [20], that was 84%.

Polar requirement andmolecular volume
Table 5 and Figure 5 show the results using Ms for polar
requirement and molecular volume, while Table 6 and
Figure 6 show the results for Mst . The Ms calculated
for the canonical genetic code is 5.19 and 2266.13 when
molecular volume is considered. When Mst is calculated,
the values obtained were 2.63 for polar requirement and
1766.77 for molecular volume.

Figure 12 Empirical distribution for the evaluation function, whenMst is used with molecular volume.



de Oliveira et al. BMC Bioinformatics  (2015) 16:52 Page 14 of 20

For the experiment withMs, 8 out of 14 solutions found
by the GA do not dominate the canonical code. The best
pmdi found among the solutions that dominate the canon-
ical code was 94.012% for polar requirement and 62.832%
for molecular volume. For the experiment with Mst , 7
out of 11 solutions found by the GA do not dominate
the canonical code. The best values obtained considering
mistranslations and base position errors were 86.214%
for polar requirement and 48.897% for molecular vol-
ume. Unlike the experiment with the hydropathy index,
the best results for pmdi for both objectives were found
in the experiment with Ms. However, more solutions that
do not dominate the canonical code were found in the
experiment withMst .
Figures 5 and 6 also show the position of the monoob-

jective code obtained by [18]. In Figure 5, the monoobjec-
tive solution is far from the Pareto front and has a high
value for Ms with molecular volume, but a low value for
Ms with polar requirement. The monoobjective code of
the Figure 6 presents the same behavior, but its position is
closer to the Pareto front.

Statistical approach
In order to compare the results obtained with the engi-
neering approach, experiments were also performed using

the statistical approach. Table 7 shows the number of ran-
dom codes which are better than the canonical genetic
code when 10 million random codes are generated and
the objectives are individually evaluated. The results also
confirm that the use of weights for the mistranslations
results in a better measure to compare the codes. One can
observe that it is more difficult to find random codes bet-
ter than the canonical genetic code and this difficulty is
higher when polar requirement is considered. For some
experiments, none random code better than the canon-
ical code was found. In order to obtain better results,
much more random codes should be generated, what
shows a limitation of the statistical approach. The engi-
neering approach allows to find best codes using a smaller
number of random codes, what was demonstrated in the
experiments presented in previous sections.
Anyway, the distribution of the random codes can be

useful to show how the best codes found in the experi-
ments with the NSGA-II compare with random hypothet-
ical codes. Figures 7, 8, 9, 10, 11 and 12 show the empirical
distribution for the 10 million random codes distributed
in ranges of objective values. For each objective, the hor-
izontal axis shows ranges of the objective value while
the vertical axis gives the number of codes found in the
respective range. Figures 7, 8 and 9 show the histograms

Figure 13 Canonical code and hypothetical codes in a gray scale according to the respective polar requirement of the amino acids, when
Ms is used, in the experiment with polar requirement and hydropathy index. The canonical code is shown in the first column, the polar
requirement value (PR) of the amino acid in the second column, the associated codons (third column), and the amino acids for the hypothetical
codes obtained in the experiment with the multiobjective GA using PR and HI are shown in the last columns.
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Figure 14 Canonical genetic code and hypothetical codes in a gray scale according to the respective hydropathy index of the amino
acids, whenMs is used, in the experiment with polar requirement and hydropathy index.

of Ms with polar requirement, hydropathy index and
molecular volume, respectively, while Figures 10, 11 and
12 show the histograms of the respective value when Mst
is used. The objective values of the canonical genetic code
and the objective values of the solutions with the best pmd
obtained in the previous experiments are also plotted. The
figures also show the position of the monoobjective code
obtained by [18]. In all experiments, the evaluation of the
solution found by the GA is far from the average, and

smaller than the evaluation of the code with the smallest
value.
In addition, in [20], the mean value for the best codes

obtained using Ms and polar requirement was 3.506 with
a standard deviation of 0.031. Here, considering polar
requirement and hydropathy as objectives, the mean value
of the nondominated solutions is 3.920 with a stan-
dard deviation of 0.345. When the second objective is
molecular volume, the mean value of Ms is 5.904 with

Figure 15 Canonical genetic code and hypothetical codes in a gray scale according to the respective polar requirement of the amino
acids, whenMs is used, in the experiment with polar requirement andmolecular volume.
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Figure 16 Canonical genetic code and hypothetical codes in a gray scale according to the respective molecular volume of the amino
acids, whenMs is used, in the experiment with polar requirement andmolecular volume.

a standard deviation of 1.910. Considering that the Ms
value of the standard genetic code is 5.19, the average
value obtained in the experiments with polar requirement
and hydropathy was closer than found by the monoobjec-
tive approach, i.e., it means that the hypothetical codes
found by the multiobjective approach were closer to the
canonical genetic code in terms of fitness values.
In the experiments presented here, the mean Mst for

polar requirement was 2.104 with 0.569 of deviation when
hydropathy is considered as the second objective and

3.233 with 1.155 of deviation when molecular volume is
used as a second objective.

Code analysis
In addition, we analyze all the hypothetical codes found
by the multiobjective approach. The codes were analyzed
according to their values of Ms and Mst . Figures 13, 14,
15, 16, 17, 18, 19 and 20 show the canonical code and
the hypothetical codes colored in gray scale according to
the respective amino acid properties. It is important to

Figure 17 Canonical genetic code and hypothetical codes in a gray scale according to the respective polar requirement of the amino
acids, whenMst is used, in the experiment with polar requirement and hydropathy index.
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Figure 18 Canonical genetic code and hypothetical codes in a gray scale according to the respective hydropathy index of the amino
acids, whenMst is used, in the experiment with polar requirement and hydropathy index.

highlight that the codes obtained shown in Figures 13
and 14, 15 and 16, 17 and 18, and 19 and 20 are the
same but they are sorted according to the respective
amino acid property. In this sense, Figures 13 and 14
show the hypothetical codes obtained with polar require-
ment and hydropathy index using Ms. Figure 13 shows
the amino acids sorted according to polar requirement,
whereas Figure 14 shows the same set of amino acids

sorted according to hydropathy index. In the column
“mono”, we also included the codes obtained in [18] using
the monoobjective approach.
According to Figures 13 and 14, one can observe that

the dark shades of the hypothetical codes are usually in
the bottom of the table (except for hypothetical code 6,
denoted HC6). This happens because the fitness func-
tion does not consider any relationship between the set of

Figure 19 Canonical genetic code and hypothetical codes in a gray scale according to the respective polar requirement of the amino
acids, whenMst is used, in the experiment with polar requirement andmolecular volume.
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codons and the amino acids. In this sense, during the opti-
mization process, it is not important to know which set of
codons is linked to each amino acid. We can also observe
that there is a smooth gray scale transition between the
amino acids with closer values of properties. The hypo-
thetical code 5 (HC5) is the one the the smallest Euclidean
distance. HC7 is the one with the lowest value of Ms
considering polar requirement and it is also the most sim-
ilar to the code obtained using the monoobjective GA in
[18], while HC6 is the one with the lowest value of Ms
considering hydropathy index.
Figures 15 and 16 present the gray scale tables of the

hypothetical codes using Ms considering polar require-
ment and molecular volume respectively. In this case the
relation between the neighbors is not clear and is also
difficult to observe a pattern in the figures. Despite the
genetic code have a high value of robustness (Ms) for
hydropathy index and molecular volume, [29] empha-
sizes that the canonical code is much less optimized for
molecular volume when compared to hydropathy.
Figures 17 and 18 present the gray scale analysis of the

simulation with polar requirement and hydropathy index
now considering Mst , while figures 19 and 20 present the
analysis considering the simulation with Mst and with
polar requirement and molecular volume.
According to Figures 17 and 18, we can observe a

smooth gradient in the gray shades. In some codes, the
dark shades are on the bottom (HC3, HC4 and mono) and
in others, on the top (HC1 and HC2), what is a expected
behavior since no relation between the codons and the
amino acids is being considered by the objectives (fitness
functions). HC3 is the code with the lowest Euclidean
distance, while HC4 is the one with the lowest value of
Mst considering polar requirement and HC2 is the one

with the lowest value of Mst considering molecular vol-
ume. HC4 is similar to the monoobjective code obtained
by [18].
Observing Figures 19 and 20, we cannot see a clear pat-

tern in the gray shades. The explanation for this behavior
is again that the canonical genetic code has a poorer level
of optimization when the property molecular volume is
considered, as observed by [29].
Considering all the figures presented in this section, it is

possible to summarize some important points:

• Low values ofMs orMst do not necessarily imply in a
structure similar to the canonical code. Usually, the
hypothetical codes obtained has a small number of
matches with the canonical genetic code. According
to the robustness fitness function, and using the
proposed optimization algorithm, it is easy to find
codes more robust than the canonical code.

• It is also possible to say that the canonical code is not
one of the global optimal, i.e., it is not in the Pareto
front, when the multiobjective robustness-based
approach is used with robustness for polar
requirement as the first objective and robustness for
hydropathy or molecular volume as the second
objective (the same is valid for the monoobjective
approach).

• We found codes similar to those found with the
monoobjective in the literature, specially when the
objective polar requirement is the more optimized
objective. In other words, the monoobjective
approach is a particular case of the multiobjective
approach.

• The codes obtained with the multiobjective approach
have higher values forMs orMst with polar

Figure 20 Canonical genetic code and hypothetical codes in a gray scale according to the respective molecular volume of the amino
acids, whenMst is used, in the experiment with polar requirement andmolecular volume.
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requirement. This is expected, since in the
multiobjective approach, more than one objective is
optimized simultaneously. Similarly, the codes
generated with the monoobjective approach have a
higher value ofMs orMst when considering the
properties hydropathy index and molecular volume,
which is also expected.

• The hypothetical codes obtained in the experiments
considering hydropathy index and polar requirement
have structures more similar to the canonical code
and it is possible to observe a smooth gradient in the
tables.

• The values of pmd for polar requirement are better
for the multiobjective approach, when compared
with the pmd for the monoobjective approach.

Conclusions
In this paper, we propose a multiobjective approach to
investigate the adaptability of the genetic code. Instead
of using only one objective to compare the canonical
code with other hypothetical genetic codes, we propose
the simultaneous use of two or more objectives. In order
to test our hypothesis, we investigate the multiobjective
approach with two objectives based on robustness. The
first objective is always the robustness for polar require-
ment and the second objective is the robustness for
hydropathy index or molecular volume.
When compared with the monoobjective approaches

described in the literature, the multiobjective approach
generates better results for pmd considering polar
requirement. In the multiobjective experiments with Mst ,
the best results for pmd for polar requirement was
94.012% (in the experiment with hydropathy index) and
90.284% (in the experiment with molecular volume)
against 84% found by the monoobjective approach pre-
sented in [18]. In other words, the hypothetical genetic
codes found by the optimization algorithm have evalua-
tion closer to the evaluation of the canonical code. The
experiments with molecular volume also presented the
smallest Euclidean distance to the canonical code. When
molecular volume was used with polar requirement, more
solutions that do not dominate the canonical code were
found.
One of the most visible advantages of the multiobjec-

tive approach is to provide a set of optimal solutions to
be compared to the canonical code, not just one like in
the monoobjective approach currently used in the liter-
ature. The use of more than one objective seems to be
a more realistic strategy and, despite of not having pro-
duced hypothetical codes identical to the canonical code,
the results encourage us to search for new properties that
may have been important during the evolutionary process
of the canonical genetic code. One of the objectives that

will be investigated in the proposed Pareto approach will
be entropy [30].
Another point to be highlighted is that the genetic codes

found by the multiobjective approach have a higher num-
ber of matches to the canonical code than those found
by the monoobjective approach. However, the number of
matches are still small. Although, as discussed in the code
analysis section, the number of matches is not always a
good indicative of the quality of the code and new ways
to analyze hypothetical codes should be investigated in
future works. Also, the multiobjective approach should be
employed to investigate if the canonical code is in a local
optimum in the search landscape and relations between
codons and amino acids should be investigated as possible
objectives.
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