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Background: Arguably the most basic step in the analysis of next generation sequencing data (NGS) involves the
extraction of mappable reads from the raw reads produced by sequencing instruments. The presence of barcodes,
adaptors and artifacts subject to sequencing errors makes this step non-trivial.

Results: Here | present TagDust2, a generic approach utilizing a library of hidden Markov models (HMM) to accurately
extract reads from a wide array of possible read architectures. TagDust2 extracts more reads of higher quality
compared to other approaches. Processing of multiplexed single, paired end and libraries containing unique
molecular identifiers is fully supported. Two additional post processing steps are included to exclude known
contaminants and filter out low complexity sequences. Finally, TagDust2 can automatically detect the library type of

Conclusion: Taken together TagDust2 is a feature rich, flexible and adaptive solution to go from raw to mappable
NGS reads in a single step. The ability to recognize and record the contents of raw reads will help to automate and
demystify the initial, and often poorly documented, steps in NGS data analysis pipelines. TagDust?2 is freely available

Background

Next generation sequencing has greatly accelerated the
accumulation of genomics data. Different protocols tar-
geting the genome, epigenome and transcriptions are
widely used [1]. In essence, all protocols capture biologi-
cal sequences of interest while adding adaptors and other
sequences to facilitate cost effective sequencing. An obvi-
ous examples is the use of indices or barcodes allowing
researchers to multiplex sequencing experiments [2,3]. In
addition recent protocols include random oligos in the
library construction to correct for PCR and other biases
[4]. As the length of such auxiliary sequences increases
so is the chance that sequencing errors occur in these
key sequences. In the best case these errors lead to some
sequences being lost to the downstream analysis, but
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in the worse case sequences can be mixed up between
samples leading to analytical noise. A compounding com-
plication is that error rates of current sequencing instru-
ments vary and is not obvious how to select an appropriate
strategy to process the raw data.

Programs have been developed to tackle individual steps
in this general area including the removal of artefacts from
raw NGS sequencing files [5], read trimming [6,7] and
read demultiplexing [8-10]. All programs are based on
matching known strings to the sequenced reads. However
none tackle the whole problem comprehensively neces-
sitating the construction of processing pipelines [11-13]
to obtain clean sequences for assembly or mapping to
a reference sequence. Parameterization and maintenance
of these pipelines for individual NGS assays is cumber-
some and only exacerbated by the rapid pace of protocol
development [14].

TagDust2 solves this problem in a generic way while
guaranteeing good accuracy. The key part of finding the
mappable read and matching it to a barcode is carried
out by a user defined hidden Markov model (HMM).
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This approach has several key advantages. Firstly, a user
defined architecture gives great flexibility in respect to the
different sequencing assays used. Secondly, HMMs them-
selves are well suited to recognize sequences even in the
presence of sequencing errors. Artifacts such as primer
dimers will by definition not match the HMM and are
therefore easily recognized and discarded (see Figure 1).
Finally, by comparing reads to multiple HMMs it is trivial
to detect the library protocol used. The latter can be used
in production environments to automatically recognize
and process different NGS protocols.
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Approach
Let us define the read architecture as the order of
adapters, barcodes and the mappable sequence itself. Tag-
Dust2 contains a library of HMM models, each designed
to capture the different types of sequences one might
encounter in real raw NGS reads. For example, one model
recognizes partial sequences such as 5" and 3’ adapters
while another captures the presence of mutually exclusive
barcode sequences used for multiplexing libraries.

Each sequenced read is scored against the global HMM
using the forward algorithm [15] and a zero order

@

|tagdust2 -1 0:N -2 B:GTA,AAC -3 R:N -4 L:CCTTAA reads.fq|

@

sequences are trimmed.

’ HMM construction

@ GTAGGGGAACCCCGCCTGTTTACCAAAAACATCA

’ Output

>READ X, Barcode GTA
GGGGAACCCCGCCTGTTTACCAAAAACATCA

Figure 1 Overview of the TagDust2 workflow. 1) A user specifies the expected read architecture as a sequence of pre-defined blocks. Here there
are four of such blocks. 2) A HMM is constructed by concatenating the pre-defined blocks in the order given by the -1 ...
Forexample -2 B:GTA, AAC is translated into the second (red) part of the HMM and models the presence of two mutually exclusive barcode
sequences. 3) Reads are scanned with the HMM and each nucleotide is labelled by the block it belongs to. In the example shown the three letter
barcode GTA is recognised in the raw sequence. 4) Based on the labelling of the sequence, a barcode is assigned to each read and remaining
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command line options.




Lassmann BMC Bioinformatics (2015) 16:24

background model. If barcodes are present in the architec-
ture an additional background HMM of the same length
as the barcode is introduced. The backward algorithm is
then used to determine the total probability of the most
likely barcode sequence used. All probabilities are con-
verted into a phred scaled extraction quality analogous
to the mapping quality introduced in MAQ [16]. Simply
put, the extraction quality reflects how certain we can be
that the read matches the read architecture and a partic-
ular given barcode. To finally extract the read sequence
TagDust2 employs an optimal accuracy decoder [17].

In transcriptome sequencing it is common to exclude
ribosomal RNAs from the downstream analysis. In addi-
tion users may wish to extract known sequences such
as spike-ins to perform separate analysis. For complete-
ness TagDust2 includes the option to scan all extracted
reads against a database of known contaminants and
exclude them from mapping. Similarly, a low-complexity
filter is included. Taken together TagDust2 performs all
steps required to go from raw to mappable sequences and
therefore greatly simplifies processing pipelines.

Implementation

TagDust2 is a complete departure from the original Tag-
Dust [5] program. TagDust2 implements a small library of
HMMs referred to as segments. Each segment contains a
silent start and end state which are used to connect mul-
tiple segments. Segments are hand-designed to capture
commonly occurring features in raw sequences such as
the combination of barcodes, variable length sequences
and so on (see the user manual for a complete list).
Users can use a simple command line interface to spec-
ify the expected sequence of segments in their reads.
TagDust2 automatically constructs a global HMMs from
the segments and starts scoring the individual reads (see
Figure 1). Alternatively users can create a file containing a
selection of pre-defined architectures. TagDust will score
reads against all architectures and determine the most
appropriate match.

Internally, TagDust2 uses a full profile HMM:s for each
segment. To emulate different segments I simply set some
transition probabilities to zero. For example the HMM
segment corresponding to the actual read is implemented
as a profile HMM with one column and transitions
directly to and from the insertion state. The most compu-
tationally demanding parts are parallelized using threads.
TagDust2 is written in C, extensively documented and the
source code is freely available.

Sequence scoring

In short read mapping the mapping quality Q reflects the
confidence we have in one particular mapping location
over all others [16]. Analogously, TagDust2 compares the
probability of each read matching to the user specified
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HMM to the total summed probability including a ran-
dom model:

B P(x|M)*V
P(x|M) + P(x|R)

where P(x|M) is the total summed probability of a read
matching the model derived by the forward algorithm and
P(x|R) is the probability of the read give a random zero
order Markov model. V represents the fraction of P(x|M)
corresponding to the most likely barcode sequence, if
present or 1 otherwise. It is defined as the most probable
transition from a silent state s to the first match state m of
a barcode j:

ﬁ(i)ﬂs,m,-em/ (x + l)bm,-(i +1)
V = max
j > P(x, |M)

where f; is the total probability summed up over all paths
7 leading up to state s and by, the total probability of
all paths starting from ;. a and e are the transition and
emission probabilities respectively. The denominator is
the total probability of the sequence x given the model M
summed over all paths 7.

To further reduce possibility of one barcode being
mixed up with one another TagDust2 always adds one
additional HMM to the segment. The latter is of the same
length as other barcodes but the emission probabilities
are set to the background frequencies. This model cap-
tures raw sequences in which the barcode sequence is too
ambiguous to be uniquely assigned.

Threshold determination

Selecting an appropriate threshold on P is not trivial. A
stringent threshold is appropriate when many auxiliary
sequences are present. However, the same threshold may
yield no results when simple read architectures are given
because the distributions of P(x|M) and P(x|R) will over-
lap. In other words thresholds should be set independently
for different read architectures.

To set thresholds dynamically and automatically, Tag-
Dust2 simulates, or emits, reads from the model M and
the random model R. All reads are scored and the thresh-
old is set to the value that gives the best sensitivity plus
specificity.

Optimal accuracy decoding

To obtain the most probable labeling of a raw sequence,
TagDust2 employs the optimal accuracy decoding algo-
rithm as described in [17]. To apply this algorithm to our
problem the label probability of a nucleotide is defined
by the summed posterior label probabilities of all states
belonging to a particular HMM segment. A secondary
dynamic programming algorithm is used to determine
the path with the maximum posterior label probability,
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constrained by the global HMM architecture. The label
probabilities are essentially used as a substitution matrix
while the architecture is enforced by the equivalent of gap
penalties.

If fingerprints, a random sequence added to detect PCR
artifacts, are present TagDust2 checks at this stage if the
length after decoding matches the users input. If not the
read is discarded.

Further read filtering

TagDust2 allows users to specify a fasta file contain-
ing known sequences the user wishes to exclude from
mapping. For example in transcriptome sequencing one
commonly wants to remove ribosomal sequences from the
downstream analysis. To address this issue in a general
manner TagDust2 exhaustively align all reads to the target
reference sequences and discard all reads with less than a
user defined number of mismatches, insertions and dele-
tions. For efficiency I implemented the Myers bit parallel
algorithm [18] using SIMD instructions as well as using
thread level parallelism. The number of reads matching
different reference sequences are automatically recorded.

Filtering low complexity sequences

Tagdust2 implements a simplified version of the DUST
module (R. Tatusov and D.J. Lipman, unpublished data)
to filter out low complexity reads. The algorithm is only
applied to the first sixty-four nucleotides of the reads.

Results

To assess the performance of TagDust2 I generated
large datasets by varying the number of barcodes used,
their lengths and the per base error rate. In all exper-
iments 90 thousand sequences containing the expected
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architecture were generated. An additional 10 thousand
random sequences were added to assess the number of
false positives. To obtain sets of barcodes with maximal
dissimilarity I used programs described by Faircloth et al.
[19]. Given that the original read and sample are known
the number of reads assigned to the wrong sample and the
total number of extracted reads can be quantified.

I compared the performance of TagDust2 to cutadapt
[7], the fastx-toolkit [10] and Btrim [8] using default
parameters.

The TagDust2 software distribution contains a docu-
ment written using the literate programming paradigm
to reproduce all the results presented here (see also
Additional file 1).

Basic de-multlexing

A simple application of TagDust2 is de-multiplexing
of libraries. In two separate experiments, four and six
nucleotide long barcodes were appended to reads. The
number of barcodes and their length was varied together
with the sequencer error rate. The maximum similarity
between any pair of barcodes was two when using 4nt and
three when using 6nt barcodes (Figure 2).

TagDust2 is more conservative at extracting reads com-
pared to fastx when using 4nt barcodes. As the number
of barcodes and error rates are increased the precision of
both programs is decreasing. However, the precision of
TagDust2 is consistently higher compared to fastx and far
less affected by the per-base error rate.

Increasing the barcode length to six nucleotides makes it
much easier to unambiguously assign reads to a particular
sample (Figure 3). Here there is no appreciable difference
in recall between the two programs. As before, TagDust2
is consistently more precise compared to fastx.
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Figure 2 Demultiplexing of libraries with 4nt barcodes assuming different error rates. From left to right: simulations using 8, 24 or 48
different barcodes. The top panels show the recall and the bottom panels the precision. TagDust sacrifices recall for high precision.
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Figure 3 Demultiplexing of libraries with 6nt barcodes assuming different sequencer error rates. From left to right: simulations using 8, 24 or

48 different barcodes. The top panels show the recall and the bottom panels the precision.

De-multiplexing in the presence of 5’ and 3’ adapters

In a more complicated case, we add both 5 and 3
adapters (AGGGAGGACGATGCGG and GTGTCAGT-
CACTTCCAGCGQG) to the simulated case from before
(Figures 4 and 5). TagDust2 performs favorably in these
cases. The additional long sequences make it easy to dif-
ferentiate between real and random sequences and hence
the recall is high.

Perhaps most importantly, the syntax for running Tag-
Dust?2 is virtually unchanged from before. Working with
more complex architectures is simple, negating the need
to write many protocol specific scripts for data processing.

Automatic detection of architectures
In parallel to running TagDust2 with a case specific com-
mand line for each of the situations above, I also ran

TagDust using a pre-specified architecture file. In brief,
this file contains a list of all possible architectures used in
all the examples above. In all cases, TagDust2 run in this
mode selected the correct architecture out of all the other
options and produced identical results to those shown in
Figures 2, 3, 4 and 5. In other words, TagDust2 using the
same options could recognize the presence or absence of
adapters, distinguish between different numbers of 4nt
or 6nt barcodes while being able to give good results
irrespective of the sequencing error rate.

Comparison to the Casava pipeline

On Illumina sequencing instruments de-multiplexing of
samples is performed automatically by the program
bcl2fastq as part of the CASAVA pipeline. This program
simultaneously converts the per-cycle BCL basecall files
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Figure 4 Demultiplexing of libraries with 5’ and 3’ linkers and 4nt barcodes assuming different sequencer error rates. From left to right:
simulations using 8, 24 or 48 different barcodes. The top panels show the recall and the bottom panels the precision.
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Figure 5 Demultiplexing of libraries with 5’ and 3’ linkers and 6nt barcodes assuming different sequencer error rates. From left to right:
simulations using 8, 24 or 48 different barcodes. The top panels show the recall and the bottom panels the precision.

to per-read fastq files. BCL files are not readily avail-
able but fortuitously, the bcl2fastq software [9] is dis-
tributed together with a validation dataset containing the
raw files of one lane of multiplexed paired-end sam-
ples (RUN 110120_P20_0993_A805CKABXX). The lane
contains two human samples and a PhiX control sam-
ple indexed by 6nt long sequences (ACAGTG, ACTTGA,
TTAGGC). By turning off the de-multiplexing function-
ality in bcl2fastq I could perform the de-multiplexing
separately with TagDust2. All reads were aligned to their
matching reference genomes (GRCh38, NC_001422.1)
using BWA-MEM [20].

TagDust2 was able to assign more reads to all of
the three samples compared the files produced by
bcl2fastq (Table 1). Mapping the reads to their references

Table 1 Comparison to lllumina’s bcl2fastq

Sample bcl2fastq TagDust2 Difference (TagDust2 -

bcl2fastq)

Number of AR0O05 1472734 1508848 36.114
extracted reads

AR008 1.518208 1543918 25.710

Phix 49.104 51488 2384
Number of ARO05 1435567 1464.037 28470
aligned reads

AR008 1.479.158 1.498524 19.366

PhiX 46.369 48.296 1.927

demonstrates that the additional reads extracted by Tag-
Dust?2 are usable for downstream analysis.

Real datasets

To highlight the performance of TagDust2 on real datasets
with complicated read architectures I obtained the raw
reads from a single cell transcriptome dataset [21] using
96 barcodes directly from the authors and a dataset
containing unique molecular identifiers [4] (European
nucleotide archive accession numbers: ERR048988 -
ERR048994).

The raw reads from the single cell transcriptome dataset
contain a 6 nucleotide barcode sequence followed by three
guanines and then the actual read sequence. TagDust2
extracted 18.6 million additional reads compared to the
original data processing pipeline used (Table 2). After
mapping to the mouse genome using Tophat2 [22], 3.5
million additional reads could be aligned.

In the second case each read contains a random
10 nucleotide unique molecular identifier (UMI). Find-
ing the same UMI associated with reads mapping to
same location is a good indicator that these reads are
PCR duplicates. TagDust2 automatically recognizes UMI

Table 2 Summary of single cell extracted reads

Description Original Using TagDust2
Total reads 110.622.138 (100.00%) 110.622.138 (100.00%)
Extracted 82.325.179 (74.42%) 100.900.895 (91.21%)

Mapped 66.204.974 (59.85%) 69.685.999 (62.99%)
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Figure 6 Sample to sample correlation can be improved by using unique molecular identifiers. The right panel shows correlation between
samples using 15 and 25 PCR cycles without using the UMI sequences. The left panel shows the same data after collapsing all reads mapping to the
location and containing the same UMI. TagDust correctly identified PCR artifacts based on their UMI sequences.

sequences and converts them into a unique number. To
understand whether the UMIs actually help in reducing
technical noise caused by PCR amplification I compared
libraries amplified using either 15 or 25 PCR cycles. After
collapsing reads mapping to the same region with the
same UMI the sample to sample correlation could be
improved (Figure 6). More importantly, TagDust2 was
able to extract the reads using the short command line:

tagdust2 -1 F:NNN -2 S:T -3 F:NNNN -4
S:T -5 F:NNN -6 B:GACTT -7 S:GGGG -8
R:N

specifying that we expect a 10 nucleotide fingerprint
sequence (F:) separated by thymidines (S:) followed by a
5 nucleotide barcode (B:), 4 guanosines and finally the
mappable read (R:). Apart form illustrating the inherent
flexibility of TagDust2 when using complicated architec-
tures, the command line itself also documents the con-
tents of the raw sequences. Such information completely
demystifies the early steps in NGS processing pipelines.

Conclusions

The experiments on simulated and real data indicate that
TagDust2 improves the initial steps in read processing
in several ways. Firstly, using HMMs allows TagDust2 to
effectively work datasets with a broad range of sequenc-
ing error rates. Secondly, the implementation of a library
of possible read segments makes TagDust2 very accessible
and useable. Finally, the automatic selection of architec-
tures and thresholds greatly simplifies and generalizes

the initial parts of data processing pipelines. In produc-
tion environments TagDust2 allows users to define several
read architectures and use the same pipeline for the pre-
processing of diverse data types.

The approach presented here allows researchers to
extract reads accurately and with a performance guar-
antee. Together with the two additional post processing
functions, TagDust2 is a one stop solution to go from raw
to mappable reads. The inherent flexible design makes
TagDust2 applicable to a wide spectrum of current and
future datasets.

Availability and requirements

Project name: TagDust

Project home page: http://tagdust.sourceforge.net
Operating systems: Unix/Linux

Programming language: C

Other requirements: NA

License: GNU General Public License version 3.0 (GPLv3)

Additional file

Additional file 1: Code and description to reproduce the figures in
the manuscript.
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