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Abstract

Background: The function of an RNA in cellular processes is directly related to its structure. The free energy of RNA
structure in another important key to its function as only some structures with a specific level of free energy can take
part in cellular reactions. Therefore, to perform a specific function, a particular RNA structure with specific level of free
energy is required. For a given RNA structure, the goal of the RNA design problem is to design an RNA sequence that
folds into the given structure. To mimic the biological features of RNA sequences and structures, some sequence and
energy constraints should be considered in designing RNA. Although the level of free energy is important, it is not
considered in the available approaches for RNA design problem.

Results: In this paper, we present a new version of our evolutionary algorithm for RNA design problem, entitled ERD,
and extend it to handle some sequence and energy constraints. In the sequence constraints, one can restrict
sequence positions to a fixed nucleotide or to a subset of nucleotides. As for the energy constraint, one can specify an
interval for the free energy ranges of the designed sequences. We compare our algorithm with INFO-RNA, MODENA,
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NUPACK, and RNAiFold approaches for some artificial and natural RNA secondary structures and constraints.

Conclusions: The results indicate that our algorithm outperforms the other mentioned approaches in terms of
accuracy, speedup, divergency, nucleotides distribution, and similarity to the natural RNA sequences. Particularly, the
designed RNA sequences in our method are much more reliable and similar to the natural counterparts. The
generated sequences are more diverse and they have closer nucleotides distribution to the natural one. The ERD tool
and web server are freely available at http://mostafa.utac.ir/corna/erd-cons/.

Background
Ribonucleic acids play fundamental roles in cellular pro-
cesses and their functions are directly related to their
structures. The function of an RNA is highly dependent
on its three-dimensional conformation which is referred
to as RNA tertiary structure. Since the prediction or
experimental determination of tertiary structure is very
difficult, so many works focus on the problems associated
with the RNA secondary structure.

An important problem in the RNA research area is
the RNA inverse folding, in which, the secondary struc-
ture of an RNA is given and the goal is to find a proper
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sequence that folds into the given structure. The RNA
inverse folding problem can be used to design non-
coding RNAs, which are involved in gene regulation,
chromosome replication and RNA modification [1,2]. The
designed sequences are also applicable to the construc-
tion of ribozymes and riboswitches, which may be used as
drugs and therapeutic agents in research [3], or for build-
ing self-assembling structures from small RNA molecules
in nano-biotechnology [4]. In the RNA inverse folding
problem, there is an exponential number of sequences to
be considered as candidates for the solution [5-7]. It is also
suggested that the RNA inverse folding problem may be
NP-Hard, i.e., the time required to find an exact global
solution grows exponentially [8]. Therefore, the heuristic
search methods are widely used to address this problem
(3,4,9-14].

RNAinverse, available as a part of the Vienna RNA
package, is an original approach to solve this problem
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[12]. The second algorithm, called RNA-SSD which is
developed by Andronescu et al. (2004), tries to min-
imize the structural distance via recursive stochastic
local search [10]. Busch and Backofen (2006) proposed
another algorithm based on dynamic programming and
local search, called INFO-RNA [3]. This algorithm con-
sists of two steps. In the first step, it generates an
initial sequence using dynamic programming. In the sec-
ond step, it uses a stochastic local search method to
improve the quality of the initial sequence. Genetic algo-
rithm is also used to solve the RNA inverse folding
problem, both for RNA secondary structure [15,16] and
pseudoknotted structures [16,17]. In [18], a dynamic pro-
gramming approach (NUPACK) is employed for design-
ing the RNA sequence that is intended to adopt a
target secondary structure at equilibrium. They for-
mulated the sequence design problem as an optimiza-
tion problem with the goal of reducing the ensemble
defect.

A Constraint Programming (CP) approach, entitled
RNAijFold, is presented to solve the RNA inverse fold-
ing problem. This approach allows a wide range of
design constraints to be specified [7]. It also intro-
duces a Large Neighborhood Search (LNS) approach
which allows larger instances at the cost of losing com-
pleteness, while retaining the advantages of meeting
design constraints (motif, GC-content, etc.). IncaRNA-
tion [19] implements a novel algorithm based on weighted
sampling techniques [20] that enables user to control
explicitly the GC-content of the solution. This function-
ality is useful because wild-type sequences within living
organisms often present medium or low GC-content,
presumably to offer better transcription rates and/or
structural plasticity. RNAdesign is another tool for design-
ing RNA sequences that fold into multiple target struc-
tures [21]. It uses the graph coloring techniques and
heuristic local optimization algorithm to find sequences
whose energy landscapes are dominated by the prescribed
conformations.

In this paper, we extend our original Evolutionary
RNA Design (ERD) algorithm [5] to address its previ-
ous limitations and to offer new functionalities. First,
we consider the RNA inverse folding problem satisfy-
ing some sequence constraints. These constraints can
restrict certain positions to a fixed nucleotide or to a
fixed subset of nucleotides. Next, a new functionality for
bounding the free energy of generated sequences over the
given structure to a specified interval is presented. This
energy constraint is essential, since only some structures
with a specific level of energy can take part in certain
biological reactions. The new extended ERD tool can
also be used to design the RNA elements that include
conserved nucleotides, which are essential for binding
proteins.
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Methods

In this section, we briefly introduce our evolutionary
algorithm for designing an RNA sequence that folds into
a given target structure [5]. Any RNA secondary structure
can be uniquely decomposed into its structural compo-
nents (stems, hairpin loops, internal loops, bulge loops,
multi-loops, and external loop), each having a different
length. By employing the natural RNA sequences, we first
construct the pools of RNA sub-sequences correspond-
ing to different components with different lengths. Using
these pools, we then construct an initial RNA sequence
which is compatible with the given target structure. After
that, the target structure is hierarchically decomposed
into smaller sub-structures. This decomposition is per-
formed in positions where the multi-loops occur. Finally,
we use an evolutionary algorithm to improve the quality
of the sub-sequences corresponding to the decomposed
sub-structures. The ERD tool has been implemented in C
programming language to be consistent with the Vienna
RNA package and to benefit from the faster execution
of the compiled code in this language. The details of
the above-mentioned steps are presented in the following
subsections.

Pools reconstruction

In order to design RNA sequences similar to the nat-
ural ones, we use an existing database of natural RNA
sequences (namely, STRAND [22]) to construct the pools
of RNA sub-sequences. To do this, for each sequence in
this database, the fold method of the Vienna RNA pack-
age is executed to obtain its secondary structure. Then,
this structure is decomposed into its structural compo-
nents and the sub-sequences of the same type and length
are gathered into the same pool.

Construct the initial sequence

To be consistent with the other parts of our algo-
rithm, specially when we improve the quality of the sub-
sequences corresponding to the components, we assign
a compatible RNA sequence to the given target struc-
ture. To do this, the target structure is decomposed into
its structural components and a sub-sequence is ran-
domly picked from the corresponding pool based on the
type and length of each component. These sub-sequences
are then assembled to produce a compatible sequence
for the target structure. It should be mentioned that
this initial sequence is not guaranteed to be folded into
the target structure and therefore it should be consid-
ered for further improvements. In addition, the initial
sequence should satisfies the sequence and free energy
constraints, if they are specified. Therefore, if the ini-
tial sequence violates some constraints, another initial
sequence is constructed. This step is repeated up to 1000
times.
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In addition to the sequence constraints, the minimum
and maximum energy ranges can be specified for the gen-
erated sequences over the given structure. The default
maximum energy range is 0 and default minimum energy
range is —oo. After generating the initial sequence, its
thermodynamic free energy over the target structure is
evaluated by employing the energy_of _structure method
(available as a part of the Vienna RNA Package). If this
free energy does not belong to the specified energy ranges,
another initial sequence is generated to satisfy the energy
constraint. This step is repeated up to 1000 times.

Hierarchical structure decomposition
Since any folding algorithm requires at least O(n%) oper-
ations, improving the whole initial sequence will increase
the overall running time of any heuristic algorithm. On
the other hand, decomposing the target structure into its
structural components produces many small components
and increases the number of iterations, and consequently
increases the running time. In order to speed up the run-
ning time of our algorithm, we employ an intermediate
decomposition scheme to decompose the target struc-
ture into its sub-structures. This decomposition is done in
positions where the multi-loops occur in the given target
structure. Let the given structure consist of k multiloops
My, My, ..., M. Foreach p (1 < p < k), let M, contain g
closing base pairs, say i}g.j},, if,.j]%, e iz.jz. We define an
order over the closing bases as follows:
i <= it<ib

Based on this ordering, the minimum closing base pair
in each multi-loop is called tag base pair and the stem
containing a tag base pair is called tag stem. Now, the
minimum base pair (in tag stem with respect to the pre-
viously defined order) is marked as a breaking base pair.
The tag base pairs, as well as the breaking base pairs are
shown in Figure 1, which is drawn by VARNA [23]. If
several breaking base pairs are available, the one whose
resulting sub-structures have almost equal lengths is cho-
sen. The process of decomposing the given structure is
performed recursively to yield the hierarchy over the sub-
structures. The initial compatible sequence is also decom-
posed exactly in the same positions with respect to the
corresponding sub-structure (See [5] for details).

Evolutionary algorithm

After constructing the pools of RNA sub-sequences as
well as the initial sequence, and decomposing the given
structure into sub-structures, we employ an evolution-
ary algorithm to improve the quality of the initial RNA
sequence. The first step in our evolutionary algorithm is
the construction of the initial population. To do this, we
use the fold method (available as a part of the Vienna RNA
Package) over the initial sequence as input to determine
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its Minimum Free Energy (MFE) secondary structure. The
predicted structure may differ from the target structure
in some positions. Then we choose the components con-
taining these positions of differences and for each of them
we replace its corresponding sub-sequence with another
sub-sequence from the appropriate pool, regarding its
type and length. These new sequences are considered
as the initial population. To evaluate the quality of the
sequences in the resultant population, several steps are
taken in our algorithm. These sequences are first evalu-
ated by employing the energy_of structure method (avail-
able as a part of the Vienna RNA Package) to determine
their thermodynamic free energy over the target struc-
ture. Then they are sorted increasingly according to their
energy values. Among them, the three best sequences
(with lowest energies) are selected for further evaluations.
The structures of these three sequences are determined
by employing the fold method. Next, the Hamming dis-
tance between the target structure and the three selected
structures, as well as the best structure found, are cal-
culated. Again, the best three of them are chosen as a
basis for generating the next population. The best one
is also stored as the best solution till now. It should be
noted that, in our evolutionary algorithm, we do not
have crossover operation and the mutation operates in
component level (not in nucleotide level). The termi-
nation condition in our algorithm (without constraints)
is either finding a solution with the Hamming distance
equal to zero or continuing the above processes for at
most 250 iterations (in this case, the final best solution is
reported).

In an extension to [5], the ERD tool can handle a set
of user-defined constraints on the generated sequences.
These constraints have to be satisfied during the exe-
cution of the algorithm. The evolutionary step in the
ERD is the most appropriate place to consider the con-
straints, i.e the sub-sequences in the current popula-
tion are modified in such a way that satisfy the given
constraints.

In addition to the sequence constraints, the minimum
and maximum energy ranges can be specified for the gen-
erated sequences over the given structure. If an interval
is specified for the energy value, instead of choosing the
most stable sequence of the current population as the best
one, a sequence that has the least energy difference with
the center of the specified energy interval is selected as the
best one. In this case, the ERD terminates when either the
number of iterations reaches its maximum or a sequence
is found where its structure has zero Hamming distance to
the target structure, it satisfies the sequence constraints,
and its energy value over the target structure belongs to
the specified interval. Therefore, the ERD tool returns the
best-found RNA sequence satisfying both the sequence
and energy constraints.
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Figure 1 Hierarchical decomposition [5]. The hierarchical decomposition of target structure into its sub-structures.
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Results and discussion

As shown in [5], ERD approach (without constraints) pro-
ceeds better and more rapidly than the other existing
approaches, specially for longer structures. It has been
examined over the natural and artificial RNA structures
and the results indicate that ERD has higher success
count as well as lower computational time. It also pro-
duces RNA sequences with wider energy ranges, i.e. the
generated sequences are distributed more diverse in the
solution space. The average energy values of the generated
sequences by ERD over the target structures are closer
to those of natural sequences, compared with the other
approaches. This helps us to select an RNA sequence
whose minimum free energy is closer to the natural coun-
terparts. The Boltzmann probabilities of the designed
sequences are also closer to those of natural sequences.
The distribution of nucleotides and base pairs is also ana-
lyzed for the generated sequences and the distribution of
the ERD generated sequences is much closer to the nat-
ural distribution of nucleotides and base pairs, compared
with the other approaches.

Dataset for benchmark constraints
In order to test the accuracy and reliability of our algo-
rithm with constraints, we employ two different datasets.
The first one is the dataset which is used by RNA-SSD [10]
(dataset A). This dataset contains 8 natural structures of
length between 65 and 583 nucleotides. The biological
description of these structures are presented in Table 1.
The second dataset is chosen from [24] which contains
12 structures of length 178 and 176 nucleotides (dataset
B), consisting of artificial miRNA structures that are pub-
lished in [25] (see Table 2).

Since no sequence constraints are available for the struc-
tures in dataset A, three different sets of constraints are
randomly generated for this dataset. In the first set of

Table 1 Biological description of the sequences and
structures in dataset A

Index Description Length (nt)

Al Minimal catalytic domains of the hairpin 65
ribozyme satelite RNA of the Tobacco ringspot

A2 U3 snoRNA 5’ domain from Chlamydomonas 79
reinhardtii, in vivo probing

A3 H.marismortui 55 rRNA 122

A4 VS Ribozyme from Neurospora mitochondria 166

A5 XS1 Ribozyme, Bacillus subtilis P RNA based 314
ribozyme

A6 Homo Sapiens RiboNuclease P RNA 340

A7 S20 mRNA from E. coli 372

A8 Group Il intron ribozyme D135 from Saccharomyces 583
cerevisiae mitochondria
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Table 2 Biological description of the sequences and
structures in dataset B

Index Description Length (nt)
B1 pre-amiR-Ify-1 178
B2 pre-amiR-Ify-2 178
B3 pre-amiR-white-1 178
B4 pre-amiR-white-2 178
B5 pre-amiR-ft-1 178
B6 pre-amiR-ft-2 178
B7 pre-amiR-trichome 178
B8 pre-amiR-mads-1 178
B9 pre-amiR-mads-2 178
B10 pre-amiR-yabby-1 178
B11 pre-amiR-yabby-2 178
B12 pre-miRNA 176

constraints, only 10% of positions in each structure are
randomly selected and a random nucleotide (with uniform
distribution) is assigned to each selected position and con-
sidered as sequence constraints (dataset A — C10). In the
second and third sets of constraints, respectively 20% and
30% of positions are randomly selected, fixed, and con-
sidered as constraints (datasets A — C20 and A — C30,
respectively). For the structures in dataset B, their corre-
sponding sequence constraints are available, in which the
natural RNA sequences of the structures are employed to
fix some positions. The third dataset (dataset C) contains
408 sequences of length between 36 and 1509 nucleotides
that are selected from Rfam 11. To this end, the first
sequence in each block of 940 sequences in Rfam 11 is
selected.

The results of our algorithm over the above mentioned
datasets are compared with the results of four other
approaches, namely INFO-RNA, MODENA, NUPACK,
and RNAijFold. Different measures are employed in our
comparisons to determine the accuracy and reliability
of the competitor approaches. All the results (except
for RNAiFold) are obtained by a computer with Intel
Core2Duo (2.26 GHz) CPU, having 2GB of memory,
and running Linux Ubuntu (11.04) as operating system.
The Vienna RNA Package (version 1.8.5) along with the
Turner free energy parameters [26] are employed in all
approaches. NUPACK is the only approach that uses the
ensemble defect as a fitness function, where the thresh-
old value is considered 0.01. As for MODENA, the default
parameters (50 for both population size and iterations) are
utilized. The results of RNAiFold are either obtained from
its web server (for datasets A and B) or generated by a
powerful cluster (for dataset C). Since the hardware spec-
ification to run the RNAiFold is different, the time is not
provided for this method in our comparisons.
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Table 3 Results for dataset A-C10
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INFO-RNA MODENA NUPACK RNAiFold ERD
Index SC Er SC Er SC Er e SC Er
Al 38 0.15 47 33.09 50 12.56 50 50 0.17
A2 50 0.03 39 35.85 50 438 50 50 0.08
A3 32 1.08 40 49.05 46 76.88 50 50 0.82
A4 50 0.33 16 114.78 50 17261 50 50 0.93
A5 4 1558.55 42 283.96 35 1740.54 50 50 172.74
A6 4 2612.28 14 287.76 20 3704.05 0 50 34.30
A7 0 0 22 33526 0 o0 50 50 175.35
A8 19 536.49 0 00 0 o0 0 25 1097.67

The success count (SC) and expected time (ET) comparison between the existing approaches for dataset A-C10, including 10% of sequence constraints. The co

represents no result and the bold faces indicate the best results.

For each structure and its related constraint sequence
in datasets A and B, all the mentioned approaches are
executed 50 times, where the time limit of 1800 seconds
is considered for each execution. The success count (SC)
indicates how often each approach successfully designs
an RNA sequence (among 50 executions) for each given
structure and constraint. The expected time (E7) indicates
how much time is required for successfully designing an
RNA sequence for each structure and it is calculated as
follows:

Total Execution Time
Er = ) (1)
SC

All the mentioned approaches are executed one time
for the structures and their corresponding sequences in
dataset C. The time limit of 3600 seconds are consid-
ered for each execution. Here, the SC indicates how many
sequences are successfully designed for 408 structures in
this dataset. The expected summation of energy distance
(Eep) indicates how much energy value of successfully
designed sequences of any approach is different from the

Table 4 Results for dataset A-C20

energy value of natural sequence and it is calculated as
follows:

Z|Esd_En|

SC @

Erp =
where Eg; indicates the energy value of successfully
designed sequence and E, indicates the energy value of it
corresponding natural sequence.

The accuracy and speed comparisons of our algorithm
with respect to the other approaches are presented in
Tables 3, 4 and 5, respectively for the constructed datasets
of random constraints A — C10, A — C20, and A — C30.
The oo sign in these tables indicates that the correspond-
ing approach could not design an appropriate sequence
for the given structure and constraint in the period of
the execution time limit. The best results are also indi-
cated in bold face in these tables. Since MODENA returns
all correctly generated sequences as results (among 50
sequences in its final population), the ET of MODENA is
calculated by considering one execution time as its total
execution time, in order to be fair in our comparison.
As it is mentioned in Tables 3, 4 and 5, our algorithm

INFO-RNA MODENA NUPACK RNAiFold ERD
Index SC Er SC Er SsC Er e sC Er
Al 32 0.23 30 32.06 50 9.24 50 50 0.11
A2 50 0.03 45 37.57 50 5.80 50 50 0.06
A3 47 0.20 45 61.52 45 2897 50 50 0.77
A4 0 00 0 [ 0 00 0 0 00
A5 2 413043 38 305.61 5 17698.03 0 40 154.68
A6 12 59257 39 309.57 50 836.15 50 50 13.06
A7 0 00 0 oo 0 ] 0 0 00
A8 0 00 0 0 45 1133.91 0 0 00

The success count (SC) and expected time (Er) comparison between the existing approaches for dataset AC20, including 20% of sequence constraints. The co

represents no result and the bold faces indicate the best results.
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Table 5 Results for dataset A-C30
INFO-RNA MODENA NUPACK RNAiFold ERD

Index sc Er sc Er sc Er sc sc Er
Al 42 0.10 40 31.65 50 8.80 50 50 0.12
A2 50 0.04 41 37.52 50 3.35 50 50 0.05
A3 20 3.97 7 60.67 34 164.47 0 41 4.74
A4 0 00 0 o] 50 479.95 0 0 o)
A5 0 00 0 00 0 00 0 5 2472.85
A6 0 0o 0 00 0 00 0 o)
A7 0 0o 0 00 0 00 0 0 o0
A8 32 52.13 43 1124.62 25 1059.20 33 50 124.56

The success count (SC) and expected time (ET) comparison between the existing approaches for dataset A-C30, including 30% of sequence constraints. The co

represents no result and the bold faces indicate the best results.

performs much better than MODENA in all cases, and
it is better than INFO-RNA and RNAijFold in most of
the cases. Compared with NUPACK, our algorithm is
superior specially in terms of computational time.

The same comparisons between the existing approaches
for dataset B are presented in Table 6. The ERD-EC col-
umn in this table relates to the results of ERD when the
energy constraint is also specified. The energy interval for
the generated sequences for dataset B is considered as the
natural energy value +10. As it is understood, the com-
putational time is increased when the energy interval is
specified. Again, the superiority of our approach is con-
cluded form this table. Table 7 indicates that the average
energy values of the generated sequences by ERD over the
given structures are closer to the natural energies, com-
pared with the other approaches. Also, when the energy

Table 6 Results for dataset B

constraint is applied, more reliable sequences are gener-
ated by ERD. This helps us to select an RNA sequence
whose secondary structure has free energy value closer to
that of natural counterparts. Comparing with the other
methods, INFO-RNA is superior in generating sequences
that have lower minimum free energy structure.

Two important questions are, 1) Which approach can
generate divers sequences for the given target structure?
and 2) Which approach can generate sequences similar
to natural one? To answer these questions, the similarity
between the generated sequences as well as the similar-
ity of them to the corresponding natural sequence must
be calculated. To do this, the needle software from the
EMBOSS is employed [27] to calculate the similarities.
EMBOSS (the European Molecular Biology Open Soft-
ware Suite) is a free open source software analysis package

INFO-RNA MODENA NUPACK RNAiFold ERD ERD-EC
Index SC Er SC Er SC Er SC SC Er SC Er
B1 29 7.16 46 131.05 50 22.28 0 50 2.42 50 74.20
B2 26 12.01 40 143.55 50 24.29 0 50 2.24 50 53.52
B3 25 10.50 44 139.07 50 10.58 50 50 273 50 48.05
B4 27 12.59 36 171.93 50 2363 0 50 245 50 7771
B5 25 12.10 48 169.66 50 11.79 50 50 3.13 50 67.24
B6 22 14.42 40 185.99 50 11.87 0 50 2.87 50 77.20
B7 44 2.21 37 17337 50 24.58 0 50 2.38 50 57.86
B8 26 12.68 45 168.02 50 15.23 50 50 2.48 50 55.80
B9 31 11.27 41 173.59 50 11.38 50 50 2.54 50 85.09
B10 27 9.62 43 171.63 50 13.50 50 50 244 50 71.05
B11 44 2.82 40 167.91 50 11.75 0 50 313 50 61.63
B12 27 1453 47 175.10 50 28.69 0 50 2,53 50 70.12

The success count (SC) and expected time (E7) comparison between the existing approaches for dataset B, including natural sequence constraints. The best results are

indicated in bold face.
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Table 7 The average free energy values of sequences generated for dataset B

Index Natural INFO-RNA MODENA NUPACK RNAiFold ERD ERD-EC
B1 -72.69 -152.16 -117.89 -112.41 - -105.87 -87.34
B2 -72.69 -151.71 -120.34 -115.04 — -106.49 -84.85
B3 -75.19 -155.22 -115.10 -109.54 -108.30 -108.36 -87.45
B4 -69.29 -149.49 -120.21 -113.08 - -103.32 -84.39
B5 -75.19 -154.02 -105.83 -111.39 -104.20 -109.97 -89.81

B6 -71.49 -152.47 -115.60 -107.05 — -107.63 -88.61

B7 -7549 -156.88 -115.35 -118.80 - -112.18 -91.39
B8 -69.69 -152.14 -113.89 -110.18 -99.61 -104.70 -81.71

B9 -72.19 -149.95 -116.41 -111.26 -111.40 -106.91 -93.78
B10 -73.49 -155.33 -123.21 -111.02 -107.40 -110.94 -88.88
B11 -76.79 -156.54 -123.35 -114.59 — -114.78 -89.56
B12 -74.49 -154.24 -113.75 -115.51 — -110.36 -92.38

The average free energy (Ar) values of sequences generated by different approaches and the corresponding natural energy values for dataset B. ERD-EC is related to
the ERD when the energy constraint is specified. The closest energy values to the natural ones are indicated in bold face.

specially developed for the needs of the molecular biol-
ogist. The software automatically copes with data in a
variety of formats and even allows transparent retrieval of
sequence data from the web. Also, as extensive libraries
are provided with the package, it is an appropriate plat-
form to allow other scientists to develop and release
software. needle uses the Needleman-Wunsch alignment
algorithm to find the optimum alignment (including gaps)
of two sequences along their entire length [28,29]. The
algorithm uses a dynamic programming method to ensure
the alignment is optimum, by exploring all possible align-
ments and choosing the best one. A scoring matrix is
provided for every possible residue or nucleotide match.
For each approach, the expected similarity between the
generated sequences for different dataset are presented
in Table 8. Since the success counts are almost different
for all approach, the expected similarity for the generated
sequences by each approach (Esy) is calculated as follows:

SC() SC()
Y. Y similarity(S;, S))

1 i=1 j=i+1
Esa = D] Z SC(H(SC(DH—1) ’ 3)
D 2

Table 8 The expected similarity of the generated
sequences

Dataset INFO-RNA MODENA NUPACK RNAiFold ERD

A—C10 74.97 75.09 4791 98.01 45.22
A—C20 72.76 76.93 51.01 97.40 50.44
A—C30 80.20 78.30 60.15 97.37 53.50
B 80.55 70.69 48.96 97.12 5357

The expected similarity (Ess) between the generated sequences by each
approach on different datasets. The lower similarities are indicated in bold face.

where D is the employed dataset, I indicates a structure of
D, SC(I) represents the success count for the structure /, S;
(Sj) indicates the ith (jth) successfully designed sequence
for the structure /, and similarity(S;, S;) calculates the sim-
ilarity between S; and ;. As it is understood from Table 8,
the generated sequences by ERD are less similar (more
divers) comparing with the other competitors.

Also, the expected similarity of the generated sequences
by each approach to the corresponding natural sequence
(Esn) is calculated as follows:

sc
> similarity(Sa;, SN;)
i=1

Esn = , 4
SN SC (4)

where Sy, is the ith successfully designed sequence for
each approach and Sy, is the corresponding natural
sequence in dataset C. The calculated values of Egy for
each approach are shown in Table 9. As it is obvious, ERD
is superior in time, accuracy, and similarity to the nat-
ural sequences comparing with the other approach. The

Table 9 Results for dataset C

Approach Er SC Eep Esn
INFO-RNA 43.79 32 54.86 28.69
MODENA 165.86 395 27.05 35.73
NUPACK 48341 336 20.21 3891
RNAifold 1888.32 272 29.09 3112
ERD 6.11 401 13.22 39.44
ERD-EC 217.99 386 7.94 39.88

The comparison of expected time (E7), success count (SC), expected energy
distance (Egp), and expected similarity to the natural sequences (Esy) between
the existing approaches for dataset C. ERD-EC is related to the ERD when the
energy constraint is specified. The SC indicates how many sequences are
successfully designed. The best results are indicated in bold face.
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Table 10 The nucleotides distribution in the generated sequences for all datasets
Paired Unpaired Total
AU GC GU A C G U A C G V)

Natural 0.39 0.49 012 0.38 0.19 017 0.26 0.27 0.22 0.25 0.26
ERD 0.31 0.62 0.07 0.41 0.19 0.17 0.23 0.26 0.26 0.27 0.21
INFO-RNA 0.05 0.90 0.05 0.37 0.20 0.28 0.15 0.15 0.36 0.40 0.09
MODENA 0.13 0.83 0.04 0.83 0.07 0.05 0.06 037 0.28 0.28 0.07
NUPACK 0.28 0.72 0.01 0.39 022 0.14 0.24 0.24 0.31 0.27 0.18
RNAifold 0.07 092 0.02 0.90 0.03 0.04 0.03 0.39 0.27 0.29 0.04

The distribution of nucleotides in paired and unpaired regions are calculated for all existing approaches. Also, the total distribution of nucleotides is presented. The

closest values to the natural ones are indicated in bold face.

ERD-EC in this table is related to the results of ERD when
the energy constraint (£10% of the natural energy value)
is specified. The expected consequences of applying the
energy constraint are: 1) increasing the expected time,
2) decreasing the success count, 3) generating sequences
that have lower expected energy distance, and 4) gen-
erating sequences that are more similar to the natural
counterpart.

The final test we have done over the generated
sequences is the distribution of nucleotides. We would
like to see which method produce RNA sequences with
distribution closer to the natural distribution of each

nucleotide. To do this, the natural distribution of each
nucleotide appeared in different structural components is
calculated. Then the generated sequences of each method
are analyzed and the distribution of each nucleotide
in different structural components are calculated and
presented in Table 10. As it is shown in this table,
the distribution of nucleotides for the sequences gen-
erated by ERD is much closer to the natural distribu-
tion of nucleotides with respect to the other approaches.
For example, all mentioned methods (except ERD and
NUPACK) employ almost CG base pairs in generating
sub-sequences corresponding to the stems. Here, ERD

Your Process ID :100272448957

Target Structure : (((((...(((((......))))).))N)
Minimum Energy :

Maximum Energy :

Main-Loop Size :

The process repitition is: 10

Random seed :

Temperature : 37

Email Address :

Request date :2013/11/13 Request time :11:37:54

The Constrain Sequence : NNNNNUGCNNNNNCAGUGNNNNNNNNNNNN

0: Length dist Energy Time(s)
1: 30 0 -14.500000 0.018000
2: 30 0 -8.100000 0.003000

3: 30 0 -17.700001 0.005000
4: 30 0 -11.710000 0.002000
5: 30 0 -17.299999 0.002000
6: 30 0 -17.299999 0.015000
7: 30 0 -14.800000 0.001000
8: 30 0 -16.700001 0.011000
9: 30 0 -14.400000 0.004000
10: 30 0 -12.200000 0.003000

Generated Sequence

GGGGCUGCCGGGUCAGUGAGCUCGUGCCCC
GGGCGUGCAGUAUCAGUGAAUACUUCGCUC
GGCCCUGCCUGGGCAGUGACCCAGUGGGCC
AGCGUUGCGGCUUCAGUGAGAGCCUACGCU
CCCGCUGCUGGCCCAGUGAGGCCAUGCGGG
GGCCCUGCCCCGACAGUGAUCGGGUGGGCC
CGGGCUGCCACCUCAGUGAAGGUGUGCCCG
GCCGCUGCCCGGUCAGUGAGCCGGUGCGGC
GCGGGUGCUCACGCAGUGACGUGAUCCCGC
CCCUCUGCGUCUCCAGUGAGAGAUUGAGGG

Figure 2 A typical output of ERD web server. Here, the target structure and its sequence constraints (fixed nucleotides in internal and hairpin
loops) are given as input and 10 RNA sequences are designed with respect to the given constraints.
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regards the natural distribution of nucleotides comparing
with NUPACK. Also, MODENA and RNAiFold employ
almost the nucleotides A for generating the sub-
sequences corresponding to the loops, whereas ERD,
INFO-RNA, and NUPACK employ the other nucleotides
as well.

Web server

The ERD web server allows biologists to design RNA
sequences that fold into a given structure, in an automatic
manner. The procedure is fast as most of the requests
are completed within seconds. The ERD web server is
intuitively arranged with very clear user interface. All the
required inputs to run the ERD algorithm should be given
in the input form. The target structure must be entered in
the dot-parenthesis notation. In this notation, an unpaired
base is represented by a dot and a base pair between bases
i and j is represented by a pair of ‘(" and ‘)’ in position i and
J, respectively.

The constraints over the generated sequences could
be also specified as IUPAC symbols, where some posi-
tions of the generated RNA sequences can be fixed to
a specific nucleotides or to a subset of nucleotides. In
addition to the sequence constraints, the energy ranges
of the generated sequences over the target structure can
be determined in ERD web server. This energy range
reflects the level of stability for the generated sequences
from the thermodynamic point of view. Only some struc-
tures with a specific level of energy can take part in
certain biological reactions. Therefore, this capability of
ERD web server allows researchers to generate sequences
with similar structure and a specific level of energy val-
ues. This helps us to mimic the biological features of RNA
structures that are dependent on the level of their free
energies.

Finally, the user can choose whether the generated
sequences, as well as some additional information, are
shown on a web page or send by email. Each job has its
own process ID which can be used in the future to retrieve
the corresponding results from the server. For all available
options, a comprehensive description and detailed exam-
ples are provided. The results of a typical computation are
presented in Figure 2. On the top of this figure, the input
data are summarized. Below that, the length, distances,
energy values, execution times, and designed sequences
are shown. Additionally, the user can download the results
in the form of FASTA or CT formats.

Conclusion

We have shown that the ERD tool is a very fast and
successful approach to design RNA sequences which
fold into a given structure and fulfill some sequence
and energy constraints. The core of the algorithm was
previously introduced in [5], where we showed that
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it proceeds better and faster than the other existing
approaches. Here, we have demonstrated that the ERD
tool, with additional constraints on the sequence and
energy level, also performs better and faster than the other
competitors.

In addition to the sequence constraints, the energy
ranges of the generated sequences over the target struc-
ture can be specified in ERD tool. This capability of
ERD allows researchers to generate sequences with similar
structure and a specific level of energy value.
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