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Abstract

Background: The analysis of high-throughput data in biology is aided by integrative approaches such as gene-set
analysis. Gene-sets can represent well-defined biological entities (e.g. metabolites) that interact in networks

(e.g. metabolic networks), to exert their function within the cell. Data interpretation can benefit from incorporating the
underlying network, but there are currently no optimal methods that link gene-set analysis and network structures.
Results: Here we present Kiwi, a new tool that processes output data from gene-set analysis and integrates them with

a network structure such that the inherent connectivity between gene-sets, i.e. not simply the gene overlap, becomes
apparent. In two case studies, we demonstrate that standard gene-set analysis points at metabolites regulated in the

interrogated condition. Nevertheless, only the integration of the interactions between these metabolites provides an
extra layer of information that highlights how they are tightly connected in the metabolic network.

Conclusions: Kiwi is a tool that enhances interpretability of high-throughput data. It allows the users not only to
discover a list of significant entities or processes as in gene-set analysis, but also to visualize whether these entities or
processes are isolated or connected by means of their biological interaction. Kiwi is available as a Python package at
http//www.sysbio.se/kiwi and an online tool in the BioMet Toolbox at http://www.biomet-toolbox.org.
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Background

Gene-set analysis (GSA) is a widely used category of
bioinformatics methods and there are many available
tools that perform GSA [1,2]. In GSA, genes known to
contribute to a certain function, or share a relevant
biological feature, are collected into sets. If these gene-sets
are enriched by transcriptome or other high-throughput
data, GSA directly highlights the most prominent among
these sets, and thereby the underlying functions that are
implicated by the data [2]. Networks stand at the basis of
complex biological systems [3] and in many cases
gene-sets represent elements that are connected, not
simply because of gene overlap, but rather to exert a
coordinated function through their interactions (the
gene-set interaction network). Examples of elements that
can be used as gene-sets and where an interaction
network can be defined include: transcription factors in a
gene regulatory network [4]; the hierarchical network of
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Gene Ontology terms [5]; and metabolite gene-sets in a
metabolic network [6]. In particular the last example
provides a very useful case since metabolite gene-sets
(genes that are associated to reactions in which the
metabolite takes part in) are connected through reaction
pathways, but will usually not share any common genes
(unless they participate in the same reaction). Thus, when
several metabolite gene-sets in a pathway are significant
their important biological connection will be lost, unless
the gene-set interaction network is taken into account.
With this in mind, interpretation and visualization of
the results from a GSA currently suffers from several
limitations. Typically, the results are presented as a list of
the most significant gene-sets, or visualized in a heatmap
where gene-sets are clustered according to either the
pattern of significance across several conditions or their
direction of regulation. In both cases, the biologically
relevant connections between gene-sets, defined by their
interaction network, are ignored. Multiple connected
significant gene-sets will likely represent an important
biological process, but with the current visualization
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approaches these connections are lost and are tedious to
elucidate manually.

On the other hand, it is not unusual to see GSA results
presented as networks, with nodes representing the most
significant gene-sets [1,7-9]. However, in these cases edges
between nodes simply represent gene overlap. This can
help to reduce the bias from redundant gene-sets by clus-
tering gene-sets with overlapping gene content together.
Nevertheless, a network visualization approach where the
edges represent gene-set interactions is advantageous in
the context of biological interpretation. Indeed, different
tools can be used to visualize data on gene-set interaction
networks [10-14], although some of them are not specific-
ally made for that purpose. Unfortunately, these tools
suffer from one or several of the following drawbacks:

e The tool is not made specifically to handle GSA
data, which requires the user to tweak the input
(e.g. common identifiers and color-coding scheme) in
the best way possible to fit the framework of that tool.

e The tool is only made for a specific type of network
(e.g. KEGG pathways or GO-terms), constraining
the user to only one single gene-set type.

e The tool is not effectively reducing the network to
highlight the significant results, but instead simply
overlaying the data on the original, and potentially
huge, gene-set interaction network.

Here we address the current limitations by developing a
new network-based visualization approach and implement
it in the software tool Kiwi. Contrary to other available
tools, Kiwi explicitly embraces the paradigm that gene-sets
can be biological entities that interact and it therefore aims
at visualizing GSA results in the context of the gene-set
interaction network in such way that the biological connec-
tions between all significant gene-sets become apparent.
This is done by taking into account both the directionality
and significance of the gene-sets and by removing non-
interesting gene-sets from the visualized network. Further
on, Kiwi is made as general as possible, in the sense that it
accepts input from any GSA tool and any gene-set inter-
action network defined by the user. Finally, since the
biological measurements behind the data are made at the
gene-level, Kiwi enables the user to go from the visualization
network of significant gene-sets back to the gene-level
data, in order to detect driver genes behind the regulated
biological elements that the gene-sets represent.

Implementation

Input data

The input to Kiwi is at minimum the gene-set interaction
network and a table of p-values for the gene-sets, which
can be collected from the output of any GSA tool. Apart
from this, it is recommended to also supply the gene
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members of the gene-sets as well as the gene-level statistics
(e.g. p-values and fold-changes) that were used as input to
the GSA. Full details and required format for the input files
can be found in the online Kiwi reference manual.

Processing

An outline of the network visualization process performed
by Kiwi is shown in Figure 1. First, non-significant gene-
sets are filtered out according to a user-set cutoff. The
remaining gene-sets are used as nodes in a new
visualization network. In this visualization network the
edges between gene-sets should reflect how closely they
interact. The shortest path length (SPL) measures the
shortest distance between two gene-sets and is a property
of the network that indicates whether the two gene-sets
are interacting directly or indirectly via a certain number
of intermediates. Hence, the SPL between all pair of nodes
in the gene-set interaction network is calculated. If the
SPL between two gene-set nodes is below a user-set cutoff
an edge is drawn between those nodes, with an edge
thickness relative to the SPL. The SPL cutoff can be
seen as a measure of the relatedness of two gene-sets
in the gene-set interaction network, and it controls at
what distance these gene-sets should not any longer
be considered biologically connected. For each node,
only the edge or edges with the lowest SPL are kept,
so that each node is connected only to its closest nodes of
those present in the visualization network. Finally, the
visualization network is drawn using a force-based layout.
Nodes are resized to reflect the gene-set significance and
color-coded to capture the general direction of change of
the genes in the set (refer to the online documentation for
further details).

Output

Kiwi produces two figures: a network and a heatmap.
The network presents an uncluttered view where the
most important features are highlighted. The node sizes
and color-codes are adjusted according to the gene-set
significance and general direction of change. The heatmap
serves as a complement to the network by displaying the
gene-level statistics for each gene-set in the network. The
rows (gene-sets) and columns (genes) are hierarchically
clustered, which enables the identification of (i) gene-sets
with similar gene content and (ii) the significant genes
that are driving the observed changes. Both figures can be
fine-tuned by the user through several parameters and the
network can also be saved in graphML format and
imported into Cytoscape for further customization.

Case studies

To illustrate the advantages of Kiwi, we use two case
studies. The first one is based on a differential gene
expression dataset from lung adenocarcinoma vs. normal
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Gene-set interaction network
(reduced example)

P
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d

is drawn between those nodes, with a thickness corresponding to the SPL

reflect the general direction of change of the gene-set.

Visualization network construction

(d)Forced-based layout of the final visualization network. Nodes are
resized according to significance and color-coded according to their general
pattern of gene fold-change directionality.

Figure 1 Overview of the Kiwi workflow. (a) Significant gene-sets are selected based on a user-set cutoff and used as nodes in the visualization
network. (b) The shortest path length (SPL) between all node pairs in the gene-set interaction network is calculated. In the example, the SPL
between node A and B is 3, and between node C and D is 4. If the SPL between two nodes is below a user-set cutoff (5 in the example), an edge

between nodes A and B, and C and D, respectively, are marked in red, corresponding to the SPLs shown in the gene-set interaction network. (c)
To avoid a cluttered network with too many edges, only the best edges (with lowest SPL) are kept for each node. Note that a node may still have
multiple edges of different thickness if, for example, a thinner edge is the best one of a neighbouring node. (This step is optional.) (d) Finally, the
visualization network is drawn using a forced-based layout. Nodes are resized according to the gene-set significance and color-coded in order to

(a) Use the significant gene-
sets as nodes

(b)CalcuIate the shortest path
length (SPL) between all node
pairs. Draw an edge if the
SPL<X, with a thickness
corresponding to the SPL.

(C)Keep only the best edges
(with the smallest SPL) for each
node.

(an SPL =1 will generate the thickest edge). In the example, the edges

lung tissue [15]. Metabolites from a human genome-scale
metabolic model [16] were used as gene-sets and the
GSA was carried out using the Bioconductor R-package
piano [1].

For the second case study we used gene expression
data from a study on Kras conditional activation in
mouse xenograft tumors [17]. Metabolites from a mouse
genome-scale metabolic model, derived from the human
genome-scale metabolic model used in case study 1,
using gene homology as described in [18], were used as
gene-sets. The GSA was carried out using the Biocon-
ductor R-package piano.

Kiwi version 0.2.8 was used for both case studies. The
heatmaps and network plots shown in Figure 2a,d and
Figure 3b,c are the direct output from Kiwi, however, to
provide as clear of a figure as possible, the node labels in
the networks have been manually shifted. The data and
scripts for running these case studies are available as
Additional file 1.

Results and discussion

In order to show the advantages, in terms of biological
interpretation, of using Kiwi to visualize GSA results
in the context of a gene-set interaction network, we
performed two case studies. In both cases we used a
genome-scale metabolic model to define a metabolite-
metabolite network (connecting metabolites if they
are substrates or products of the same reaction). A
metabolite gene-set is defined by the group of genes that
are associated with reactions in which the metabolite
participates in.

Metabolic changes associated with lung adenocarcinoma
transformation

To illustrate the benefits of exploiting the gene-set
interaction network, compared to only considering the
gene overlap, we re-analysed a differential gene expression
dataset from lung adenocarcinoma vs. normal lung tissue
[15]. Metabolites from the human genome-scale metabolic
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Figure 2 The output from Kiwi in case study 1, metabolic changes upon transformation to lung adenocarcinoma. (a) The Kiwi network
shows the significant gene-sets and their general direction of change. Up-regulation: red, down-regulation: blue. Two metabolically connected
pathways emerge, a pattern that is not easily detected in (b) a traditional heatmap or (c) a gene-overlap network. Green and orange indicate
gene-sets of the two pathways, respectively. (d) The Kiwi heatmap displays the individual gene-level statistics for each significant gene-set. It also
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genes or potential bias.

model HMR2 [16] were used as gene-sets (ie. genes
associated with reactions in which a specific metabolite
participates) and the GSA was carried out using the
Bioconductor R-package piano [1], which produces files
that can be directly imported by Kiwi. The Kiwi network
(Figure 2a) clearly identifies significant gene-sets composing
two metabolically connected pathways. For example, 5-
phosphoribosylamine and 1-pyrroline-5-carboxylate both
participate in pyrimidine biosynthesis, but their relatedness
becomes apparent if the underlying metabolic network that
measures the mutual distance is considered. These import-
ant connections are lost when the results are presented as a
traditional heatmap (Figure 2b) or a network based on
overlap of gene members of the different gene-sets
(Figure 2c). The Kiwi heatmap (Figure 2d) shows the
gene-level transcriptional changes for each gene-set
enabling the identification of interacting gene-sets
without gene overlap, and their driver-genes. For example,
5-phosphoribosylamine is a significant gene-set because of
GART and PPAT up-regulation, while 1-pyrroline-5-
carboxylate is significant due to LEFTY1 and PYCR up-
regulation. The heatmap also simplifies the detection of
similar gene-sets, as e.g. nLc6Cer[c] and paragloboside[c].

Metabolic changes associated with activation of
oncogenic Kras in mouse tumor xenografts

Using a second case study we sought to test if Kiwi is
able to reproduce networks known to be informative in

a certain condition. To this end, we re-analyzed gene
expression data from a study where the oncoprotein
Kras was conditionally activated in mouse xenograft
tumors [17]. The authors showed that activation of
oncogenic Kras entails extensive metabolic reprogramming,
in particular up-regulation of steroid biosynthesis. We
therefore performed GSA [1] in the context of a mouse
genome-scale metabolic network (Figure 3a) and tested if
Kiwi could capture the relevant network of gene-sets upon
Kras activation. In line with the results in the aforemen-
tioned study, we observe the emergence of the steroid
biosynthetic pathway, which is overexpressed in different
steps (Figure 3b). Indeed, despite the fact that isopentenyl-
pPP, 14-demethyllanosterol, squalene, and lanosterol are
not overlapping gene-sets (as shown by the heatmap in
Figure 3c), Kiwi relates the metabolites given their vicinity
in the underlying mouse metabolic network. Notably,
contrary to the gene-set enrichment analysis used by the
authors, Kiwi also identifies which pathway among
the different branches of steroid biosynthesis is truly
up-regulated by Kras activation, namely lanosterol synthesis.

Conclusions

Kiwi is a new tool tailored for the visualization of GSA
results in a gene-set interaction network context. As
opposed to available tools, Kiwi starts from the premise
that gene-sets can be precise biological entities that
achieve a certain function by means of their interactions,
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Figure 3 The output from Kiwi in case study 2, metabolic changes upon activation of Kras in mouse tumors. (a) The significant gene-sets
overlayed on the metabolite-metabolite network (the full gene-set interaction network). As the network is too big and the gene-sets are too
spread around the network it is not possible, in a simple way, to draw any biological conclusions about the data. (b) Kiwi effectively reduces the
gene-set interaction network and pulls out the significant gene-sets, while maintaining their biological relatedness given in the original network.
Here, Kiwi outputs a network showing the steroid biosynthetic pathway, in line with the original study. (c) The heatmap for the gene-sets in the
Kiwi network shows that isopentenyl-pPP, 14-demethyllanosterol, squalene, and lanosterol are not overlapping in terms of gene members, yet
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they are connected in the Kiwi network.

such as metabolites in a pathway. This paradigm signifi-
cantly improves the interpretation of the effect of transcrip-
tional regulation in a certain context, such as metabolism,
because it adds an extra layer of information to the GSA re-
sults. As exemplified in the two case studies, such addition
is fundamental to capture certain transcriptionally regulated
processes. In the case of the transformation to lung adeno-
carcinoma, we observe that the up-regulation of pyrimidine
biosynthesis is mediated by the connection provided by
choloyl-CoA. In the case of oncogenic Kras activation in
mouse tumors, not only do we reproduce the up-regulation
of the steroid biosynthetic process, but we also report that
this is ascribed mainly to the synthesis of lanosterol. In
neither case could such results be highlighted by connect-
ing gene-sets using gene overlap (see Figure 2c) or by over-
laying the GSA results on the corresponding gene-set
interaction network (see Figure 3a). In favour of a clean
layout for enhanced interpretation, Kiwi reduces the
gene-set interaction network while maintaining and
highlighting the important gene-set connections. It works

with the output from any GSA tool and any collection of
gene-sets that can be described as a network. For full
usability, from raw data to final figure, it integrates
seamlessly with the Bioconductor R-package piano
(for GSA) and Cytoscape (for advanced layout and
customization). Kiwi is available as a Python package at
http://www.sysbio.se/kiwi and an online tool in the BioMet
Toolbox at http://www.biomet-toolbox.org [19].

Availability and requirements
Project name: Kiwi
Project home page: www.sysbio.se/kiwi
Operating system(s): Platform independent
Programming language: Python
Other requirements: Kiwi depends on the following
python packages: numpy > = 1.8.0; matplotlib > = 1.3.1;
networkx > = 1.8.1; mygene > = 2.1.0; pandas > = 0.13.1;
scipy > = 0.13.3.
License: MIT
Any restrictions to use by non-academics: None
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