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Abstract

Background: One of the major challenges in the field of vaccine design is identifying B-cell epitopes in continuously
evolving viruses. Various tools have been developed to predict linear or conformational epitopes, each relying on
different physicochemical properties and adopting distinct search strategies. We propose a meta-learning approach for
epitope prediction based on stacked and cascade generalizations. Through meta learning, we expect a meta learner to
be able integrate multiple prediction models, and outperform the single best-performing model. The objective of this
study is twofold: (1) to analyze the complementary predictive strengths in different prediction tools, and (2) to
introduce a generic computational model to exploit the synergy among various prediction tools. Our primary goal
is not to develop any particular classifier for B-cell epitope prediction, but to advocate the feasibility of meta
learning to epitope prediction. With the flexibility of meta learning, the researcher can construct various meta
classification hierarchies that are applicable to epitope prediction in different protein domains.

Results: We developed the hierarchical meta-learning architectures based on stacked and cascade generalizations.
The bottom level of the hierarchy consisted of four conformational and four linear epitope prediction tools that
served as the base learners. To perform consistent and unbiased comparisons, we tested the meta-learning
method on an independent set of antigen proteins that were not used previously to train the base epitope
prediction tools. In addition, we conducted correlation and ablation studies of the base learners in the meta-learning
model. Low correlation among the predictions of the base learners suggested that the eight base learners had
complementary predictive capabilities. The ablation analysis indicated that the eight base learners differentially
interacted and contributed to the final meta model. The results of the independent test demonstrated that the
meta-learning approach markedly outperformed the single best-performing epitope predictor.

Conclusions: Computational B-cell epitope prediction tools exhibit several differences that affect their performances
when predicting epitopic regions in protein antigens. The proposed meta-learning approach for epitope prediction
combines multiple prediction tools by integrating their complementary predictive strengths. Our experimental results
demonstrate the superior performance of the combined approach in comparison with single epitope predictors.
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Background
The ability of an antibody to respond to an antigen, such
as a virus capsid protein fragment, depends on the anti-
body’s specific recognition of an epitope, which is the
antigenic site to which an antibody binds. Based on their
structure and interaction with antibodies, epitopes can
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be divided into two categories: linear and conformational.
A linear epitope is formed by a continuous sequence of
amino acids, whereas a conformational epitope is com-
posed of discontinuous primary sequences, which are
close in three-dimensional space.
Several different approaches exist for predicting linear

and conformational epitopes. Previous studies relied on
the varying physicochemical properties of amino acids
to predict linear epitopes [1-3]. A study on 484 amino
acid scales revealed that predictions based on the best-
performing scales poorly correlated with experimentally
confirmed epitopes [4]. This result prompted the
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development of machine-learning methods to improve
prediction. BepiPred combines amino acid propensity
scales with a hidden Markov model to achieve marginal
improvement over methods based on physicochemical
properties [5]. ABCPred uses artificial neural networks
(ANN) for predicting linear B-cell epitopes [6]. Chen et al.
proposed the novel amino acid pair (AAP) antigenicity
scale [7], for which the authors trained a support vector
machine (SVM) classifier, using the AAP propensity scale
to distinguish epitopes and nonepitopes. BCPREDS uses
SVM combined with a variety of kernel methods, includ-
ing string kernels, radial basis kernels, and subsequence
kernels, to predict linear B-cell epitopes [8].
An increase in the availability of protein structures has

enabled the identification of conformational epitopes by
using various computational methods. For example,
DiscoTope 2.0 uses a combination of amino acid com-
position information, spatial neighborhood information,
and a surface measure for predicting epitopes [9]. ElliPro
uses Thornton’s propensities and applies residue clustering
to identify epitopes [10]. SEPPA 2.0 predicts conform-
ational epitopes based on the unit patches of residue trian-
gles, and the clustering coefficient for describing local
spatial context and compactness with two new parameters
appended, ASA (Accessible Surface Area) propensity, and
consolidated amino acid index [11]. EPITOPIA combines
structural and physiochemical features, and adopts a
Bayesian classifier to predict epitopes [12]. EPSVR uses a
support vector regression method to predict conform-
ational epitopes. The meta learner EPMeta incorporates
consensus results from multiple prediction servers by
using a voting mechanism [13].
In this study, we propose combining multiple predic-

tions to improve epitope prediction based on two meta-
learning strategies: stacked generalization (stacking)
[14,15] and cascade generalization (cascade) [16,17]. These
strategies work in a hierarchical architecture of meta
learners and base learners, in which the input space for
meta learners is extended by the predictions of the base
learners. We selected several linear and conformational
epitope predictors as the base learners, and evaluated four
inductive learning algorithms as the meta learners. To
evaluate performance, we tested the combinatorial method
on an independent set of antigen proteins that were not
Table 1 Correlation analysis of linear epitope predictors

Linear AAP ABCpr

Pearson Spearman Pearso

AAP 1 1 -

ABCpred 0.241 0.251 1

BCPREDS 0.515 0.520 0.342

BepiPred 0.383 0.372 0.282
used previously to train the epitope prediction tools ac-
cording to the documents on the tools and their publica-
tions. Our results indicate the potential of meta learning
for epitope prediction.

Results and discussion
Prediction correlations between base learners
For a meta-learning method to perform effectively, the base
learners must have complementary predictive capabilities,
which can be reflected by relatively low correlation among
their predictions. We selected four conformational and four
linear epitope predictors as our base learners. The con-
formational predictors were DiscoTope 2.0 [9], ElliPro [10],
SEPPA 2.0 [11], and Bpredictor [18], and the linear epitope
predictors were BepiPred [5], ABCpred [6], AAP [7], and
BCPREDS [8]. We calculated the Pearson’s correlation coef-
ficients for the prediction scores produced by the base pre-
diction tools. To further analyze the correlations among
predictions based on the score rankings, we sorted the pre-
diction scores of all protein residues provided by each base
learner and then conducted a Spearman’s rank correlation
analysis. Tables 1 and 2 list the Pearson’s correlation coeffi-
cients and Spearman's rank correlation coefficients of all
pairs of linear and conformational predictors, respectively.
The average correlation coefficients of the linear and con-
formational prediction tools were 0.383 vs. 0.384 and 0.370
vs. 0.459 in the Pearson’s and Spearman’s correlation ana-
lyses, respectively, which indicate a relatively weak correl-
ation among the epitope predictions of the base learners.
In the independent test data set, 201 epitope residues

and 4528 nonepitope residues exist on 15 protein anti-
gens. A base predictor can classify a protein residue as
epitopic or nonepitopic. For each of the 201 epitope resi-
dues, we counted the number of base tools that correctly
classified the residue as epitopic. Similarly, for each of
the 4528 nonepitope residues, we counted the number
of base tools that correctly classified the residue as
nonepitopic. Figure 1 shows the distributions of epitope
and nonepitope residues for the independent test pro-
teins, based on the number of base tools with the same
prediction, to indicate the degree of agreement in classi-
fication among the base tools. For example, in Figure 1
(a), we observed 6 epitope residues, each of which was
classified correctly by two of the base predictors. Overall,
ed BCPREDS

n Spearman Pearson Spearman

- - -

1 - -

0.287 1 1

0.299 0.536 0.489



Table 2 Correlation analysis of conformational epitope predictors

Conformational SEPPA 2.0 DiscoTope 2.0 Bpredictor

Pearson Spearman Pearson Spearman Pearson Spearman

SEPPA 2.0 1 1 - - - -

DiscoTope 2.0 0.246 0.400 1 1 - -

Bpredictor 0.339 0.509 0.372 0.364 1 1

ElliPro 0.333 0.487 0.388 0.362 0.624 0.630
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we observed that none of the epitope residues were clas-
sified correctly by only one of the base tools, or escaped the
detection of all of the base predictors, and 11% and 0.5% of
the epitope residues were classified correctly by seven and
all of the base tools, respectively. By contrast, >85% of the
epitope residues were classified correctly by between three
and six base predictors. We observed similar trends for
the nonepitope residues. These results indicate that base
learners do not always agree when predicting epitopes,
and may have complementary strengths, suggesting that a
meta learner built upon these learners can demonstrate
synergy in their predictive capabilities.

Performances of meta classifiers and base learners
The multilevel architecture for stacked or cascade
generalization can vary with the arrangement of the meta
learners in the hierarchy. For example, we can place SVM
[19] at the top level in a stacked generalization architec-
ture, or we can substitute C4.5 [20] for SVM. For cascade
generalization, we can place the k-Nearest-Neighbor (k-
NN) [21] prior to the ANN [22], or vice versa, in the cas-
cading sequence. We conducted two stratified five-fold
cross-validations (CV) to evaluate the performances of dif-
ferent architectures. We randomly divided a data set of 94
antigens into five disjoint folds (i.e., subsets), each of ap-
proximately equal size. We stratified the folds to maintain
the same distribution of epitopes and nonepitopes as in
Figure 1 Pie charts showing the degree of agreement among the bas
epitope residues based on the number of base tools with the same predic
on the number of base tools with the same classification.
the original data set. We used one fold of data for testing
prediction performance, and used the remaining four folds
for training. We repeated the same training–testing
process on each fold iteratively. Each run produced a re-
sult based on the fold selected for testing. The overall per-
formance was used as the average of the results obtained
from all iterations of the two 5-fold CVs.
First, we tested C4.5, k-NN (k =3), ANN, and SVM in a

two-level (Levels 0 and 1) stacking architecture (Figure 2).
Table 3 shows the average performances of the two 5-fold
CVs. The results indicated that SVM was the best-
performing meta learner when compared with C4.5, k-NN,
and ANN. Therefore, to build a three-level (Levels 0–2)
stacked generalization architecture we placed SVM above
the other three classifiers to arbitrate their predictions.
Figure 3 shows the three-level stacked architecture. Cas-
cade generalization performs a sequential composition of
meta learners in a hierarchy in which only one meta
learner exists at each level. We tested all 24 possible
sequential arrangements of the meta learners SVM, C4.5,
k-NN, and ANN by using CV. Figure 4 shows the best-
performing cascade generalization architecture.
Table 3 shows the average results of the two 5-fold

CVs for the three-level stacked and cascade generaliza-
tions. Table 4 presents the performances of each base
learner based on the same CV. We optimized all of the
parameters of the base predictors or meta learners by
e tools for epitope prediction. (a) Distribution of the counts of
tion, and (b) distribution of the counts of nonepitope residues based



Figure 2 Two-level stacking architecture. The conformational epitope predictors and linear epitope predictors were all placed at Level 0. One
of the learners SVM, C4.5, k-NN, or ANN served as a meta learner to integrate the output from the base predictors, and produced the meta
classification as the final result.
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using a systematic search (a sequential or grid search
[23]) within a range of parameter values in the CVs. We
selected the optimum parameter values and used them
in subsequent independent tests and ablation studies.
Table 5 lists the parameter values for the base epitope
predictors. Tables 3 and 4 show that stacking and cas-
cade markedly outperformed all of the base prediction
tools for accuracy, F-score, Matthews correlation coefficient
(MCC), and area under the curve (AUC). The differences
among the meta-learning models were nonsignificant in a
paired t test. These results demonstrate the advantages of
exploiting the complementary capabilities of the base pre-
diction tools.
Subsequently, we conducted an independent test using

the test data set of 15 antigens that were not used previ-
ously to train the base learners, and a training data set
of 94 antigens that were known from the literature or
the websites to train the base learners. To ensure a fair
comparison, we used the training data to train a meta
classifier, and compared its performance with the
Table 3 Five-fold cross-validations of meta classifiers

Classifier TPR FPR Precision

2-level (ANN)a 0.514 0.019 0.705

2-level (C4.5)a 0.511 0.023 0.663

2-level (k-NN)a 0.496 0.012 0.783

2-level (SVM)a 0.593 0.009 0.848

3-level Stackingb 0.579 0.009 0.850

Cascadec 0.588 0.010 0.843
aTwo-level stacking meta classifiers with ANN, C4.5, k-NN, or SVM as the top-level m
bThree-level stacking meta classifier (Figure 3).
cCascade meta classifier (Figure 4).
dPaired t test showed no significant difference.
performances of the base learners for the same test data.
This independent test provided consistent and unbiased
comparisons among the proposed meta-learning ap-
proach and the eight base learners. We also included
two recent epitope prediction methods, CBTOPE [24],
LBtope [25], for comparison. We selected the parameter
values of their best-performing models for the training
data set, respectively, and used them in the independent
test to ensure a fair comparison. Table 6 shows the
results, which indicate marked differences in accuracy,
F-score, MCC, and AUC among the meta models and
the base learners. Figure 5 shows the ROC curves. The
ROC curves indicate the trade-off between the amounts
of true positives (TP) and false positives (FP) produced
by the classifiers.
From the results of the 5-fold CVs and the independ-

ent test, we observed that most of the base tools pro-
duced high true positive rates of prediction, nevertheless
they also suffered high false positive rates. In contrast to
most of the base tools, the proposed meta-learning
Accuracy F-score MCC AUC

0.944 0.594 0.573 0.748

0.941 0.577 0.551 0.744

0.949 0.607 0.599 0.742

0.959 0.697 0.689d 0.920

0.958 0.689 0.682d 0.925

0.959 0.693 0.684d 0.925

eta learner.



Figure 3 Three-level stacking architecture. The conformational epitope predictors and linear epitope predictors were all placed at Level 0. We
selected C4.5, k-NN, and ANN as the Level-1 meta learners that transformed the output of the base predictors into meta features, and passed
them to the successive level. We designated SVM as the top meta learner that learned from the base features and the meta features to produce
the meta classification as the final result.

Figure 4 Cascade generalization architecture. The conformational epitope predictors and linear epitope predictors all served at Level 0 as the
base predictors. We placed k-NN, C4.5, ANN, and SVM sequentially from Levels 1 to 4 as meta learners. Each meta learner generalized the output
from the previous level to meta knowledge in the form of meta features. The meta features and base features propagated sequentially to the
successive level as input to the subsequent meta learner. The top-level meta learner, SVM, produced the final meta classification.
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Table 4 Five-fold cross-validations of base epitope predictors

Classifier TPR FPR Precision Accuracy F-score MCC AUC

SEPPA 2.0 0.450 0.097 0.291 0.867 0.348 0.290 0.793

DiscoTope 2.0 0.930 0.761 0.096 0.294 0.173 0.110 0.617

Bpredictor 0.129 0.017 0.399 0.916 0.195 0.192 0.690

ElliPro 0.711 0.512 0.108 0.506 0.186 0.109 0.635

AAP 0.831 0.770 0.085 0.278 0.154 0.039 0.490

ABCpred 0.603 0.548 0.088 0.463 0.152 0.031 0.536

BCPREDS 0.962 0.906 0.084 0.163 0.154 0.053 0.476

BepiPred 0.718 0.500 0.110 0.517 0.191 0.118 0.609
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approach (stacking and cascade) showed lower false
positive rates. Although Bpredictor demonstrated the
lowest false positive rate in the independent test, unfor-
tunately its true positive rate was also the lowest. Among
the eight base prediction tools, SEPPA 2.0 obtained the
best balance between true and false positive rates as in-
dicated by the highest F-score, MCC, and AUC. When
comparing SEPPA 2.0 with stacking and cascade, we ob-
served that both stacking and cascade outperformed
SEPPA 2.0 for all the performance measures except the
true positive rate in the independent test. Overall, these
observations suggest that the performance of an ensem-
ble approach based on meta learning is superior to that
of a single prediction tool for B-cell epitope prediction.
The applicability of an epitope predictor is limited

by the protein properties it explores, and constrained by
the search strategies it adopts. One method for achieving
improvement is combining the results from an ensemble
of various predictors. Different ensemble approaches are
distinguished by the manner in which they integrate the
results from a set of predictors with different character-
istics. We compared the proposed meta-learning ap-
proach with a meta server, EPMeta, which incorporates
the consensus results from multiple discontinuous epi-
tope predictors by using a multistage voting scheme
[13]. Although EPMeta and the other base learners per-
formed comparably, both the proposed stacking and
Table 5 Parameter settings in base epitope predictors

Base learner Parameter

SEPPA 2.0 scoring threshold

DiscoTope 2.0 scoring threshold

Bpredictor scoring threshold

ElliPro scoring threshold

AAP window size

ABCpred scoring threshold

BCPREDS window size

BepiPred scoring threshold
cascade meta classifiers markedly outperformed EPMeta
for F-score, MCC, and AUC.
In addition to the comparison between the meta clas-

sifiers and the base epitope predictors for the same inde-
pendent test data set of 15 antigens, we also compared
the meta classifiers with the epitope predictors separ-
ately, using different data sets. We conducted the experi-
ments on several representative epitope predictors
released in 2008–2014: SEPPA 2.0 (2014), DiscoTope 2.0
(2012), Bpredictor (2011), CBTOPE (2010), and ElliPro
(2008). Each of them had been trained and tested by dif-
ferent data sets [9-11,18,24]. In each experiment, we se-
lected one epitope predictor for comparison. If it was
one of the eight base learners, we built the meta classi-
fier upon the remaining seven base learners. We only
trained and tested the meta classifier on the same data
sets that had been used specifically to train and test the
predictor selected for comparison. Other predictors,
such as ABCpred, BCPREDS, and LBtope, though their
data sets were available, were excluded from the experi-
ments because their data sets either contained only se-
quence segments, or lacked the information of PDB files
required to calculate the structure-based feature values,
such as ASA, for the meta classifiers. Table 7 shows that
stacking and cascade outperformed SEPPA 2.0, Disco-
Tope 2.0, Bpredictor, CBTOPE, and ElliPro markedly in
the individual tests. The results demonstrate that the
Range of parameter values Selected value

0.00 ~ 1.00 0.21

−70.00 ~ 10.00 −18.09

0.00 ~ 1.00 0.88

0.00 ~ 1.00 0.44

10, 12, 14, 16, 18, 20 16

0.00 ~ 1.00 0.84

12, 14, 16, 18, 20, 22 20

−4.00 ~ 3.00 0.02



Table 6 Results of the independent test data

Classifier TPR FPR Precision Accuracy F-score MCC AUC

SEPPA 2.0 0.289 0.050 0.204 0.922 0.239 0.202 0.765

DiscoTope 2.0 0.930 0.763 0.051 0.266 0.097 0.080 0.699

Bpredictor 0.010 0.007 0.057 0.951 0.017 0.006 0.683

ElliPro 0.826 0.535 0.064 0.480 0.119 0.118 0.696

AAP 0.846 0.641 0.055 0.379 0.104 0.086 0.609

ABCpred 0.507 0.480 0.045 0.519 0.082 0.011 0.530

BCPREDS 0.990 0.874 0.048 0.163 0.091 0.072 0.570

BepiPred 0.761 0.499 0.063 0.512 0.117 0.106 0.656

CBTOPEa 0.159 0.003 0.681 0.961 0.258 0.317 0.681

LBtopeb 0.632 0.578 0.046 0.431 0.086 0.022 0.575

EPMetac 0.129 0.043 0.118 0.922 0.124 0.083 0.595

3-level Stacking 0.194 0.008 0.520 0.958 0.283 0.300 0.793

Cascade 0.199 0.008 0.519 0.958 0.288 0.304 0.789
aWe selected the parameter value (0.7) of the best-performing CBTOPE on the training data set of 94 antigens, and used the value in the independent test.
CBTOPE’s performances were markedly lower for ACC, F-score, and MCC (0.708, 0.143, and 0.126), using the default value (−0.3).
bWe selected the parameter value (42.4) of the best-performing LBtope on the training data set of 94 antigens, and used the value in the independent test. By
contrast, LBtope’s performances were markedly higher for ACC, F-score, and MCC (0.803, 0.123, and 0.077), using the default value (60).
cWe selected the parameter value (86) of the best-performing EPMeta on the training data set of 94 antigens, and used the value in the independent test. EPMeta
did not provide the default parameter value.

Figure 5 The ROC curves of epitope predictors and meta classifiers based on the independent test data. The curves show the amounts
of TP and FP produced by the classifiers in different parameter settings. The results show that both stacking and cascade outperformed all other
epitope prediction tools, including the meta server, EPMeta, in the independent test.
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Table 7 Results of individual comparisons

Classifier TPR FPR Precision Accuracy F-score MCC AUC

SEPPA 2.0 0.155 0.045 0.161 0.913 0.158 0.112 0.697

3-level Stackinga w/o SEPPA 2.0 0.418 0.030 0.384 0.935 0.386 0.351 0.820

Cascadea w/o SEPPA 2.0 0.404 0.033 0.405 0.937 0.404 0.371 0.820

DiscoTope 2.0 0.917 0.625 0.090 0.409 0.164 0.148 0.748

3-level Stackinga w/o DiscoTop 2.0 0.231 0.013 0.541 0.939 0.324 0.327 0.809

Cascadea w/o DiscoTope 2.0 0.212 0.013 0.532 0.939 0.303 0.310 0.806

Bpredictor 0.045 0.028 0.067 0.933 0.054 0.021 0.683

3-level Stackingb w/o Bpredictor 0.119 0.006 0.471 0.957 0.190 0.222 0.779

Cascadeb w/o Bpredictor 0.149 0.002 0.769 0.962 0.250 0.328 0.787

ElliPro 0.421 0.279 0.131 0.694 0.199 0.090 0.630

3-level Stackingc w/o ElliPro 0.367 0.009 0.802 0.935 0.504 0.516 0.861

Cascadec w/o ElliPro 0.346 0.010 0.770 0.932 0.478 0.488 0.857

CBTOPEd 0.801 0.424 0.118 0.591 0.205 0.188 0.798

3-level Stackingd 0.446 0.010 0.751 0.954 0.558 0.557 0.913

Cascaded 0.446 0.010 0.762 0.954 0.562 0.562 0.908
aMeta classifiers were trained and tested using the data sets that were used specifically to train and test SEPPA 2.0 (or DiscoTope 2.0), excluding the antigens with missing
feature values. All the classifiers, including the base predictor (SEPPA 2.0 or DiscoTope 2.0), were tested on the same test data to conduct a consistent comparison.
bMeta classifiers were trained on the data used specifically to train Bpredictor, excluding the antigens with missing feature values. Though Bpredictor provided
the test data set of its own, the data lacked the epitope residues annotated in the IEDB. Alternatively, we used the independent test data set of 15 antigens
(Table 15) to test all the classifiers, including Bpredictor, to conduct a consistent comparison.
cElliPro only provided the test data set, but no training data. Meta classifiers were consequently trained on the training data set of 94 antigens (Table 16), and
tested on the test data of ElliPro, excluding the antigens with missing feature values. All the classifiers, including ElliPro, were tested on the same test data to
conduct a consistent comparison.
dMeta classifiers were trained and tested using the non-redundant (<40% sequence identity) benchmark dataset previously used to evaluate CBTOPE, excluding the
antigens with missing feature values. Following CBTOPE, we adopted 5-fold CV to compare the performances. All the classifiers, including CBTOPE, were tested on the
same test data to conduct a consistent comparison. The parameter value (−0.3) we used for CBTOPE was the same as used previously to evaluate CBTOPE in [24].

Table 8 Ablation analysis of 3-level stacking meta classifiers

Classifier TPR FPR Precision Accuracy F-score MCC AUC

Tool-based 0.060 0.005 0.364 0.956 0.103 0.133 0.663

Feature-based 0.065 0.006 0.342 0.955 0.109 0.134 0.658
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synergy in the effects of multiple epitope predictors can
achieve superior performance compared with that pro-
duced by a single epitope predictor.

Ablation analysis
In a meta-learning architecture, base learners interact
and contribute differently to the meta decision. An abla-
tion study provides insight into the effects of base
learners on the prediction performance of a meta classi-
fier. However, the time required for a complete ablation
analysis increases exponentially with the number of base
learners. To avoid computational explosion, we adopted
a greedy approach for the ablation study. Although the
greedy ablation analysis does not consider all possible
combinations of base learners in a meta-learning archi-
tecture, it provides a significant estimate for the base
learners in meta classification.
We used conformational (DiscoTope 2.0, ElliPro, SEPPA

2.0, and Bpredictor) and linear (BepiPred, ABCpred, AAP,
and BCPREDS) epitope predictors as the base learners for
our meta classifiers. We conducted three ablation analyses
for the stacking and cascade meta classifiers. The first ana-
lysis investigated a tool-based meta classifier and a feature-
based meta classifier. The tool-based meta classifier only
used the eight epitope prediction tools as the base learners
in the meta learning hierarchy, whereas the feature-based
meta classifier only adopted the structure-related features,
such as secondary structures [26], and the features that
were relevant to the protein sequences, such as amino acid
hydrophilicity [27]. Tables 8 and 9 show the performances
of the two types of meta classifier. The results indicated a
marked reduction in prediction performance for F-score,
MCC, and AUC when the meta classifier used only the
base tools, or only the base features. Prior to ablation, the
performances of the stacking meta classifier for F-score,
MCC, and AUC were 0.283, 0.300, and 0.793, respectively.
After ablation, they reduced to 0.103, 0.133, and 0.663, re-
spectively, for the tool-based stacking meta classifier, and
to 0.109, 0.134, and 0.658, respectively, for the feature-
based stacking meta classifier. We observed similar trends
for the cascade meta classifier. Collectively, the base pre-
dictors and features exerted great influence on the meta
classification, as suggested by the result that the removal of
the predictors or the features induced a substantial



Table 9 Ablation analysis of cascade meta classifiers

Classifier TPR FPR Precision Accuracy F-score MCC AUC

Tool-based 0.060 0.008 0.245 0.952 0.096 0.103 0.648

Feature-based 0.060 0.007 0.279 0.953 0.098 0.112 0.648
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reduction in prediction performance. In addition, we ob-
served approximately equal amount of reduction in per-
formance after the removal of the base tools or the base
features, which indicated the comparable influence of the
predictors and the features on the learned meta model. Ex-
tending the input space for the meta learners with both the
predictions of the base tools and the protein features im-
proved the prediction of epitopes (Tables 6, 8, and 9).
Overall, these results demonstrate synergy in the effects of
the conformational and linear epitope predictors, and pro-
tein features in meta learning.
The second analysis focused on the interactions of the

eight epitope predictors, and their individual influence
on the meta decision. We applied a greedy iterative
backward elimination approach for ablation analysis to
avoid exponential computational time, using MCC as
the performance measure. We adopted MCC in the ab-
lation study because it considers all four numbers (TP,
FP, TN, and FN), and provides a more balanced evalu-
ation of prediction than some measures, such as TPR or
precision [28]. In each iteration, we removed the base
learner from the meta classifier if its removal caused a
maximal decrease in MCC. Table 10 shows the order of
the base learners removed sequentially from the stacking
meta classifier. SEPPA 2.0, ElliPro, and BepiPred were
the first three base tools to be removed from the stack-
ing meta classifier. This observation agreed with our ex-
pectation that their removal would induce a maximal
reduction in performance because SEPPA 2.0, ElliPro,
and BepiPred were the top three base predictors in the
Table 10 Ablation analysis of base learner interactions in stac

Classifier* TPR FPR Precision

3-level stacking 0.194 0.008 0.520

\SEPPA 2.0 0.169 0.009 0.447

\ElliPro 0.144 0.012 0.349

\BepiPred 0.144 0.012 0.341

\BCPREDS 0.109 0.009 0.338

\AAP 0.124 0.016 0.255

\Bpredictor 0.154 0.012 0.356

\DiscoTope 2.0 0.045 0.006 0.257

\ABCpred 0.065 0.006 0.342
*Classifiers tested in the ablation analysis. The first classifier in the first row is the st
remaining classifiers are listed in the order in which they were selected to be remo
indicates “removed”. For example, the second classifier is the stacking meta classifie
classifier after SEPPA 2.0 and ElliPro were removed from the meta model. The meta
prediction tool ABCpred was removed.
independent test according to MCC (Table 6). The rest
of the order varied because of the removal of the base
tools. The remaining two conformational predictors,
Bpredictor and DiscoTope 2.0, were the sixth and sev-
enth to be removed after the selection of BCPREDS and
AAP for removal. The final base tool to be removed was
the linear epitope predictor ABCpred.
In contrast to the results of the stacking meta classi-

fier, although the linear epitope predictor AAP did not
perform the best for MCC in the independent test, it
was the first to be removed from the cascade meta clas-
sifier (Table 11). SEPPA 2.0 outperformed the other base
predictors in the independent test, however it was the
fourth to be removed after AAP, ElliPro and Bpredictor
had been selected for removal. Prior to the remaining
conformational prediction tool DiscoTope 2.0, we re-
moved the linear epitope predictor BCPREDS, and the
rest of the linear epitope predictors, BepiPred and
ABCpred, were the last two base tools to be removed.
The third ablation analysis evaluated the individual in-

fluence of the linear base prediction tools on the meta
classifiers. We applied a greedy iterative forward selec-
tion approach starting with a meta classifier built upon
all the conformational base learners. In each iteration,
we added one linear base learner if its addition caused a
maximal increase in MCC. Tables 12 and 13 show the
order of the linear tools added sequentially to the stacking
and the cascade meta classifiers, respectively. In both ana-
lyses, BCPREDS was the first selected linear base tool
added to the meta classifiers. Though it was not the top
linear tool in the 5-fold CVs and the independent test ac-
cording to MCC, it had the highest TPR compared with
the other linear tools. The addition of BCPREDS to the
conformational meta classifiers increased the TPRs mark-
edly for stacking and cascade, from 0.144 and 0.154 to
0.184 and 0.204, respectively. In addition, after the
king meta classifiers

Accuracy F-score MCC AUC

0.958 0.283 0.300 0.793

0.956 0.245 0.256 0.755

0.952 0.204 0.203 0.746

0.952 0.203 0.200 0.749

0.953 0.165 0.173 0.717

0.947 0.167 0.153 0.758

0.952 0.215 0.213 0.724

0.954 0.076 0.092 0.672

0.955 0.109 0.134 0.658

acking meta classifier that employs all of the 8 base learners (Figure 3). The
ved iteratively from the stacking meta classifier for the ablation study. ‘\’
r after SEPPA 2.0 was removed, and the third classifier is the stacking meta
classifier in the final row did not apply any base learner after the final



Table 11 Ablation analysis of base learner interactions in cascade meta classifiers

Classifier* TPR FPR Precision Accuracy F-score MCC AUC

Cascade 0.199 0.008 0.519 0.958 0.288 0.304 0.789

\AAP 0.164 0.010 0.423 0.955 0.237 0.244 0.774

\ElliPro 0.144 0.009 0.414 0.955 0.214 0.226 0.748

\Bpredictor 0.149 0.009 0.435 0.956 0.222 0.237 0.743

\SEPPA 2.0 0.065 0.003 0.500 0.957 0.115 0.169 0.698

\BCPREDS 0.025 0.005 0.179 0.954 0.044 0.052 0.695

\DiscoTope 2.0 0.045 0.004 0.321 0.955 0.079 0.107 0.684

\BepiPred 0.065 0.006 0.317 0.954 0.107 0.127 0.653

\ABCpred 0.060 0.007 0.279 0.953 0.098 0.112 0.648
*Classifiers tested in the ablation analysis. The first classifier in the first row is the cascade meta classifier that employs all of the 8 base learners (Figure 4). The
remaining classifiers are listed in the order in which they were selected to be removed iteratively from the cascade meta classifier for the ablation study. ‘\’
indicates “removed”. For example, the second classifier is the cascade meta classifier after AAP was removed, and the third classifier is the cascade meta classifier
after AAP and ElliPro were removed from the meta model. The meta classifier in the final row did not apply any base learner after the final prediction tool
ABCpred was removed.
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inclusion of BCPREDS, both stacking and cascade
achieved their maximal MCCs, 0.317 and 0.327, respect-
ively. Though the rest of the order varied between stacking
and cascade because of the addition of other linear base
learners, the performances of the meta classifiers for MCC
remained above (or equal to) 0.3.
These observations together suggest that in the meta-

learning framework, all conformational and linear epitope
predictors interact, and the degree of interaction among
them differs. An ensemble of complementary base learners
incorporated in a hierarchy of appropriately arranged meta
learners can produce a meta classification performance
that is comparable to, or superior to, the performances of
the base predictors.

Conclusions
Understanding of the interactions between antibodies
and epitopes provides the basis for the rational design of
preventive vaccines. Following the increased availability
of protein sequences and structures, several various
computational tools have been developed for epitope
prediction. Our analytical and experimental results reveal
the complementary performances of various epitope pre-
diction methods, suggesting synergy among these compu-
tational tools. Unlike previous ensemble approaches, we
Table 12 Ablation analysis of influence of linear base learner

Classifier* TPR FPR Prec

Conformational 3-level Stacking 0.144 0.018 0.261

+BCPREDS 0.184 0.006 0.597

+AAP 0.194 0.008 0.527

+ BepiPred 0.214 0.009 0.524

+ABCpred 0.194 0.008 0.520
*Classifiers tested in the ablation analysis. The first classifier in the first row is the stacki
remaining classifiers are listed in the order in which they were selected to be added ite
For example, the second classifier is the stacking meta classifier after BCPREDS was add
were added to the meta model. The meta classifier in the final row applied all the base
propose a meta-learning approach for predicting B-cell
epitopes, which combines base epitope prediction tools
with other meta learners in a hierarchical architecture to
integrate multiple predictions into meta knowledge for
epitope classification. We conducted a consistent and un-
biased independent test on our method, and compared
the results with those from other prediction tools. Our re-
sults demonstrate that the proposed meta-learning ap-
proach outperforms the single base tools and other
recently developed epitope predictors.

Methods
Epitope prediction as inductive learning
When addressing an inductive learning problem, by
representing each example by a set of descriptive attri-
butes, its target attribute, and the attribute values, then
an inductive learning task can be defined as follows:
If
E = {e1,e2,…,en} is a set of training examples,
X = {x1,x2,…,xm} is a set of descriptive attributes,
C is the target attribute,

then each training example ei is represented by a vec-
tor < v1,v2,…,vm, ti>, where v1,v2,…,vm denotes a legal value
of attribute x1,x2,…,xm, and ti is a legal value of the target
attribute c.
s on stacking meta classifiers

ision Accuracy F-score MCC AUC

0.946 0.186 0.168 0.801

0.960 0.281 0.317 0.753

0.958 0.284 0.303 0.788

0.958 0.304 0.317 0.788

0.958 0.283 0.300 0.793

ng meta classifier that only employs the 4 conformational base learners. The
ratively to the stacking meta classifier for the ablation study. ‘+’ indicates “added.”
ed, and the third classifier is the stacking meta classifier after BCPREDS and AAP
learners after the final prediction tool ABCpred was added.



Table 13 Ablation analysis of influence of linear base learners on cascade meta classifiers

Classifier* TPR FPR Precision Accuracy F-score MCC AUC

Conformational cascade 0.154 0.010 0.397 0.954 0.222 0.228 0.743

+BCPREDS 0.204 0.007 0.577 0.960 0.301 0.327 0.745

+ABCpred 0.184 0.005 0.617 0.960 0.284 0.323 0.760

+AAP 0.189 0.006 0.603 0.960 0.288 0.323 0.765

+ BepiPred 0.199 0.008 0.519 0.958 0.288 0.304 0.789
*Classifiers tested in the ablation analysis. The first classifier in the first row is the cascade meta classifier that only employs the 4 conformational base learners.
The remaining classifiers are listed in the order in which they were selected to be added iteratively to the cascade meta classifier for the ablation study. ‘+’
indicates “added”. For example, the second classifier is the cascade meta classifier after BCPREDS was added, and the third classifier is the cascade meta classifier
after BCPREDS and ABCpred were added to the meta model. The meta classifier in the final row applied all the base learners after the final prediction tool
BepiPred was added.
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Assuming
F:: X→ c is the target attribute function, which maps

an example represented by a vector of descriptive attri-
bute values to its target attribute value, and
H:: X→ c is a hypothesis that approximates the target

attribute function, H(X) ≈ F(X),
then for a test example t, the target value is predicted as
H(t).
Considering epitope prediction as an inductive learning

problem, when provided a set of antigens with known epi-
topic and nonepitopic regions, the initial goal is to train a
classifier from a set of antigens, each of which is described
by a set of protein features, and then apply the classifier to
novel antigens for epitope detection. Several learning-
based epitope prediction tools have been developed [5-13].
Because different learning algorithms employ different
knowledge representations and search heuristics, they ex-
plore different hypothesis space and consequently obtain
different results. We propose combining multiple predic-
tion methods to achieve superior performance compared
with that achieved using a single predictor.

Meta learning: stacked generalization and cascade
generalization
Stacked and cascade generalizations are methods of com-
bining the predictions of multiple learning models that
have been trained for a classification task [14-17]. Unlike ap-
proaches based on bagging [29] or boosting [30], which aim
to reduce the variance of multiple learners to improve per-
formance, stacked and cascade generalizations both work as
layered processes with the aim of reducing learner bias.
In stacked generalization, each of a set of base learners

is trained in a data set, and the predictions of these base
learners become the meta features. A successive layer of
meta learners receives the meta features as the input with
which to train the meta models in parallel, passing their
output to the subsequent layer. A single classifier at the
top level makes the final prediction. Stacked generalization
is considered a form of meta learning because the trans-
formations of the training data for the successive layers
contain the information of the predictions of the preced-
ing learners, which is a form of meta knowledge.
Similar to stacked generalization, cascade generalization

is a form of meta learning [16,17]. Cascade generalization
is distinguishable from stacked generalization because it
produces a sequential, rather than a parallel, composition
of classifiers in a hierarchy. Only one learner exists at each
level, and its prediction becomes a novel feature, in
addition to the base features, of the input to the learner in
the successive level. Stacked generalization combines the
predictions of multiple learners in parallel at each level in a
layered architecture to improve classification accuracy,
whereas cascade generalization connects multiple learners
in a sequential fashion to obtain a meta model by propa-
gating the prediction of the learner, as a novel feature, to
the subsequent learner.
In this study, we developed multilevel architectures for

stacked and cascade generalizations. We used C4.5 [20],
k-NN [21], ANN [22], and SVM [19] as the meta learners
because C4.5 learns comprehensible decision trees, the
nearest-neighbor rule is capable of constructing local ap-
proximations to the target, artificial neural network learn-
ing methods provide a robust approach to approximating
a wide variety of target functions, and SVM has demon-
strated promising performances in various applications.
We selected several state-of-the-art linear and conform-
ational epitope prediction tools as the candidate B-cell epi-
tope base learners, including BepiPred [5], ABCpred [6],
AAP [7], BCPREDS [8], DiscoTope 2.0 [9], ElliPro [10],
SEPPA 2.0 [11], and Bpredictor [18]. We analyzed and
compared the base features exploited by previous predic-
tion methods, and selected those that characterize phys-
icochemical propensities and structural properties. We
adopted 14 base features: epitope propensity [9], sec-
ondary structure [26], residue accessibility [31], B factor
[32,33], solvent-excluded surfaces, solvent-accessible
surfaces [34], protein chain flexibility [35], hydrophil-
icity [27], PSSM [36], atom volume [37], accessible sur-
face area [38,39], side chain polarity [40], hydropathy
index [41], and antigenic propensity [42]. Table 14 lists



Table 14 Summary of base features

Base feature Description Reference

Propensity score The propensity score is derived from a scoring function that sums the log-odd ratios of the
amino acids in the spatial neighborhood (defined in [9]) around each residue in a given protein.

[9]

Residue accessibility Using NACCESS to calculate the accessibilities of the whole molecule submitted in a pdb file. NACCESS
calculates the atomic accessible surface defined by rolling a probe around a van der Waals surface.
The residue accessibilities are categorized into 4 classes: all-polar, nonpolar, total-side, and main-chain.

[31]

Secondary structure Secondary structure refers to highly regular local sub-structures defined by patterns of
hydrogen bonds between the main-chain peptide groups.

[26]

In such cases, the chain of amino acids folds into regular repeating structures, such as α helix,
β structure, and coil.

Accessible surface area Calculated using Gerstein et al.’s calc-surface program to measure the accessible surface area of a
sphere, on each point of which the center of a solvent molecule can be placed in contact with
this atom without penetrating any other atoms of the molecule.

[38,39]

Atom volume Calculated using Gerstein et al.’s calc-volume program. It calculates volumes by applying a geometric
construction called Voronoi polyhedra to divide the total volume among the atoms in a protein model.

[37]

B factor The B factor is also known as the Debye-Waller factor or the temperature factor. It is used to describe
the attenuation of x-ray scattering or coherent neutron scattering caused by thermal motion. Two B factors
of a protein were considered in this study: the B factor of side chain and the B factor of main chain.

[32,33]

Solvent excluded surface Calculated using Sanner et al.’s MSMS program, which builds the solvent excluded surface based
on the reduced surface.

[34]

Solvent accessible surface Calculated using Sanner et al.’s MSMS program, which builds the solvent accessible surface
based on the reduced surface.

[34]

PSSM Using PSI-BLAST to search the non-redundant protein database, and derive the information
content from a position specific scoring matrix as the base feature.

[36]

Side chain polarity The 20 amino acids were divided into four categories: polar, nonpolar, acidic polar, and basic polar. [40]

Hydropathy index Kyte and Doolittle devised the hydopathy index by applying a sliding-window strategy that
continuously determined the average hydopathy in a window as it advanced through the sequence.

[41]

Antigenic propensity Kolaskar and Tongaonkar analyzed 156 antigenic determinants (<20 residues per determinant)
in 34 different proteins to obtain the antigenic propensities of amino acid residues.

[42,43]

Flexibility Karplus and Schulz developed the flexibility scale based on the mobility of the protein
segments on 31 proteins with known structures.

[35]

Hydrophilic scale Parker et al. developed the hydrophilic scale based on the high-performance liquid
chromatography (HPLC) peptide retention data.

[26]
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descriptions of these features. In the training stage, the
outputs of the base learners and base features are passed
to meta learners at higher levels to train a meta model for
classification. In the prediction stage, the trained meta
classifier predicts the epitopes for a previously unseen
antigen protein based on the predictions of the base
learners and the base features of the protein.

Analysis of prediction performances: data sets and
performance measures
An epitope prediction server must be trained to obtain its
prediction model before it can make a prediction. Because
the epitope predictors used in our study were web-based
servers or software packages, they could not be retrained
using novel training data. To conduct a consistent and
Table 15 Independent test data set of 15 protein antigens

1BZQ_A 1J5O_B 1KXT_A 1KXV_A 1N5Y_B

2VIT_C 2ZJS_Y 3BSZ_F 3KJ4_A 3KJ6_A
unbiased comparative analysis of the prediction perfor-
mances of these servers, we created an independent data
set of antigens with known epitopes. We collected the test
data sets used in DiscoTope 2.0 [9], SEPPA 2.0 [11], and
Bpredictor [18], and combined them with the data of the
Epitome database [44] and Immune Epitope Database
(IEDB) [45] to obtain 272 antigen protein 3D structures.
After removing the duplicate proteins, we obtained 246
structures. We filtered out the antigens without epitope
residues annotated in Epitope Information and B cell
Assay Information in the IEDB, or previously used to train
the base learners to build an independent data set of 15
antigens for prediction performance evaluation (Table 15).
To ensure fair comparison between different prediction
methods, we used the 15 antigens with the epitope
1N6Q_B 2OZ4_A 2R4R_A 2R4S_A 2VIS_C

- - - - -



Table 16 Training data set of 94 protein antigens

1A2Y_C 1ADQ_A 1AFV_A 1AHW_C 1AR1_B 1BGX_T 1BQL_Y 1BVK_C 1C08_C 1DQJ_C

1DZB_X 1DZB_Y 1EGJ_A 1EO8_A 1EZV_E 1FDL_Y 1FNS_A 1FSK_A 1G7H_C 1G7I_C

1G7J_C 1G7L_C 1G7M_C 1G9M_G 1G9N_G 1GC1_G 1HYS_B 1IC4_Y 1IC5_Y 1IC7_Y

1J1O_Y 1J1P_Y 1J1X_Y 1JHL_A 1JPS_T 1JRH_I 1KIP_C 1KIQ_C 1KIR_C 1KYO_E

1LK3_A 1MEL_L 1MHP_B 1MLC_E 1N8Z_C 1NBY_C 1NBZ_C 1NDG_C 1NDM_C 1NSN_S

1OAK_A 1ORS_C 1OSP_O 1QLE_B 1R3K_C 1RJL_C 1RVF_1 1RVF_2 1RVF_3 1RZJ_G

1RZK_G 1TZH_V 1TZI_V 1UA6_Y 1UAC_Y 1UJ3_C 1V7M_V 1W72_A 1WEJ_F 1XIW_A

1YJD_C 1YQV_Y 1YY9_A 1ZTX_E 2AEP_A 2ARJ_Q 2B2X_A 2DD8_S 2EIZ_C 2HMI_B

2Q8A_A 2QQK_A 2QQN_A 2UZI_R 2VH5_R 2VXQ_A 2VXT_I 2W9E_A 2XTJ_A 2ZUQ_A

3G6D_A 3GRW_A 3O0R_B 3PGF_A - - - - - -

Table 17 Definitions of performance measures

Performance measure Definition

TPRa TP/(TP + FN)

FPR FP/(FP + TN)

Precisionb TP/(TP + FP)

Accuracy (TP + TN)/(TP + TN + FP + FN)

F-score 2 × TPR × Precision/(TPR + Precision)

MCC TP�TN−FP�FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þ
p

AUC Area under the ROC curve
aTrue Positive Rate is also known as Sensitivity or Recall.
bPrecision is also known as Positive Predictive Value.
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residues annotated in the IEDB on March 4, 2014 for test-
ing, and selected 94 antigens previously used to train the
base learners (Table 16) to train the classification models.
We used FATCAT [46] to measure the pairwise structural
dissimilarities in the training and the test antigens. The
pairwise root mean squared deviation (RMSD) ranged be-
tween 0.10 and 9.75 angstroms in the training data, and
between 0.10 and 9.75 in the test data. The average pair-
wise RMSD of the antigens in the training and the test
data sets were 2.90 ± 1.12 and 3.12 ± 1.29 angstroms, re-
spectively. The antigen protein 3D structures were used as
input for the structure-based classifiers, and the corre-
sponding antigen sequences were sent to the sequence-
based predictors as input.
We evaluated prediction performances by using sev-

eral measures: TP rate (i.e., sensitivity), FP rate, precision
(i.e., positive predictive value), percentage accuracy, F-
score, and MCC. Table 17 lists the definitions of these
measures. We considered a predicted antigenic residue a
TP if it was within a known epitopic region. Otherwise,
we considered it a FP. We considered a predicted nonanti-
genic residue a true negative (TN) if it was outside the
known epitopes, or a false negative (FN) if it was part of a
known epitope. We tested the prediction models on the
independent antigen data. According to the output of the
prediction models, for each amino acid we obtained: (1)
the epitope prediction score, or (2) the classification (e.g.,
epitope or nonepitope based on a prespecified score
threshold). The numbers obtained for TP, TN, FP, and FN
depended on the manner in which the threshold was se-
lected, and provided performance information. To enable
the prediction models that require appropriate parameter
settings to produce the optimal performances, we per-
formed a systematic search, such as a sequential or a grid
search [23], to identify the optimum parameter values for
the models, and used these values to evaluate perfor-
mances in subsequent experiments. Because we could re-
train the meta learners, such as SVM, we conducted a grid
search for the parameter values of the best-performing
meta learner in CV. In contrast to the meta learners, the
retraining of the base learners, such as SEPPA 2.0, was in-
feasible. To optimize the parameters of a base learner, al-
ternatively we experimented the base learner on the
training data set of 94 antigens (Table 16), varying the par-
ameter values, and selected the values that produced the
maximum performance. For example, to identify the scor-
ing threshold of the best-performing SEPPA 2.0, we tested
the values (0.01, 0.02, 0.03,…, 0.99) between 0 and 1 as
candidate thresholds, and found 0.21 to produce the
optimum performance (Table 5). Though this strategy is a
naïve exhaustive search, it is effective, and can be easily
parallelized [23] to improve the efficiency. In general, cor-
relation exists between the TP rate and the FP rate pro-
duced by the predictive model. Typically, the FP rate
increases with the TP rate. We prepared ROC curves to
summarize the results on the different thresholds and cal-
culated the AUC.

Correlation analysis and ablation study
A meta classifier can consist of an arbitrary number of
base learners, and its overall performance depends on
these learning components. If the learning components
have complementary predictive strengths, a meta classi-
fier can search a variety of hypotheses in the hypothesis
space, and provide superior generalizations for novel test
data than a single-component learner can [14,17]. We
used statistical techniques to analyze the prediction
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tools. We evaluated the correlations between the pre-
diction scores, and between the rankings of the predic-
tion scores. Using a Pearson’s correlation analysis, we
measured the strength of the relationship between the
prediction scores produced by the tools. We ranked
the prediction scores produced by the tools, and calcu-
lated the Spearman’s rank correlation coefficient to in-
vestigate the correlations between the prediction score
rankings of the prediction tools. The results from cor-
relation analysis provided a basis for selecting the ap-
propriate base learners in meta learning.
In addition to assessing the complementary prediction

strengths of the prediction methods by using statistical
techniques, we conducted an ablation study to measure the
contribution of the base learners to the meta classifier. A
meta classifier M is constructed from a set of base learners
A = {b1, b2, b3,…,bm}. We denoted the meta classifier as M
(A), and its performance depended on the behaviors of the
base learners selected. Given a set of available base learners
B = {b1, b2, b3,…,bn}, where n ≥m, an exponential number
of possible selections could derive from these base learners
to develop a particular meta learner. To reduce the compu-
tational costs of the ablation analysis, we adopted two
greedy iterative approaches, backward elimination and for-
ward selection, to evaluate the contributions of available
base learners. The greedy iterative backward elimination
approach started with the maximal meta classifier built
upon all available base learners in B (i.e. M(A) =M(B)). In
each iteration, it performed the following tasks:

(1) Identified bi ∈ B, so that the prediction performance
of M(B\{bi}) is the worst, where B\{bi} indicates B
without bi.

(2) Removed bi from B.
(3) If |B| ≥1, returned to step (1) and iterated, or

stopped.

By contrast, the greedy iterative forward selection ap-
proach started with the minimal classifier built without
any base learner in B (i.e. M(A) = {}). In each iteration, it
performed the following tasks:

(1) Identified bi ∈ B, so that the prediction performance
of M(A∪{bi}) is the best, where A∪{bi} indicates A
with bi added.

(2) Removed bi from B.
(3) If |B| ≥1, returned to step (1) and iterated, or

stopped.

We compared the relevance of the base learners to
the meta classifier by the order of their removal or
addition, and estimated their effects on the meta classi-
fication by the amount of decrease or increase in pre-
diction performance.
Availability
The data (training and test) and the executable code of
the meta classifiers (stacking and cascade) are available.
In the Additional file 1, we showed the link to the data
and the code, and described the instructions for execut-
ing the code and the procedures for preparing the data.
The user can run the meta classifiers that have been
trained on the training data to predict the B-cell epi-
topes on protein antigens.
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