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Abstract

Background: The complexity of biological data related to the genetic origins of tumour cells, originates significant
challenges to glean valuable knowledge that can be used to predict therapeutic responses. In order to discover a link
between gene expression profiles and drug responses, a computational framework based on Consensus p-Median
clustering is proposed. The main goal is to simultaneously predict (in silico) anticancer responses by extracting
common patterns among tumour cell lines, selecting genes that could potentially explain the therapy outcome and
finally learning a probabilistic model able to predict the therapeutic responses.

Results: The experimental investigation performed on the NCI60 dataset highlights three main findings: (1)
Consensus p-Median is able to create groups of cell lines that are highly correlated both in terms of gene expression
and drug response; (2) from a biological point of view, the proposed approach enables the selection of genes that
are strongly involved in several cancer processes; (3) the final prediction of drug responses, built upon Consensus
p-Median and the selected genes, represents a promising step for predicting potential useful drugs.

Conclusion: The proposed learning framework represents a promising approach predicting drug response in
tumour cells.
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Background
Cancer is a disease treated with various strategies depend-
ing on the type of cancer and the stage of the disease.
Generally, therapeutic agents are selected according to the
specific cancer type and patient population, based on the
effectiveness in large-population studies [1,2]. Now, with
the advances of the genomic era, a massive amount of
high-throughput data has been made available for under-
standing the cancer system biology. The public available
datasets composed of genomic data and drug responses
offer the opportunity to reveal valuable knowledge about
the hidden relationships between gene expression and
drug activity of tumor cells, pointing out the conditions
that bring a patient to be more responsive than others
to a given therapeutic agent. Although data collection
provides the baseline to enable a better understanding
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of cancer mechanisms, data integration and interpreta-
tion is still an open issue. Mathematical and statistical
models of complex biological systems play a fundamen-
tal role in system biology, and in particular in cancer
related issues. They can be exploited for exploratory pur-
poses, to validate hypothesis and make predictions about
quantities that are difficult or impossible to be measured
in vivo.
In the last decade, several studies have been conducted

to develop platforms on which cancer high-throughput
computational analysis can be performed. Much of these
computational approaches are targeted at predicting the
drug sensitivity/resistance by means of statistical infer-
ence and regression methods able to take into account
genomic information of hundreds of genes for determin-
ing a specific drug response [3-5]. However, the massive
availability of chemical compounds as potential cancer
therapies has opened to the investigation of in silico ther-
apy response prediction which requires more sophisti-
cated computational models and methods to optimize the
experimental design of cell-drug screenings.
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A first attempt of gene-drug integrative analysis was
presented in [6] where, thanks to a hierarchical cluster-
ing algorithm, several investigations have been performed:
(1) cell-to-cell correlation on the basis of gene expres-
sion and drug activity profiles, (2) relationships between
drug activity patterns and mechanisms of action, (3) gene-
drug correlation on the basis of gene expression and drug
activity profiles. In subsequent investigations [7,8], the tri-
angle gene expression profiles, drug responses and cancer
types has been explored by integrating unsupervised and
supervised machine learning algorithms. The clustering
approach based on Soft Topographic Vector Quantiza-
tion (STVQ) [9] has shown that gene expression profiles
are more related to the cancer type than to the drug
activity patterns, while thanks to the structure learning
of Bayesian Networks (BN) some biologically meaningful
relationships among gene expression levels, drug activities
and cancer types have been confirmed and in some cases
revealed. More recent works [10-13] are targeted at inte-
grating explorative approaches with predictive paradigm
towards a computational gene-drug screening. While
[10,11] and [12] are based on non-deterministic clus-
tering approaches (k-Means, STVQ and Genetic Pro-
gramming) for identifying relevant genes involved in
cancer mechanisms and predictive of drug response, [13]
introduces a framework based global optimization to
cancel the randomness, and therefore the variance, of
stochastic clustering results when predicting a therapy
outcome.
The results of the above quoted papers and of a wide

set of related approaches highlight several interesting
considerations:

• The explorative analysis performed through
clustering approaches reveals that the tissue of origin
is more related to the gene expression profile than the
drug activity patterns. This suggests that the genomic
information of a cell line plays a fundamental role,
independently of the organ of origin, to understand
anticancer therapy responses. This idea has been
supported by the fact that several cell lines with a
relatively high expression level of those genes
regulating multi-drug resistance have been clustered
in the same group. This indicates that chemoresponse
mechanisms are distributed across different tissues in
the panel and that it should be possible to link drug
responses to gene expression profiles.

• In order to cancel the variability of results of
stochastic clustering and to guarantee the
convergence to a global minimum, we need to
address the clustering problem by exact approaches
able to find globally optimal solutions.

• Computational approaches based on Bayesian
Networks reveal interesting relationships among

subsets of genes and drugs. The potential of Bayesian
Networks encourages us to exploit this probabilistic
model not only for deductive purposes, but also for
prediction issues.

In order to achieve the final goal of simultaneously pre-
dicting the drug response of several compounds given
a patient genomic profile, we propose a computational
framework based on the following assumption: groups
of cell lines homogeneous in terms of both gene expres-
sion profile and drug activity should be characterized
by a subset of genes that explains the drug responses.
To this purpose a three-folds analysis has been inves-
tigated: p-Median problem formulations to create clus-
ters of homogeneous cell lines, Feature Selection Policies
to select relevant genes and finally Bayesian Networks
to predict drug responses of tumour cell lines. Com-
putational results show that the proposed Consensus
p-Median, combined with gene selection and BN infer-
ence engine, yields homogeneous clusters while guaran-
teeing good predictive power for inferring drug responses
for a new cell line. This is also confirmed by the biologi-
cal evaluation performed on the selected genes: according
to the existing literature the set of genes used to train
the BNs, which has been selected by using the groups of
cell lines obtained by the proposed Consensus p-Median,
has shown to be biologically relevant from an oncological
point of view.

Methods
Problem formulation
The problem of simultaneously predicting the response of
several therapeutic compounds given the patient genomic
profile is addressed by a computational framework com-
posed of three main building blocks:

1. The creation of homogeneous groups of tumor cell
lines by means of p-Median formulations. In
particular, a novel Consensus p-Median formulation
is proposed and compared with traditional state of
the art approaches, i.e. k-Means [14], STVQ [9] and
Relational k-Means [11] and Probabilistic
D-Clustering [15].

2. The selection of relevant genes able to predict the
response of hundreds of drugs. We explore the
potential of the solutions determined by solving the
above mentioned p-Median problem formulation for
identifying a subset of genes that characterizes each
cluster, i.e. those subsets of genes that could be
responsible of drug responses. To accomplish this
task two main feature selection policies have been
investigated, i.e. Information Gain [16] and
Correlation-based Feature Subset Evaluation
(CFS) [17].
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3. The simultaneous prediction of different drug
responses by exploiting the potential of Bayesian
Networks [18]. Establishing a straightforward
dependency structure of the Bayesian Network, we
explore the ability of the selected genes to predict a
panel of drug responses given the genomic profiles of
patients.

The proposed computational framework exploits the
well known dataset provided by the U.S. National Can-
cer Institute. The dataset consists of 60 cell lines from 9
kinds of cancers, all extracted from human patients, where
the tumors considered in the panel derive from colorectal,
renal, ovarian, breast, prostate, lung and central nervous
system as well as leukemia and melanoma cancer tissues.
For the cell lines in the panel, both transcript profiling

and chemosensitivity patterns have been considered. In
the following we will consider two datasets stemmed from
the original one: (a) Scherf et al. based on cDNA arrays
and (b) Liu et al. based onmicroRNA arrays. In both cases
the dataset is defined as a set � of all cell lines xi, with
i = {1, . . . 60}, into the real vector space Rm+n:

� =
{
xi|xi =

(
xGi , xDi

)
, xG ∈ R

m, xDi ∈ R
n
}

(1)

where xGi represents the transcript expression level as
a vector into the space R

m and xDi denotes the drug
response as a vector into the space Rn.

Sherf dataset: cDNA arrays and DTP-tested chemical
compounds
The Sherf dataset, originally presented in [6], denotes the
gene expression profile xGi by using the cDNA microar-
ray technology and the drug response xDi by assessing the
grown inhibition activities (GI50) after 48 hours of drug
treatment through Sulphorhodamine B. We can conse-
quently define �G and �D as the set of cell lines repre-
sented through their gene expression profiles and their
drug activity responses respectively:

�G =
{
xGi |xi =

(
xGi , xDi

)
, x ∈ �

}
(2)

�D =
{
xDi |xi =

(
xGi , xDi

)
, x ∈ �

}
(3)

According to the Sherf representationRm, withm =1375,
includes genes selected from the original NCI60 dataset
(characterized by 9073 genes) having 5 or fewer missing
values and showing strong pattern of variation among the
60 cell lines (more than 3 measurements must have red-
green intensity ratios > 2.6 or < 0.38). The space R

n,
with n = 1400, includes drugs contained into the original

dataset, where each compound has been tested one at
time and independently. Considering that among 1375
genes and 1400 drugs missing values were still present,
they have been replaced by the average gene expression
value (or the average drug activity) over the 60 cell lines.
The gene expression profiles and drug activity response
for Sherf dataset are available for download as Additional
file 1: Sherf gene expression data and Additional file 2:
Sherf drug activity data.

Liu dataset: microRNA arrays and drugs with known
mechanism of action
MicroRNAs (miRNA in the following) are a group of
short noncoding RNAs that regulate gene expression at
the post-transcriptional level. They are involved in many
biological processes, including development, differentia-
tion, apoptosis, and carcinogenesis. Because miRNAsmay
play a role in the initiation and progression of cancer, they
comprise a novel class of promising diagnostic and prog-
nostic molecular markers and potential drug targets. In
order to achieve our goal by exploiting the miRNA data,
we considered the dataset presented in [19]. This dataset
leads us to represent the sets �G and �D by means of
422 miRNA expression profile and 118 GI50 responses
related to drugs with known mechanism of action. The
same selection criterion applied on Sherf dataset has been
exploited for Liu dataset. Concerning the miRNA expres-
sions, in this dataset there are no missing values and more
than 3 experiments have red-green intensity ratios > 2.6
or < 0.38, implying no selection of miRNA and there-
fore a space Rm=422. Regarding the drug space, Rn=118 is
characterized by the presence of missing values. As well as
for Sherf dataset, they have been replaced by the average
drug activity over the 60 cell lines. The miRNA expres-
sion profiles and drug activity response for Liu dataset are
available for download as Additional file 3: Liu miRNA
expression data and Additional file 4: Liu drug activity
data.

Cluster analysis
Cluster analysis is aimed at discovering embedded pat-
terns into a given dataset. From a high level point of view
cluster analysis consists of partitioning a set of patterns
into subsets (clusters) based on similarity, i.e. a cluster has
to contain similar patterns and dissimilar patterns have
to be in different clusters. This could be accomplished
by partitioning data points into a pre-specified number
of clusters through the optimization of a cost function
related to a similarity/dissimilarity measure between data
points.
An important step in any clustering algorithm is to

select a distance measure, which will determine how the
similarity/dissimilarity of two data points is calculated.
In order to perform a cluster analysis we chose one of
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the most used distance measures [20] based on Pearson
Correlation (corr):

d
(
xi, xj

) = 1 − corr
(
xi, xj

)
(4)

where xi and xj represent two cell lines and corr
(
xi, xj

)
denotes the Pearson Correlation coefficient between xi
and xj. Thanks to the distance measure denoted by
equation (4), cell lines having high distance due to anti-
correlated genes/drugs are likely placed in different clus-
ters, while cell lines characterized by a small gap are
expected to be clustered together. The adoption of a
correlation-basedmetric instead of the Euclidean distance
is motivated by its sensitivity with respect to magni-
tude: Euclidean distance is sensitive to scaling and dif-
ferences in average expression level, whereas correlation
is not.
In the following we present three different clustering

approaches based on p-Median formulation: traditional
p-Median, probabilistic d-Clustering and Consensus
p-Median.

Traditional p-Median
The p-Median problem was originally designed for facility
location planning [21], where the location of “p-facilities”
relative to a set of “customers” has been formulated such
that the sum of the shortest demand weighted distance
between “customers” and “facilities” is minimized. In our
investigation, the p-Median problem has been formulated
as an assignment problem for creating groups of cell lines
by using a “flat” representation of data, i.e. by represent-
ing each cell line as a vector in R

m+n. Given a cell line
xi ∈ � andK desired clusters, the clustering problem con-
sists in assigning each xi to a cluster center xj, such that the
intra-cluster distance is minimized and the inter-cluster
distance is maximized.
Let Z be a matrix of dimension |�| × |�|, as:

zij =
{
1 if xi is associate to the cluster center xj
0 otherwise (5)

where zij represents the assignment variable that indicates
whether a cell line xi is assigned to a cluster center xj. Note
that the matrix Z has dimension |�| × |�| because each
entry zij denotes the potential association of a cell line xi to
any of the points xj in � (where xj can be a cluster center
or not).
The clustering problem can be formulated as follows:

min F =
|�|∑
i=1

|�|∑
j=1

zijd
(
xi, xj

)
(6)

s.t:
|�|∑
j=1

zij = 1 ∀i ∈ {1, 2, . . . , |�|} (7)

|�|∑
j=1

zjj = K (8)

zij − zjj ≤ 0 ∀i, j ∈ {1, 2, . . . , |�|} (9)

zij = {0, 1} ∀i, j ∈ {1, 2, . . . , |�|} (10)

According to this formulation, the objective function in
equation (6) denotes a combinatorial optimization prob-
lem whose objective is to minimize the distance between
all data points belonging to the same cluster through the
identification of optimal cluster centers xj ∈ � . Con-
straint (7) ensures that each cell line xi is assigned to only
one cluster, constraint (8) guarantees that there will be
exactly K clusters and constraint (9) ensures that if xi is
assigned to xj then xj is a cluster center and therefore a
median. The last constraint (10) guarantees integrality.
For seek of clarity, the above mentioned p-Median is

a mathematical programming formulation (also known
as generalized Fermat-Weber problem formulation) for
uncapacitated facility location problems. The objective
of this formulation is to minimize the sum of the dis-
tances from all data points xi to their respective cluster
centers (geometric medians). In this paper the p-Median
problem is solved deterministicallya by means of a canon-
ical “branch and cut” algorithm [22]. The solution of
the p-Median problem finds out not only the cluster
assignments, but also the geometric medians as cluster
representatives.
p-Median must not be confused with approaches

like k-Means [14], k-Medoids [23] and k-Medians [24],
which represent heuristic algorithms for approximating
the above mentioned objective function. While k-Means
computes a cluster representative (centroid) as mean vec-
tor of all points belonging to a cluster, k-Medoids and
k-Medians select respectively k of the |�| data points as
medoids (whose average distance to all the objects in the
cluster is minimal) and medians (combination of multiple
instances). On the contrary, a branch-and-cut algorithm
on a p-Median formulation determines the set of p data
points that minimize the sum of weighted distances to
any points of the dataset and consequently finds out the
cluster assignment for each data point. The geometric
medians determined by solving the p-Median problem
do not coincide neither with the centroids, medians or
medoids (the only exceptions are for the 1-dimensional
case, where the geometric median coincides with the
median and when in k-Medoids the medoids are selected
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as median objects instead of computed as combination of
multiple instances). In our investigation, the solution of
the p-Median problem formulations are ensured to be the
global optimum, while the ones originated by the heuris-
tic approaches can correspond to local optimum among
all possible solutions.

Probabilistic D-Clustering
The assignment problem presented above assumes to cre-
ate K mutually exclusive clusters of cell lines, with similar
profiles of gene expression and drug response. The crisp
formulation can be relaxed by modelling probabilistic (or
soft) assignments (with cluster membership probabilities),
leading to a probabilistic p-Median named Probabilistic
D-Clustering [15].
The formulation reported in (6)-(10) can be therefore

approximated by the following minimization problem:

min Fp =
K∑

k=1

|�|∑
j=1

p2k (xi) d (xi, ck) (11)

s.t:

K∑
k=1

pik = 1 ∀i ∈ {1, 2, . . . , |�|} (12)

pik ≥ 0 ∀i ∈ {1, 2, . . . , |�|} ∀k ∈ {1, 2, . . . ,K}
(13)

where the decision variables ck and pk(xi) denote the clus-
ter centers ck and the probability of assigning the cell line
xi to the cluster ck respectively. Each cell line can be finally
assigned to the cluster center with the highest probability.
It can be easily noted that the formulation of Proba-

bilistic D-Clustering is a further generalization of the p-
Median (Fermat-Weber) problem, slightly different from
the ones presented in equation (6)-(10) but still belonging
to the combinatorial optimization. While for Traditional
p-Median the creation of K clusters is forced by the con-
straint (8), in Probabilistic D-Clustering the generation of
K clusters is driven by the objective function.
A natural working principle to solve (11)-(13) is to fix

one set of variables and minimize the objective function
with respect to the other set of variables, then fix the other
set and minimize again, until convergence is achieved. An
iterative method has been recently proposed to solve the
problem, leading to a generalized Weiszfeld method [25],
where centers and probabilities are sequentially updated.
The iterative method alternates between:

• Step 1: Probabilities Update. Given the
centers ck and the distance between each cell line xi

and ck , the probabilities that xi is assigned to the
cluster k can be estimated as:

pk (xi) =

∏
j �=k

d
(
xi, cj

)

K∑
l=1

∏
m �=l

d (xi, cm)

(14)

Given the clusters, their centers, and the distances of
data points from these centers, the probability of
cluster membership at any point is assumed inversely
proportional to the distance from (the center of) the
cluster.

• Step 2: Centers Update. Given the probabilities
pk(xi), the centers c+k can be updated according to
the current cluster distribution as:

c+k =

|�|∑
i=1

μk (xi) xi

|�|∑
j=1

μk
(
xj

) (15)

where

μk (xi) = pk
(
x2i

)
d (xi, ck)

(16)

The centers are updated as convex combinations of
these points, with weights determined by the working
principle.

The iterative process stops when the centers stabilize,
i.e. when

|K |∑
k=1

‖c+k − ck‖ < ε (17)

originating a clustering of cell lines in the space R
m+n.

The optimal clustering solution can be determined (see
ref. [15]) by verifying the optimality of centers and assign-
ments through the dual problem corresponding to the
primal reported in Eq. (11)-(13).

Consensus P-Median
The cluster analysis of the NCI60 dataset relates to a set
of objects (cell lines) that need to be grouped taking into
account multiple sources (gene expression profiles and
drug activity patters). Most of the multi-source cluster-
ing approaches follow one of the following paradigms:
(a) clustering each data source separately to then ad-hoc
integrate the separate clustering solutions [26,27] or (b)
combining all data sources to determine a single “joint”
clustering [28,29] as Traditional p-Median and Probabilis-
tic D-Clustering. The first kind of approaches is character-
ized by an independent analysis: while they take advantage
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of modeling source-specific features, they are not able to
capture inter-source associations. On the other side, the
second type of approaches is based on a joint analysis that
is able to exploit shared structure among data sources,
but disregarding the heterogeneity of the data and taking
no account important features that are specific to each
data source. More flexible methods allow for separate but
dependent source clusterings [30,31].
The characteristics of these more flexible approaches,

along with the remarks highlighted in Background
section, led us to define a Consensus p-Median formula-
tion based on two steps: the first is aimed at determining
groups of cell lines into the gene (or drug) space, whereas
the second one determines the clusters of cell lines into
the drug (or gene) space, while constraining the optimal
solution in order to take into account the assignment
of the first step. This approach aims at finding a trade-
off between gene expression and drug response profiles,
by defining a sequence of two integer linear program-
ming formulations. While the problem at the first step
can be formulated as a traditional p-Median (in one of
the two spaces, i.e. either gene or drug space), the sec-
ond step leads to the definition of the following Consensus
p-Median formulation:

min Fr =
|�|∑
i=1

|�|∑
j=1

zijd(1) (
xi, xj

)
(18)

s.t:
|�|∑
i=1

|�|∑
j=1

zijd(2) (
xi, xj

) ≤ μ ·
|�|∑
i=1

|�|∑
j=1

z∗ijd(2) (
xi, xj

)
(19)

|�|∑
j=1

zij = 1 ∀i ∈ {1, 2, . . . , |�|} (20)

|�|∑
i=1

zii = K (21)

zij − zjj ≤ 0 ∀i, j ∈ {1, 2, . . . , |�|} (22)

zij = {0, 1} ∀i, j ∈ {1, 2, . . . , |�|} (23)

where z∗ij denotes the solution of problem (6)-(9). This
problem formulation consists in assigning each cell line
xi to a given cluster according to a distance measure
computed in one space d(1)(for example the gene space).
The constraints denoted by equations (20)-(23) have the
same role as in the traditional p-Median formulation,
while equation (19) provides a constraint about the cluster
assignment by taking into account the cluster placement
occurred during the first step. In particular, this constraint

avoids the clustering solution of the Consensus p-Median
to diverge, according to a value μ and to the distance
measure d(2) �= d(1), from the solution found at the first
step. The parameter μ tunes the effect of the solution that

optimizes F, i.e.
|�|∑
i=1

|�|∑
j=1

z∗ijd
(2)
ij . The parameter μ ranges

between the lower bound μ = 1.0 and an upper bound
μ∗. μ = 1 implies that the solution of the Consensus
p-Median will generate the same assignment as the tradi-
tional p-Median solved at the first step. Increasing values
of μ cause a decreasing effect of optimal assignment z∗ij
coming from the first phase (μ can be updated incremen-
tally until the convergence criterion is satisfied, i.e. the
solution of the Consensus p-Median doesn’t change for
increasing values of μ). Note that for μ < 1.0 no feasible
solution exists.

Algorithm 1 Iterative Consensus p-Median
1: μ ← 1.0
2: F ← p-Median on �G (or �D)
3: F∗(μ) ← p-Median on �D (or �G)
4: repeat
5: μold ← μ

6: μ ← μ + 0.1
7: F∗(μold) ← F∗(μ)

8: F∗(μ) ← p-Median on �D (or �G)
9: until F∗(μ) = F∗(μold)

The pseudo-code reported in Algorithm 1 summa-
rizes the iterative process for solving the Consensus p-
Median until the value of μ∗ is found, i.e. until constraint
(19) becomes redundant. For the sake of simplicity, we
will denote with Consensus p-Median (g-d) the approach
where at step 2 the set �G is used and at steps 3 and 8
the set �D is exploited. On the other hand, we will denote
with Consensus p-Median (d-g) the approach where �D is
exploited at step 2, while at step 3 and 8 the set�G is used.

Feature selection
The clusters that can be generated by the above men-
tioned approaches represent sets of cell lines that show
a similar response to anti-cancer therapy also taking
into account genomic information. This enables a feature
selection activity that allows us to to identify the subset of
genes that could possibly regulate the cell response behav-
ior. To compactly characterize the obtained clusters, we
attempt to select a subset of genes that best represents the
cell lines membership. In order to validate the hypothesis
that the obtained groups of cell lines embed useful infor-
mation for helping the pharmacology of cancer, we applied
two feature selection techniques known as Information
Gain and Correlation-based Feature Subset Evaluation.
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Information gain
In order to determine the most relevant genes that char-
acterize a cluster and therefore that can be responsible
of drug response for the cell lines belonging to that clus-
ter, a feature selection based on Information Gain has
been applied. Information Gain measures the decrease in
entropy when the feature is given vs absent. According
to this measure a “good” feature can contribute, indepen-
dently of any other feature, to reduce the uncertainty of
each clusters given the attribute values. Formally, given a
cluster attribute C representing the obtained clusters and
a gene attribute A, denoting the expression level of a given
gene, the Information Gain (IG) is computed as follows:

IG(C,A) = H(C) − H(C|A) (24)

where

H(C) =
K∑

k=1
P(ck) logP

(
1
ck

)
(25)

H(C|A) =
K∑

k=1

T∑
t=1

P (ck , at) log
P (at)

P (ck , at)
(26)

We can therefore consider equation (26) as a measure of
dependency between the density of variable at (gene) and
the distribution of the target ck (cluster).To compute the
entropy in equation (26), the T nominal expression values
need to be represented as discrete quantities. In order to
discretize genes as up-, down- and normo- regulated, a
double filtering approach has been applied.
In order to discretize genes as up-, down- and normo-

regulated, a double filtering approach has been applied.
In particular, genes that are differentially expressed have
been identified by applying FDR corrected p-value test
[32], with the requirement that the rate of false signif-
icant genes should not exceed 5% with a confidence of
99%. Once non-significant genes have been identified,
a mean difference cut-off (on the log fold changes) has
been applied to discriminate between up- and down-
regulated genes among the significant ones. The mean
difference cut-off β corresponds to the minimum abso-
lute value of expression such that a gene is not considered
as non-significant. With FDR corrected p-value, the mean
difference cut-off corresponds once more to β = 0.86
(both Sherf and Liu datasets show a cut-off β = 0.86).
According to the double filtering approach, genes with
a fold change > +0.86 are considered as up-regulated,
while genes with a fold change < −0.86 are considered
as down-regulated. Gene expression values into the inter-
val [−0.86, 0.86] are identified as normo-regulated. The

discretization threshold can be easily grasped by looking
at the volcano plot reported in Figure 1.
Once genes have been discretized, the value of IG(C,A)

for each attribute can be computed allowing genes to be
ranked accordinglyb. The top 10 genes have been selected
as the most representative to train the predictive model
described subsequently.

Correlation-based feature subset evaluation
An alternative feature selection method, able to evaluate
the contribution of each gene, is the Correlation-based
Feature Subset Evaluation (CFS). This approach assumes
that good feature subsets contain features highly corre-
lated with the cluster attribute, while yet uncorrelated
with each other. The selection algorithm, which takes as
input the genes discretized according to the FDR cor-
rected p-value test introduced above, is a heuristic that
evaluates the merit of a subset of features, taking into
account the usefulness of individual features for predict-
ing the class label (cluster assignment) along with the level
of intercorrelation among them. The merit of a subset S
composed of g features can be estimated as:

Merit(S) = grbf√
g(g + g − 1)rff

(27)

where rbf is the mean feature-cluster correlation, and rff is
the average feature-feature intercorrelation. The numer-
ator can be viewed as an indication of how predictive of
the cluster a set of features are, while the denominator of
howmuch redundancy there is among the featuresb. More
details about CFS can be found in [17].

Prediction
The results obtained in the previous steps allow us to
train a predictive model able to infer, for a new cancer
patient, the multiple drug responses by using his/her gene
expression profile of selected genes. One way of deriv-
ing a predictive model is to estimate a joint distribution
for the set Q of features that characterize the dataset.
The joint distribution for a sample xi ∈ �, where xi ={
x1i , x2i , .., x

|Q|
i

}
, can estimated over the feature space as:

P (xi) = P
(
x1i , x2i , .., x

|Q|
i

)
(28)

A complete joint probability distribution over a set
of random variables must specify a probability value
for each of the possible set instantiation. For example,
if we consider to specify an arbitrary joint distribution
P

(
X1,X2, ..,X|Q|) for |Q| dichotomous variables, a table

with 2|Q| entries is required. This complexity makes an
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Figure 1 Volcano plot. Volcano plot of log2 fold-change (x-axis) versus −log10 FDR-corrected p-value (y-axis, representing the probability that the
gene is differentially expressed). Genes with log fold change above −log2(0.86) = 0.2175 are up-regulated, while genes with log-fold change
below log2(0.86) = −0.2175 are considered as down regulated.

infeasible probability model for any domain of realis-
tic size. A possible solution that tries to overcome this
problem is represented by Bayesian Networks [18]. The
key component, that reduces the probability model com-
plexity, is the assumption that each variable is directly
influenced by only few others.
This assumption is captured graphically by the depen-

dency structure: a probability distribution is encoded
by a directed acyclic graph whose nodes represent ran-
dom variables and edges denote direct dependencies.
Formally, a Bayesian Network asserts that each node
(random variable) is conditional independent of its non-
descendants given its parents. This conditionally inde-
pendence assumption allows us to represent concisely the
joint probability distribution over the random variables.
If we consider a distribution over |Q| features, which

can be arbitrarily ordered as X1,X2, ..,X|Q|, it can
be decomposed as the product of |Q| conditional
distributions:

P
(
x1i , x2i , .., x

|Q|
i

)
=

∏
s
P

(
xsi |x1i , .., xs−1

i

)
(29)

Instead of specifying the probability of Xs conditional
on all possible realizations of its predecessors X1, ..,Xs−1,
we can consider only its set of parents Pa (Xs). More
precisely, a set of variables Pa (Xs) is defined as the
Markovian parents of Xs if Pa (Xs) is a minimal set of pre-
decessors ofXs that makesXs independent on all the other
predecessors.

The joint probability distribution can therefore defined
as:

P
(
x1i , .., xmi

) =
∏
s
P

(
xsi |Pa

(
xsi

))
(30)

where P
(
xsi |Pa

(
xsi

))
is described by a conditional proba-

bility distribution (CPD). These local conditional distribu-
tions correspond to the set θ of parameters.
Figure 2 shows the dependency structure of BN used for

the prediction task. We could gain an insight of how the
expression pattern of genes influences the activity level of
drugs through the cluster assignment. This structure of
BN has been defined to train a probabilistic model able to
simultaneously predict the drug responses of a new cell

Figure 2 NCI60 Bayesian network. The upper part of the network
comprises the top ten genes selected either by the IG or CFS feature
selection, the central node corresponds the the cluster variable and
the bottom nodes correspond to the drug responses to be predicted.
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line, only by providing its (selection of) gene expression
profilec.
The upper part of the network, which comprises 10

nodes, represents the most relevant genes selected by the
policies described in the previous sections. The central
part of the network, which is composed of only one vari-
able, denotes the cluster obtained by solving the clustering
problems. The bottom part, which comprises n = 1400
nodes, represents the drug responses to be predicted.
These last variables have been discretized in order to
train discrete CPDs and consequently a fully discrete BN.
In particular, following the discretization introduced in
[33], cell lines with log10(GI50) at least 0.8 SDs above the
mean were defined as resistant to the compound, whereas
those with log10(GI50) at least 0.8 Standard Deviations
below the mean were defined as sensitive. Cell lines with
log10(GI50) within 0.8 Standard Deviations of the mean
were considered to be intermediate. The remaining cell
lines within 0.8 Standard Deviations were defined as
intermediate. After this discretization process, the CPDs
related to the dependency structure of the BN can be eas-
ily estimated, to then simultaneously predict the response
of n drugs given the expression value of the 10 relevant
genes.

Results and discussion
In order to evaluate the quality of the proposed frame-
work, a three-fold analysis has been performed. In our
experimental investigation we consider K = 9 clusters to
be obtained, which respects the number of tumor types
considered by the NCI60 panel. In order to avoid over-
fitting and to report unbiased experiments, each step
of the proposed framework (clustering, feature selection,
discretization and prediction) has been enclosed in a

leave-one-out cross validation. For seek of clarity, the
leave-one-out procedure works as follows:

• a cell line xi is removed from the training set �

• clustering, feature selection, discretization and BN
training are performed on the set {� \ xi}

• the removed cell line xi is then used as test for
prediction in BN

Results reported in the following are therefore averaged
over the leave-one-out folds. The first analysis is con-
cerned with the average Pearson Correlation Coefficient
for estimating how homogeneous the clusters are. Given
the obtained K clusters, the Pearson Correlation Coeffi-
cient R is computed as follows:

R =
K∑

k=1

nk
|�|

⎡
⎣ 2
nk (nk − 1)

∑
i<j

corr
(
xi, xj

)
zikzjk

⎤
⎦ (31)

where nk is the cardinality of cluster k. More specifically,
the coefficient R has been computed with respect both
to the gene and to the drug space, originating then two
correlation coefficients: RG is computed considering the
correlation between instances represented by their gene
expression profiles, while RD is estimated considering the
correlation between instances represented by their drug
response profiles.
We also report the correlation indices of some baseline

clustering approaches previously investigated for mining
theNCI60 dataset: k-Means [14], Soft Topographic Vector
Quantization (SVTQ) [9] and Relational k-Means [11].
In Figures 3 and 4, a comparison in terms of correla-

tion (averaged on the leave-one-out folds) between the

Figure 3 Correlation indices for the Sherf dataset. The y and x-coordinates denote the average Pearson correlation in the drug and gene space
respectively. The correlation indices for all the reported series have been averaged over the leave-one-out cross validation folds. Each point of the
series for Consensus p-Median corresponds to a solution obtained according to the parameter μ, while the series for STVQ reports values for
α = {0, 0.1, 0.2, · · · , 1.0}.
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Figure 4 Correlation Indices for the Liu dataset. The y and x-coordinates denote the average Pearson correlation in the drug and gene (miRNA)
space respectively. The correlation indices for all the reported series have been averaged over the leave-one-out cross validation folds. Each point of
the series of Consensus p-Median corresponds to a solution obtained according to the parameter μ, while the series for STVQ reports values for
α = {0, 0.1, 0.2, · · · , 1.0}.

Table 1 Confidence interval (at the 95%) level of the clustering solutions on the Sherf dataset

Gene correlation Drug correlation
̂RG Confidence± ̂RD Confidence±

μ = 1.1 0.4777 0.0015 0.8553 0.0007

μ = 1.2 0.5073 0.0014 0.8595 0.0010

μ = 1.3 0.5200 0.0015 0.8522 0.0009

μ = 1.4 0.5265 0.0012 0.8497 0.0006

Consensus p-Median (d-g) μ = 1.5 0.5373 0.0008 0.8401 0.0005

μ = 1.6 0.5401 0.0013 0.8357 0.0010

μ = 1.7 0.5449 0.0008 0.8349 0.0006

μ = 1.8 0.5464 0.0011 0.8334 0.0007

μ = 1.1 0.5054 0.0010 0.8613 0.0008

μ = 1.2 0.4586 0.0009 0.8604 0.0006

Consensus p-Median (g-d) μ = 1.3 0.4232 0.0016 0.8566 0.0014

μ = 1.4 0.3735 0.0012 0.8366 0.0008

μ = 1.5 0.3689 0.0011 0.8363 0.0007

α = 0.0 0.5450 0.0037 0.8200 0.0035

α = 0.1 0.5300 0.0031 0.8213 0.0030

α = 0.2 0.5110 0.0034 0.8217 0.0019

α = 0.3 0.4960 0.0045 0.8265 0.0033

α = 0.4 0.4800 0.0039 0.8289 0.0042

STVQ α = 0.5 0.4770 0.0058 0.8301 0.0028

α = 0.6 0.4536 0.0051 0.8303 0.0031

α = 0.7 0.4298 0.0031 0.8304 0.0039

α = 0.8 0.4022 0.0029 0.8306 0.0033

α = 0.9 0.3713 0.0046 0.8309 0.0027

α = 1.0 0.3598 0.0028 0.8310 0.0029

p-Median − 0.4596 0.0015 0.8366 0.0008

k-Means − 0.4770 0.0058 0.8301 0.0028

Relational k-Means − 0.4983 0.0023 0.8240 0.0012

Probabilistic D-Clustering − 0.4122 0.0236 0.7916 0.0160

Pareto points have been marked as bold.
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Figure 5 Comparison of BNs accuracy on Sherf dataset. The BNs have been trained according to the selection of genes by means of IG policy.

investigated clustering approaches is depicted reporting
the traditional p-Median, Probabilistic D-Clustering,
k-Means, SVTQ, Relational k-Means and the proposed
Consensus p-Median. For the Consensus p-Median two
series are reported, i.e. Consensus p-Median (g-d) and
Consensus p-Median (d-g).
Each point of the series for the Consensus p-Median

corresponds to a solution obtained according to the
parameter μ. The ordinate axis represents the correlation
coefficients in the drug space (RD values), while the abscis-
sae axis the correlation in the gene space (RG values).
An interesting remark is related to the average correla-

tion indices of the proposed approach. All the solutions
provided by the Consensus p-Median show a slightly
better (averaged) Pearson Coefficient than the others.
This implies that our approach leads to clusters that
are more homogeneous both in terms of gene expres-
sion and drug activity than the clusters obtained by the
other approaches. This is highlighted by the fact that most
of the solutions determined by the Consensus p-Median
dominate the ones generated by the other approaches.

The most promising “competitor” is Relational k-Means,
which leads to almost homogeneous cluster configura-
tion. In order to validate the significance of the results,
confidence intervals have been estimated on the cluster-
ing solutions. Confidence intervals provide a range about
the observed “effect size”, allowing us to understand how
likely the generated solutions are: the smaller the confi-
dence interval, the more certain we are about the solution.
In our specific case, the confidence intervals have been
computed as follows. First, for each run l of the leave-one-
out, the Pearson Correlation Coefficients Rl (specifically
RG
l and RD

l ) have been estimated. Then, the mean and the
confidence interval have been estimated over the leave-
one-out results.
In Table 1 confidence intervals are reported for the

investigated clustering approaches on the Sherf dataset.
We can easily note that the leave-one-out cross valida-
tion procedure provides a small effect size for most of
the approaches both for correlations in the gene and
drug space. We can state therefore that, with a confi-
dence level of 95%, that the results are robust, enabling an

Figure 6 Comparison of BNs accuracy on Sherf dataset. The BNs have been trained according to the selection of genes by means of CFS policy.
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Figure 7 Comparison of BNs accuracy on Liu dataset. The BNs have been trained according to the selection of genes by means of IG policy.

easy identification of optimal solutions as Pareto points
(marked as bold). Similar results have been obtained on
the Liu dataset.
Concerning the computational complexity related to

p-Median problems, it is well known that they belong
to the NP-Hard complexity class. However, some recent
meta-heuristcs allow to solve the p-Median problems
in O

(|�|2) making these kind of approaches compet-
itive in respect of others. While a p-Median can be
solved in O

(|�|2), approaches like k-Means, Relational
k-Means and STVQ have a computational complexity of
O (|�|IKQ) (where Q is related to the time spent on com-
puting vector distances during the iterative procedure, I
denotes the fixed number of iterations and K the clusters
to be obtained). Considering that in our case Q 
 |�|
because Q depends on the vector dimension R

m+n, it
follows that a p-Median approach is more efficient than
others.

A further validation is targeted at the correctness of
Bayesian Networks to predict the drug responses. In par-
ticular, we have measured the prediction accuracy of BNs
trained with the top relevant genes characterizing the
groups of cell lines derived by the mentioned clustering
approaches. We have also reported the accuracy of a triv-
ial classifier as baseline, where the prediction of a drug
response is performed according to its majority class on
the training data. In Figures 5, 6, 7 and 8 the compari-
son in terms of accuracy, i.e. percentage of drug response
correctly predicted, between the investigated approaches
is shown. The BNs are trained according to the (top ten)
genes selected by the Information Gain and Correlation-
based Subset Evaluation policies. In particular, consider-
ing that the experimental investigation is performed by
means of a leave-one-out cross validation, the relevant
genes to be used for training BNs have been selected as the
most frequent over the top ten genes selected for each fold

Figure 8 Comparison of BNs accuracy on Liu dataset. The BNs have been trained according to the selection of genes by means of CFS policy.
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of the cross validation. Specifically, given the L = 60 solu-
tions obtained by performing a leave-one-out (for each
given clustering approach), a voting mechanism has been
applied. Each gene received a vote if, in a given run of
the leave-one-out, it appears in the top ten list of rele-
vant genes. Once the votes have been collected, the 10
genes with the highest number of votes are selected as
the most important and therefore used to train the BN. It
can be easily noted that all the solutions generated by the
proposed approach outperform the ones obtained by the
other methods. Concerning the Sherf dataset (Figures 5
and 6), the BNs trained according to the Consensus
p-Median are able to ensure an average prediction accu-
racy of 85.63% with IG and 84.98% CFS selection policies,
outperforming the accuracy of Probabilistic D-Clustering
(81.8% with IG and 83.1% with CFS), p-Median (82.9%

with IG and 83.33% with CFS), STVQ (83.1% with IG and
82.6% with CFS), k-Means (83.2% with IG and 82.8 with
CFS), Relational k-Means (84.0% with IG and 84.2 with
CFS) and the trivial classifier (80.5%).
Confidence intervals reported in Table 2 show not only

the ability of IG selection policy to obtain small variabil-
ity in the expected predictions, but also the correspon-
dence between Pareto points and the most promising (in
terms of average accuracy) Bayesian Networks (analogous
results have been obtained on Liu dataset). This corre-
spondence allows us to assert that the proposed Consen-
sus p-Median is able to create groups of homogeneous cell
lines taking into account two different data source and,
as consequence, to derive a prediction model that outper-
forms the others. A similar result is obtained on the Liu
dataset (Figures 7 and 8), where the proposed approach

Table 2 Confidence interval (at the 95%) level of the BN predictions (accuracy) on the Sherf dataset

IG CFS

Average Confidence± Average Confidence±
μ = 1.1 85.05 0.50 84.49 0.59

μ = 1.2 85.24 0.53 84.56 0.60

μ = 1.3 85.44 0.55 84.70 0.57

μ = 1.4 85.21 0.57 84.78 0.56

Consensus p-Median (d-g) μ = 1.5 85.39 0.59 84.75 0.64

μ = 1.6 85.63 0.53 84.98 0.60

μ = 1.7 85.32 0.54 84.82 0.59

μ = 1.8 85.31 0.55 84.88 0.56

μ = 1.1 85.30 0.52 84.79 0.60

μ = 1.2 85.00 0.44 84.71 0.55

Consensus p-Median (g-d) μ = 1.3 84.75 0.48 84.29 0.69

μ = 1.4 84.55 0.55 84.43 0.63

μ = 1.5 84.20 0.52 83.88 0.60

α = 0.0 82.10 0.47 81.10 0.49

α = 0.1 82.30 0.49 81.40 0.54

α = 0.2 82.50 0.53 81.70 0.56

α = 0.3 82.70 0.51 82.00 0.59

α = 0.4 82.90 0.55 82.30 0.60

STVQ α = 0.5 83.10 0.55 82.60 0.61

α = 0.6 83.00 0.58 82.40 0.61

α = 0.7 82.90 0.49 82.20 0.53

α = 0.8 82.80 0.45 82.00 0.50

α = 0.9 82.70 0.42 81.80 0.52

α = 1.0 82.60 0.41 81.60 0.51

p-Median − 82.90 0.49 83.34 0.61

k-Means − 83.10 0.59 82.80 0.65

Relational k-Means − 84.00 0.56 84.10 0.60

Probabilistic D-Clustering − 81.80 1.00 83.10 0.77

Predictions corresponding to Pareto points have been marked as bold.
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achieves more accurate predictions with respect to the
other ones.
Considering that the ultimate goal of this paper is the

prediction of anticancer drug responses, we have also
compared the BNs trained according to the Consensus p-
Medianwith some traditional supervisedmethods. In par-
ticular, our approach has been compared with Naive Bayes
(NB) [34], Decision Tree (DT) [35], 1-Nearest Neighbor
(1-NN) [36] and Linear Support Vector Machines (SVM)
[37] classifiers. Each model has been trained to predict
one drug at a time by using all the available genes. Also
for these classifiers a leave-one-out validation has been
performed. For the Sherf Dataset, our approach obtained
the highest performance with 85.63% of accuracy, against
the ones of DT (81.00%), 1-NN (82.00%), NB (82.51%)
and SVM (83.01%). Concerning the Liu dataset, similar
results have been obtained. In particular, the proposed
approach is able to achieve an accuracy of 84.22% com-
pared with DT (80.00%), 1-NN (78.16%), NB (82.00%) and
SVM (79.11%). A summary of the accuracy confidence
intervals, both for Sherf and Liu datasets, is depicted in
Figure 9. We can easily point out that the models based
on RNA (Sherf dataset) are able to achieve higher average
accuracy, with smaller confidence intervals, than themod-
els based on microRNA (Liu dataset). A more interesting
remark relates to the comparison of the considered mod-
els. Figure 9 confirms that the proposed approach, based
on Consensus pMedian, guarantees not only the highest

average prediction accuracy of drug response, but also a
non-overlapping confidence interval. It’s also interesting
to note that the performance of all the trained models
have a small gap with respect to the trivial classifier, high-
lighting that (as similarly demonstrated in [38]) a relatively
small number of drugs can be actually predicted better
than the trivial baseline.
The last evaluation has been performed from a biologi-

cal point of view in order to highlight the functional role
of the most informative genes characterizing each cluster.
Indeed, since clusters represent sets of cell lines that show
a similar response to anti-cancer therapies also taking into
account genomic information, the feature selection activ-
ity should be able to identify the subset of genes that could
possibly regulate the cells response behaviour. In order
to validate this hypothesis we searched for the biological
functions associated to the selected genes by accessing the
Entrez Gene Database ([39]), which is a NCBI’s (National
Center for Biotechnology Information) database for gene-
specific information ([40]). In Tables 3 and 4 we report the
10 genes that have been used to train the best Bayesian
Network for the Sherf dataset, that correspond to the con-
figuration obtained by the Consensus p-Median (d-g) with
μ = 1.6 both for IG and CFS. Column one reports the
official gene name on Entrez Gene, column two contains
a description of the main biological processes in which
the gene is involved, and finally column three reports a
description - extracted from the literature - of the role of

Figure 9 Comparison of confidence intervals on prediction accuracy. Results for Sherf and Liu dataset are reported (red and blue series
respectively). Accuracy of traditional classifiers, i.e. DT, 1-NN, NB and SVM, are based on train/infer one drug at a time by using all the available genes.
Results corresponding to the clustering approaches are concerned with BNs trained according to the clustering output and the IG feature selection
policy.
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Table 3 Gene Selection (IG) based on Consensus p-Median on the Sherf dataset

Gene name Biological process Role (referred literature)

SPARC Regulation of cell proliferation;
signal transduction

SPARC is a secreted protein, acidic and rich in cysteines. It is a matrix associated
protein that elicits changes in cell shape, inhibits cell cycle progression, and influences
the synthesis of extracellular matrix. Clinical evidence indicates that SPARC expression
correlates with tumor progression [42]. The gene product has been associated with
tumor suppression but has also been correlated with metastasis based on changes
to cell shape which can promote tumor cell invasion [43].

MAP1B Microtubule bundle formation;
negative regulation of
intracellular transport

MAP1B interacts with a wide variety of proteins, there is growing consideration that
MAP1B plays a crucial role in cytoskeleton stability and may also have a role in
other cellular functions as well [44]. DAPK-1 promotes autophagy by binding to the
microtubule-associated protein MAP1B, which is an LC3 interactor with
anti-autophagic functions [45].

DNAJA3 Apoptosis; cell death; negative
regulation of cell proliferation

It is an important cell death regulator and could exert tumor suppressor activity [46].
The results establish DNAJA3 as a novel regulator of p53-mediated apoptosis, and
suggest that therapies designed to enhance DNAJA3’s function in promoting
mitochondrial localization of p53 and apoptosis could be an effective therapy inmany
cancers [47].

SGK1 Apoptosis SGK1 is a downstream target of cell survival and that it is primarily regulated at the
level of transcription [48,49].

ELF3 Inflammatory response; Transcriptional inhibition of ELF3 could be a one of the mechanisms of colonic
carcinogenesis [50].

CDKN2A Cell cycle arrest; cell cycle
checkpoint; negative
regulation of cell growth;
negative regulation of cell
proliferation

CDKN2A is an important tumor suppressor gene and is specifically required for
p53 activation under oncogenic stress [51]. Suppression of CDKN2A, a cell-cycle
regulator, occurs in essentially all common human cancers [52]. Inactivating these
tumor suppressors directly promotes tumorigenesis due to lack of control over
cellular processes [53].

SPINT2 Cellular component
movement

SPINT2 play important roles in controlling the aggressive nature and spread of cancer,
displaying a unique therapeutic potential [54].

GJA1 Apoptosis GJA1 is involved in several kinds of tumor, as breast, lung, prostate and ovarian [55,56]
and [57].

AKT3 Signal transduction AKT signaling pathway is activated in human cancers and consequences for
molecularly targeted therapies. AKT isoformmay play a positive or negative role in cell
migration and invasion. AKT is also involved in regulation of tumor angiogenesis [58].

EpCAM Positive regulation of cell
proliferation

EpCAM has oncogenic potential and is activated by release of its intracellular domain,
which can signal into the cell nucleus by engagement of elements of the wnt
pathway [59]. Regulated intramembrane proteolysis activates EpCAM as a mitogenic
signal transducer in vitro and in vivo [60].

The reported genes refer to the outperforming BN (85.63% of accuracy) trained according to the solution generated by the Consensus p-Median (d-g) with μ = 1.6.

the gene with respect to cancer mechanisms. Concern-
ing IG selection policy on the Sherf dataset (Table 3), it’s
interesting to highlight that most of the selected genes
are recognized in the literature as biologically relevant.
It’s also interesting to underline that some of the selected
genes have been identified as relevant in previous investi-
gations [7,11]: SPARC, SGK1, DNAJA3, ELF-3 and GJA1.
A remarkable evidence is provided by genes CDKN2A and
DNAJA3 as tumor suppressors, genes SPARC and GJA1
as tumor marker and finally SGK1 as prognostic marker.
In particular SPARC, considered relevant in this study as
well as in [7] and [11], has a reputation for being a potent
anti-cancer. It has been shown to be involved in cell cycle,
cell invasion, adhesion, migration, angiogenesis and apop-
tosis both in vitro and in vivo (see [41] for an overview of
the multifunctional role of SPARC in cancer). Regarding
CFS selection policy on the Sherf dataset (Table 4), we can

note that some of the selected genes can be considered
marginal from an oncological point of view, while others
are shared with the ones obtained by applying IG (SPARC,
DNAJA3 and AKT3).
Concerning the Liu dataset, the analysis of the selected

relevant miRNAs can be only preliminary. Although miR-
NAs represent a recently discovered class of non-coding
RNAs that play a fundamental role in the regulation of
gene expression, most of their functions still remain to be
discovered. For this reason, we can only report the genes
whose mRNA can interact with the considered miRNA
(see Table 5). The listed genes have been selected by
accessing the data available at “microRNA.org - Targets
and Expression” ([68]), which is a freely available open-
source software able to provide microRNA target predic-
tions [69]. In order to provide a preliminary evaluation of
the selected miRNA, we can point out their involvement
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Table 4 Gene selection (CFS) based on consensus p-Median on the Sherf dataset

Gene name Biological process Role (referred literature)

POLR2F Protein kinase activity; DNA binding POLR2F exhibited elevated levels in carcinomas compared to normal tissue samples
suggesting a possible role for these molecules in colorectal cancer [61].

SPARC Regulation of cell proliferation; signal
transduction

SPARC is a secreted protein, acidic and rich in cysteines. It is a matrix associated
protein that elicits changes in cell shape, inhibits cell cycle progression, and influences
the synthesis of extracellular matrix. Clinical evidence indicates that SPARC expression
correlates with tumor progression [42]. The gene product has been associated with
tumor suppression but has also been correlated with metastasis based on changes
to cell shape which can promote tumor cell invasion [43].

DNAJA3 Apoptosis; cell death; negative regulation of
cell proliferation

It is an important cell death regulator and could exert tumor suppressor activity [46].
The results establish DNAJA3 as a novel regulator of p53-mediated apoptosis, and
suggest that therapies designed to enhance DNAJA3’s function in promoting
mitochondrial localization of p53 and apoptosis could be an effective therapy inmany
cancers [47].

PTN Regulation of cell proliferation and division PTN is an angiogenic factor and has been found to be constitutively expressed in
many human tumors of different cell types [62].

AIF-1 Regulation of muscle cell proliferation AIF-1 can promote the growth of breast tumors via activating NF-kappaB
signaling [63].

STMN4 Regulation of microtubule polymerization or
depolymerization

-

PSAP Lipid BINDING PSAP is involved in prostate cancer invasion [64] and inhibits tumor metastasis via
paracrine and endocrine stimulation of stromal p53 and Tsp-1 [65].

AKT3 Signal transduction AKT signaling pathway is activated in human cancers and consequences for
molecularly targeted therapies. AKT isoformmay play a positive or negative role in cell
migration and invasion. AKT is also involved in regulation of tumor angiogenesis [58].

FBXO7 Cell death; protein binding -

P4HA2 L-ascorbic acid binding Overexpression of PRDX4 and P4HA2 was significantly associated with lymphatic
metastasis in oral cavity squamous cell carcinoma [66]. P4HA2 was upregulated in
breast tumor cells compared with its adjacent normal tissues [67].

The reported genes refer to the outperforming BN (84.98% of accuracy) trained according to the solution generated by the Consensus p-Median (d-g) with μ = 1.6.

Table 5 miRNA Selection (IG and CFS) based on Consensus
p-Median on the Liu dataset

IG CFS

miRNA Target gene miRNA Target gene

hsa-miR-200a AP3S1 hsa-miR-196b HOXA7

hsa-miR-429 ZEB2 hsa-miR-18b OTX2

hsa-miR-200b ZEB2 hsa-miR-142–5p SGPP1

hsa-miR-200c ZEB2 hsa-miR-100 TMPRSS13

hsa-miR-141 AP3S1 hsa-miR-106a DYNC1LI2

hsa-miR-196b HOXA7 hsa-miR-145 FAM108C1

hsa-miR-18b OTX2 hsa-miR-17* HMGA2

hsa-miR-100 TMPRSS13 hsa-miR-376c PAX4

hsa-miR-365 ZNF680 hsa-miR-211 ACSM2A

hsa-miR-494 ARID4B hsa-miR-503 MYH10

The reported miRNAs refer to the outperforming BNs (84.22% of accuracy
with IG and 84.12% with CFS): for IG the optimal BN is denoted by Consensus
p-Median (g-d) with μ = 1.6, while for CFS the optimal BN is obtained by means
of Consensus p-Median (d-g) with μ = 2.1. miRNAs belonging the “microRNA in
cancer” pathway are marked as bold.

in the “microRNA in cancer” pathway (from KEGG
source record hsa05206). As highlighted in Table 5, some
miRNAs belong to the above mentioned pathway:
hsa-miR-200a, hsa-miR-200b, hsa-miR-200c, hsa-miR-
141, hsa-miR-100 and hsa-miR-494 identified by the
IG selection, and hsa-miR-145 and hsa-miR-17* deter-
mined by the CFS policy. We highlight that (as for
Sherf dataset) some miRNA are shared between the
two selection policies (hsa-miR-196b, hsa-miR-18b and
hsa-miR-100).
In order to analyze the computational time of the entire

framework, a comparison over the considered datasets
has been reported in Tables 6 and 7. The execution
time (in terms of seconds) has been reported for the
three phases, i.e. clustering, feature selection and predic-
tion. Concerning the clustering phase, it can be noted in
Tables 6(a) and 7(a) that the most efficient approach is
traditional p-Median, followed by the proposed Consen-
sus p-Median (the proposed approach has to solve two
p-Median problems instead of only only one). Tables 6(b)
and 7(b) report the computational effort required by the
feature selection policies (IG and CFS) and training and
inference phases needed for prediction with BNs. The
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Table 6 Efficiency comparison (in terms of seconds) of
the entire framework on Sherf dataset

(a) Clustering

Clustering Execution time

Consensus p-Median (d-g) 0.504

Consensus p-Median (g-d) 0.425

STVQ 0.693

p-Median 0.250

k-Means 0.533

Relational k-Means 0.966

Probabilistic D-Clustering 0.590

(b) Feature selection and prediction

Feature selection Execution time

IG 0.27

CFS 3980

Prediction Execution time

Training 9.68

Inference 110.227

selection strategy based on CFS is clearly computationally
intensive because it requires the search of the sub-optimal
set of features that could compactly represent the clus-
ters. On the contrary, IG is more efficient thanks to its
ability to evaluate each feature (gene) independently on
the others. Considering BNs, the training step requires a
quite limited computational effort because only Condi-
tional Probability Tables need to be estimated (the depen-
dency structure is fixed a priori). The time required by the

Table 7 Efficiency comparison (in terms of seconds) of
the entire framework on Liu Dataset

(a) Clustering

Clustering Execution time

Consensus p-Median (d-g) 0.398

Consensus p-Median (g-d) 0.381

STVQ 0.473

p-Median 0.215

k-Means 0.446

Relational k-Means 0.687

Probabilistic D-Clustering 0.482

(b) Feature selection and prediction

Feature selection Execution time

IG 0.130

CFS 1321

Prediction Execution time

Training 0.604

Inference 4.791

inference step is mainly influenced by the number of drugs
that are simultaneously predicted, i.e. more therapeutic
compounds are considered and more time is necessary
to estimate their posterior probability of being sensitive,
resistant and intermediate.
As final remark, considering both qualitative and quan-

titative results, we can assert that Consensus p-Median
together with Information Gain and Bayesian Network
represent an optimal trade-off between efficacy and effi-
ciency to simultaneously predict (in silico) anticancer
responses.

Conclusion
In this paper the problem of identifying a suitable pro-
file of cancer patients by linking gene expressions, drug
responses and types of cancer has been addressed. A
learning framework based on three building blocks has
been proposed. The experimental results highlight three
main findings: (1) the proposed Consensus p-Median is
able to create groups of cell lines that are highly corre-
lated both in terms of gene expression and drug response;
(2) from a biological point of view, the gene selection per-
formed on these clusters allows the identification of genes
that are strongly involved in several cancer processes; (3)
the prediction of drug responses, by using the patient pro-
file obtained through clustering and gene selection, rep-
resents a promising step for predicting potentially useful
drugs. Concerning the ongoing research, several issues are
still to be investigated. Among them the next future work
will be focused to the identification of a suitable number
of clusters and the use of more “selective” discretiza-
tion policies. As far is concerned with the methodological
approach, an interesting comparison relates with those
approaches, belonging to the multiple tasks learning, able
to simultaneously predict the drug responses given a (sub-
set) of gene expressions. Instances of future investigations
areMarginal Regression [70] and Support VectorMachine
[71] ForMultitask Learning. A further development of the
proposed investigation relates to the exploitation of addi-
tional data sources, such as proteomic expression profiles,
to better predict the drug response in tumour cells.

Availability of supporting data
The data sets supporting the results of this article are
included within the article (and its additional files).

Endnotes
aThe solutions of the p-Median problems have been

determined by using the CPLEX commercial solver.
bFor the feature selection process, the WEKA

environment [72] has been exploited [73].
c For training and inference of Bayesian Networks, the

BNTMatlab toolbox has been used. The toolbox is
available for download at [74].
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