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Abstract

Physical Internet based supply chains create open, global logistics systems that enable new types of collaboration
among participants. The open system allows the logistical examination of vehicle technology innovations such as the
platooning concept. This article explores the multiple platoon collaboration. For the reconfiguration of two platoons a
heuristic and a reinforcement learning (RL) based models have been developed. To our knowledge, this work is the
first attempt to apply an RL-based decision model to solve the problem of controlling platoon cooperation. Vehicle
exchange between platoons is provided by a virtual hub. Depending on the various input parameters, the efficiency of
the model was examined through numerical examples in terms of the target function based on the transportation cost.
Models using platoon reconfiguration are also compared to the cases where no vehicle exchange is implemented. We
have found that a reinforcement learning based model provides a more efficient solution for high incoming vehicle

numbers and low dispatch interval, although for low vehicle numbers heuristics model performs better.
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1 Introduction

In recent years, achieving sustainable operations has been
a major driving force both in logistics and also in the
automotive industry. From the future concepts of logis-
tics systems one of the most outstanding ideas is the
Physical Internet (PI), which was conceived by Montreuil
[1]. The idea debunks the regular methods and practices
of transport, warehousing and material handling. The PI
establishes a completely new structure for the operation
and logistics networks. Similarly to the flow of informa-
tion based on the Digital Internet data packet, goods flow
through the network in a specially designed container
(7 container), which has all the features needed for sus-
tainability and efficient operation. The concept is based
on network-level collaboration to create an "open global
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logistics system". Because of the novelty of the Physi-
cal Internet concept, a breakthrough is yet to come, but
the most innovative companies are already testing the
model and pilot projects have been implemented, such as
MonarchFx, Carrycut or CRCServices [2].

In addition to the development of the logistics area,
significant innovations have emerged in the automotive
industry as well. The real revolution in freight transport
is the concept of platooning, originally proposed by Cali-
fornia Partners for Advanced Transportation Technology
(PATH) [3]. Platooning represents a set of vehicles on
the road in which the distance between the neighboring
vehicles are significantly smaller than human drivers can
maintain without risk [4]. The short distance is achieved
through continuous communication via V2V communi-
cation. As a result of the short distance between trucks,
we can increase total road efficiency [5] and improve the
aerodynamics of all trucks, thereby reducing fuel con-
sumption citePatten, Alam. Conceptually, a platoon con-
sists of a leader (first in the line) and one or more follower
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(all others in the line) vehicles [6]. Once the vehicles are
connected, the driver must sit in the first vehicle while
all other vehicles follow autonomously the leader’s activ-
ity and speed. The great interest in the concept is due to
its large potential for reducing transport costs by reducing
fuel consumption. According to past data, 95% of acci-
dents are caused by people [7]. At the social level increas-
ing safety through driving automation is important [8].
Finally, the concept reduces congestion and traffic jams,
increases freeway utilization, while reducing greenhouse
gas emissions and air pollution [6].

Janssen et al. (2015) investigated the possible effects
of platooning on the heavy-duty vehicles (HDVs) sup-
ply chain processes [9]. The benefits will be greater if
they can cooperate with other suppliers, even competitors
[6].The Physical Internet concept for the logistics network
provides the environment for an efficient platooning sys-
tem. In an open global supply chain a common platform
and language is provided for seamless communication
between the HDVs [10].

The future logistics challenges are sustainability, low
emissions and resource efficiency. In our opinion, from
the logistical point of view, the most important task is the
optimal operation of the system’s components. For this,
it is particularly important to define the exact operating
model [11].

This article is about formulating a new model for better
utilization of our existing resources, taking into account
vehicle technology trends and the application of new prin-
ciples based on the Physical Internet. The rest of this arti-
cle is structured as follows. Section 2 discusses relevant
literature studies. Sections 3.1 and 3.2 details the applica-
bility and limitations of the proposed model. The purpose
during optimization is to minimize fuel costs, waiting
costs and labour costs. Section 3.3 describes the heuris-
tic model and the reinforcement learning based model for
controlling platoon reconfiguration. Section 4 presents a
numerical example comparing the basic platoon model
to the heuristic and the reinforcement learning method.
Section 4 also discusses the main results of the model’s
analyses. Section 5 summarizes the results and points out
future research.

2 Literaturereview

Based on the statistics of recent years, carbon dioxide
emissions continue to rise. Reducing this is considered to
be one of the most difficult challenges of the economy,
given the continuing demand for road freight transport
[12]. Last year, the European Commission adopted an
EU standard for CO2 emissions from heavy-duty vehicles
which says that by 2025 average CO2 emissions should
be 15% lower [13]. To achieve sustainability, resource effi-
ciency and low emissions, the platooning concept has
recently gained increasing interest, mainly in terms of
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technical, safety and autonomous management [6]. Some
projects implement and demonstrate these aspects, for
example PATH, SARTRE, CHAUFFEUR or KONVOI
[14].

Applying the platoon concept will change the supply
chain network, leading to system-wide innovation. The
study of The European Truck Platooning Challenge 2016
confirmed that creating, managing and optimizing pla-
toons is a major challenge [9, 15]. To exploit the bene-
fits of the platooning system innovative decision models
are needed. In addition to methodological improvements,
they also help to quantify the benefits [16].

To take advantage of the platooning concept, it may
be advisable to deviate slightly or more from the optimal
route between the starting point and the destination. In
addition to solving the detour problem, the decision sup-
port model operation is further complicated by the lead-
follower decision situation of the platoon concept [14].
Van De Hoef et al. (2015) examined the case of two vehi-
cles with fixed paths intersecting each other. By setting
the correct speed, the two vehicles reach the designated
intersection at the same time [17].

The model developed by Wei Zhang et al. (2017) pro-
vides useful insights into the effect of travel time uncer-
tainty. In their article it had been shown that if the sched-
uled arrival times of the vehicles are different, the goals of
saving fuel and arriving on time were conflicting [18]. A
similar issue of energy-delay trade-off has been analyzed
in [19]. The authors presented an algorithm that high-
lights the negatives of the platoon concept. Even though
vehicles that are in a platoon can reduce energy consump-
tion and emissions, the accumulated waiting time for the
interconnection can greatly increase the delay [19].

The hub-based network offers an opportunity to explore
the platooning concept from other aspects. In this case,
the vehicles spend their entire path between the two hubs.
Rune Larsen et al. in their article extended the model by
[20] by introducing two different methods. In the case of
fixed hubs and vehicles with fixed paths, coordination of
platooning creation has been optimized, as illustrated in
Fig. 1. A virtual hub centre and a collaborative platoon-
ing system was assumed. In their model, they assumed
full cooperation between participants, regardless of man-
ufacturer or supplier. The importance of collaboration is
highlighted by [21], who demonstrated by analysis that it
is hard to effectively create platoon groups when a signif-
icant number of trucks are unable to connect or because
of physical limitations, e.g. the maximum length of the
platoon is low or there are strict time windows for ship-
ments [21]. The estimated profit is about 4-5% of the
fuel or about 38 €per trip for long-distance trucks. In a
competitive market this profit can be a key issue [22].

Saad Alshiddi et al. presented the possibility of con-
necting two different platoons. In the first case, one of
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Fig. 1 Platooning hub [22]
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the platoons will check at the moment of departure to
determine if there is any existing platoon with the same
destination that you want to join. The connection is possi-
ble if the maximum number of vehicles and the maximum
waiting time are not exceeded. In the other case, both
platoons are on their way and are searching with GPS pos-
sible platoons with the same destination to which they
could connect [23].

We can see that several papers address the issue of
platoon organization and all studies acknowledge that pla-
toon planning problems are difficult to solve. Most studies
focus on the platoon created by the collaboration of differ-
ent companies. Fewer studies can be found on the design
of collaborations between several platoons launched from
different locations. In our opinion, one of the interesting
directions of future research is to examine the cooperation
of several platoons. There is a lack of research to define
the problems generated by collaboration and to compare
different solution approaches. Another interesting direc-
tion could be to examine the effect of various constraints
and parameters on operation.

In this article we would like to further increase the ben-
efits of platooning in a Physical Internet based logistics
network. According to the concept outlined in [22], the
platoons in the examined system travel only between hub
centres. To take advantage of the connection we aim to
create a model in which platoons can reconfigure them-
selves. The platoons are launched between hubs at fixed

intervals. The selected platoons will come across at a
virtual hub point where the platoons can change their
vehicles based on their destination. The model aims to
reduce the fuel cost, labour cost and cost of the waiting
time defined by the objective function.

3 Methods

In this paper, we create a new theoretical model to
better exploit the benefits of a platoon system. In the
study the environment is Physical Internet based. We
assume that all HDVs interact and communicate with
each other and the hubs are open and accessible to all
PI users. The presented model extends the transporta-
tion model outlined in the article [24]. As stated in the
article [24], the objective is to optimize the shipping
tasks performed by platoons between predefined hubs.
This requires a virtual hub to provide a common meet-
ing point for the selected platoon. Beyond determining
the location of the virtual hub, we also examine the
methodology for selecting the platoons and vehicles to
be paired.

The block diagram of the model is shown in Fig. 2. The
figure shows the required inputs and the outputs. The
diagram shows the two methodologies used to solve the
platoon cooperation: the heuristic-based algorithm and
the reinforcement learning-based algorithm. Furthermore
the figure represents the assumptions, such as the capacity
limit for the platoons.
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Fig. 2 Theoretical model. Theoretical model for virtual transfer point optimization in Physical Internet network (based on [24])

The inputs, outputs, limiting conditions, the target
function of the model and the solution methodologies are
detailed in the following subsections.

3.1 Limitations and inputs

Similarly to the article written by [22], any restrictions
that may result from technological sources and legisla-
tion will be removed. In addition, our simulation does not
handle taxes and tolls. From a network point of view, the
assumptions can be very restrictive but are relieved in this
article. Based on the Physical Internet system, the network
is completely interconnected and the flow of information
between all participants is ensured. There are no restric-
tions on the virtual hub, so there is no cost for establishing
and there is no capacity limit. The simulation does not
take into account the capacity of the vehicle, since the
basic object in the simulation is the vehicle itself, not the
products to be transported by the vehicle. In the devel-
oped simulation each platoon can consist of a maximum
of 10 vehicles [25]. From fixed hub centres platoons are
created at fixed intervals. Launch frequency is an impor-
tant variable for strategy which we will test across a range
of values.

The first input of the simulation is the departure and
destination coordinates. These stations do not change
during the simulation. The simulation generates the
incoming vehicles and the associated basic parameters.
This information is the departure and destination of the
vehicle and the time and distribution of its arrival in the
system. As mentioned, the platoons are launched at fixed
time intervals. The simulation does not include travel
uncertainty.

3.2 Problem formulation

In this article, we included the minimization of fuel con-
sumption costs among the goals of the method. Fuel
consumption depends primarily on the traveled distance.
The fuel consumption of HDV has decreased significantly
in recent years. From 41.91/100km, measured in 2002, the
consumption was reduced to 35.61/100 km [26]. Delgado
et al. tested various vehicles under three types of load
in urban, regional and long-distance transport. Among
the values they examined, the average load consump-
tion of HDV was 36.41/100km for regional transport and
33.11/100 km for long-distance transport [12]. Based on
the publications presented, our model assumes a fuel con-
sumption of 351/100km and will use a fuel price of 1.2€/1
by[22] article. One of the strongest economic benefits of
the platooning concept is that vehicles can save fuel. Fuel
savings from platooning have been investigated in numer-
ous projects. Pilot studies show that fuel consumption
can be reduced by up to 15% [27]. In the article written
by Lammert et al. based on the presented model their
result was 5.3% saving on the leading vehicle. In the case
of vehicles following a significant fuel saving of 9.7% was
measured [28]. In this article, we assume a 10% savings on
the following vehicles, while the leader vehicle does not
count on any fuel savings.

When creating a platoon, vehicles are forced to com-
promise to gain common benefits. Such a trade-off is, for
example, the cost of waiting time when the two vehicles
do not arrive at the target virtual hub at the same time.
Sokolov et al. investigated the effect of waiting time on the
benefits of the platooning concept and they have found
that the waiting cost was 27.17€/hour [29]. Larsen et al.
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calculated with a 35euro/hour waiting cost, the salary of
the most expensive drivers [22]. In Zhank Wei’s article the
cost of waiting is divided into two types of charges: the
penalty for the early arrival of the vehicle is 0.0093€/sec
and for delay is 0.0466€/sec [30]. Based on these, our
article assumes a 35€/hour waiting cost.

In this paper, each platoon’s leading vehicle also has
a driver, while the following vehicles are autonomous.
The concept justifies taking into account the labour cost
generated by drivers, which is 0.73€/km based on [31, 32].

We consider the problem in the setting that a set of
homogeneous vehicles {1, 2, ..., V} enter the system with
the same priority. Each vehicle is assigned transport tasks
that define departure and destination. There is no time
window set to the vehicles, so there are no costs asso-
ciated with delays or earlier arrivals. It is assumed that
the vehicles move at the same and constant speed in the
network.

Using the generic notations compiled in Table 1, the
total cost for the model consists of the following objective
function (1) , which is further explained in (2) - (5).The
restrictions are in (6) - (9).

Table 1 Mathematical notation

Parameter Description

i Set of input nodes

j Set of outputs

% Set of leading vehicles of platoons

w Set of vehicles
Set of platoons

Vi The amount of trucks arriving at i starting
nodes during the entire time horizon

M Maximum number of truck in each platoon

P Set of platoons

s(i,)) Distance traveled by the vehicle between
points (i)

tin Arrival time of truck v;

Laisp Dispatched time of truck v; at input nodes

thub Waiting time of vehicle v; at the virtual hub

Cw The cost of waiting an hour

- Driver labour cost per kilometer

cr Unit cost of fuel

B Platoon follower indicator

n The amount of fuel cost reduction

Variable Description

Xvp Is equal to 1 if and only if truck v € V'is
assigned to platoon p € P

Xv,wp Is equal to 1 if and only if truck w € V follow

truck v € Vin platoonp € P
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The total cost to be minimized consists of three com-
ponents: fuel cost, waiting cost and labour cost. All three
kinds of costs are modeled as linear functions. Based on
the equations detailed below, we summarize the three
components converted into monetary units (EUR). The
total cost can be expressed as:

C(O) = (£ (0) + C(0) + Cp(0) 1)

where C(©) represents the fuel cost, C¢(®) is the cost
of the waiting, and C,(®) represents the driver labour cost
of the platoon leader and © represents a set of decision
variables, for example pairing choice.

Fuel cost is calculated using the equation defined in [30]
on the traversed edge (i,j):

Cr= D ¢, )1+ B(n — 1) (2)
Z

= 1 if the vehicle is a platoon follower 3)

“ | 0 if the vehicle is a platoon leader

From Eq. 2, the fuel cost is the product of the fuel unit
cost (cr) and the distance (s(i, j)) travelled by the vehicle
between points (i, j), given that the vehicle is a leader or
follower in the platoon. The s(i, j) depends on the rout-
ing. Platoon cooperation defines the distance that vehicles
have to travel. If one platoon is to cooperate with another
platoon, the vehicles must take a detour to touch the meet-
ing point, which is a virtual hub. The resulting product
is calculated for each vehicle over an 8-h time horizon
and then summed to give the total fuel cost. According to
Eq. 3, if B = 0 the vehicle is a leader of the platoon and for
B =1 the vehicle is the follower. In addition, the parameter
0 < n < 1 determines the amount of fuel cost reduc-
tion. Assuming a 10% savings based on literature research,
we use n = 0.9. This means that if the vehicle is a leader,
it does not mean any savings for it to drive as a platoon,
whereas in the case of a follower vehicle, we can expect a
10% reduction in fuel.

As mentioned in the previous paragraph, the time hori-
zon represented in the simulation is 8 h. It starts from
the zero minute and lasts until the 480 min. The vehicle
could wait in two locations. First at the starting station,
as the simulation dispatched the platoons at fixed inter-
vals. To achieve synchronization at the virtual hub, one
platoon can wait for the other, generating a waiting time
in the system. The second vehicle waits at the virtual hub,
where one platoon can wait for the other platoon due to
the different paths of the two platoons. The vehicles arrive
at the departure stations at different times. Until they are
launched, they wait at the starting station within the time
horizon. Based on these, the waiting time is calculated as
follows:
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Co =) ((taisp — tin) + thup)cw (4)
Vi
The waiting time cost for each vehicle is calculated by
multiplying the waiting time per unit cost of waiting time.
The (Z4isp — tin) subtraction represents the time spent at
the starting node while the second part ¢y, represents the
time spent at the virtual hub.
The driver labour cost of the platoon leader is calculated
as follows:

Cop = cps(i, (1 + B) (5)
%

We can determine the number of platoons launched
within the 8-h time horizon examined. For each platoon,
a predetermined vehicle is the leading vehicle of the pla-
toon, which is represented by the f parameter shown
above. If the vehicle is a platoon leader, the labour cost is
the product of the distance travelled and the driver labour
cost per kilometer.

va,p =1 (6)

peP
xvp €{0;1} YveV,peP (7)
Xowp € {0;1} Yv,weV,peP (8)
D %p<M VpeP )
veV

Constraint conditions are also linear functions of vari-
ables. Equation (6) ensures a truck is allocated to exactly
one platoon. Equations (7) and (8) restrict the domain of
the decision variables. Equation (9) restricts the size of
platoons to be less or equal to M.

The goal is to find the best possible platoon pairing
so that the resulting transportation tasks minimize the
total cost defined in the objective function (1). A possible
solution for pairing using the heuristic-based algorithm is
shown in 3.3.1 section. Then, to minimize the objective
function, we present a RL algorithm in 3.3.2 chapter.

3.3 Solution methodology

In recent years, both professionals and academics have
devoted a great deal of attention to study the supply chain
[33]. Although artificial intelligence (AI) seems to have
been promising in the development of human decision-
making processes since the 1970s, it has been used to a
limited extent in the supply chain [34]. Despite the chal-
lenges, ongoing research into Al is a promising area in the
supply chain [34]. Among the Al methodologies, the rein-
forcement learning (RL) technique is receiving increasing
attention. The widespread use of the RL methodology in
logistics dates back to 2002. Pontrandolfo et al. (2002)
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studied the problems of global supply chain management
using the RL technique [33]. Stockeim et al. (2002) used
the RL technique to solve a decentralized supply chain
problem, where he inserts the stochastic demands into the
production queue in search of an optimum [35]. Trans-
port is an important driver of the supply chain as products
are rarely manufactured and consumed in the same field.
Habib et al. (2016) explored the possibility of RL based
route optimization [36]. A key aspect of the methodology
is simulation which subserves the widespread application
of the methodology [33]. To the best of our knowledge,
there is currently no method for managing platoons in a
Physical Internet based logistics network that utilizes RL.
Therefore, to our knowledge, this work is the first attempt
to apply an RL-based decision model to solve the problem
of controlling platoon cooperation.

In the next subsections, two different solution method-
ologies are proposed. Both solutions are responsible for
selecting the nodes and vehicles for platoon pairing. The
first algorithm provides a heuristic based solution. The
second algorithm uses deep reinforcement learning to
minimize the objective function. This second algorithm
provides a much more general solution methodology that
can be applied to larger and more complex networks as
opposed to the first algorithm. This article does not pro-
vide mathematical guarantees for optimal or even locally
optimal solutions.

3.3.1 Algorithm - Heuristic

In the first solution, the goal is to provide a solution
for platoon collaboration. The algorithm is illustrated in
the flowchart shown in figure 3.The input values include
the coordinates defining the origins and destinations, as
well as the fixed time interval, which determines at which
intervals the platoons will dispatch. Finally, the arrival
time of the vehicles at the origins is also input data. The
first step of the algorithm is to calculate the sum of vehi-
cles per origin-destination pair at the set time intervals.
For example, after 30 min (if this is the set fixed time),
how many vehicles are waiting at "origin-1" whose trans-
portation task is to reach "destination-2". This creates a
table in which each row corresponds to the total num-
ber of vehicles in an origin-destination pair in descending
order. From this table, we select the first two rows, so
the origin-destination pair with the two largest vehicle
numbers, thereby defining the directions involved in the
collaboration.

The next step is to select the vehicles to be dispatched
from those waiting in the specified starting directions.
For that, we create a new table that includes the vehicles
whose transport task is the previously selected origin-
destination pair. For selection, we arranged these vehicles
in descending order according to the waiting time at the
starting station. Based on the table, we select the vehicles
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Input parameters:

nodes, fixed time interval, incoming trucks

A 4

Calculate the sum of vehicles per departure-
destination node pair at the set time intervals

4

Selection of the two node pairs with the
highest number of vehicles

4

Select vehicles from the previously selected
nodes that have been waiting the longest

Determining the location of the virtual hub

A
Define the platoon leaders and followers and
dispatch the selected vehicles to the
destination

NO

Simulation time horizon is over?

YES
A 4

Determine the value of the objective function

Fig. 3 Flowchart of a first algorithm - Heuristic

that have been waiting for the longest time, taking into  platoon can be dispatched from each origin at the same
account that there can be a maximum of 10 vehicles ina  time.

platoon during the entire transport based on the restric- For cooperating platoons, we need to determine the
tive condition. At the specified fixed intervals, only one location of the virtual hub needed for reconfiguration.
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The virtual hub will be the place where cooperating pla-
toons meet and vehicles can change platoon. Its location
is determined by the centre of gravity method. The two
origins and the two destinations define a rectangle. The
weight of the rectangle vertices is the number of vehicles
dispatching from the origins and arriving at the destina-
tions. From the non-selected origins, all waiting vehicles
(up to 10 vehicles due to the restrictive condition) form
a platoon from each direction, performing the transport
task without cooperation. This is called the basic model.
If the vehicles in the platoon have different destination
purposes, the platoon must reach each of them. The pla-
toon leader has to be a vehicle which destination is the last
destination the platoon visits.

The algorithm repeats these steps in each fixed time
interval until the simulation time horizon ends. At the
end of the simulation, the value of the objective func-
tion is determined. This algorithm provides a solution for
platoon collaboration but does not provide mathematical
guarantees for optimal solutions.

3.3.2 Algorithm - reinforcement learning

Nowadays, deep reinforcement learning enjoys high pop-
ularity due to the breakthroughs experienced in the last
decade. A series of papers have proven that combining
deep neural networks with reinforcement learning can be
trainable and beneficial [37, 38]. The goal of reinforce-
ment learning is to train an agent to behave optimally in
a given environment [39, 40]. Figure 4 shows the main
components of reinforcement learning from a high-level
perspective. The agent interacts with the environment by
actions. The agent can observe the state of the environ-
ment and the environment signals a reward to indicate the
quality of the action. In this paper, the agent represents
the dispatcher and makes decisions about the platoon col-
laboration of each vehicle. That is, based on the flowchart
showing the previous algorithm (see Fig. 3 ), the RL-based

ENVIRONMENT

Fig. 4 Reinforcement learning framework
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algorithm replaces the second and third steps of the figure.
In the other steps, the two algorithms are the same. The
environment is the collection of vehicles, starting points
and the destinations. The reward is the negative of the
total cost. This consists of the fuel cost, waiting time cost
and labour cost.

The state describes the environment in time. In this case
the state is represented as a 60 times 3 sized matrix. There
are 20, 20 and 20 vehicles for each destination. The first
column gives the time the vehicle waited so far at the ori-
gin. The source (or origin) is given by the second columns
(values can be 1, 2, 3) and the last column shows which
vehicle is chosen to depart in the current cycle. There-
fore the size of the state space (if we just look at column
2 and 3) is greater than 6% and this fact motivates the
usage of deep reinforcement learning. The agent’s action
changes the state of the environment according to its
dynamics which is stochastic in this case. Now, the action
is represented as an integer number from [0, 9). Each
number encodes a source-destination pair. The algorithm
chooses source-destination pair. Vehicles departing from
the source and heading to the destination of the chosen
pairs are not involved in platoon collaboration. They can
simply avoid the hub, see Fig. 5. In reinforcement learning,
the goal of the agent is to maximize the expected return.
The return is the accumulated reward during the whole
process. The following formula defines the return (G):

(10)

Where y is the discounting factor and its value can be
between 0 and 1, exclusively. The decision-making mecha-
nism of the agent is modeled with a function, the so-called
policy. This function is a mapping between the states and
actions. Then, reinforcement learning can be formalized
in the following way:

¥ = argmj?xEn[G] (11)

Where 7 is the policy. In order to find the optimal pol-
icy three main approaches were developed. Value-based
[41, 42], policy-based [43] and actor-critic methods [44].
In this paper we utilize the DQN algorithm [41]. This
algorithm is based on the action-value function (Q):

Q" (s,a) = E:[G(2)|so = s,a0 = a, 7] (12)
Where T means the trajectory, s stands for state and a for

action. The trajectory is the sequence of states, actions
and rewards in time. The action-value function shows the
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Fig. 5 The structure of the example network

value of each action in each state. Therefore, by knowing
the optimal Q-function, the policy can be derived as:

*(s) = arg max [Q*(s,a) I ] (13)

The representation of the Q-function tends to be chal-
lenging when the number of possible state and action pairs
are very high. This happens frequently and it is known as
the curse of dimension. This can be tackled with applying
neural networks to represent the Q-function. Our net-
work architecture contains two fully connected layers with

16 and 9 units. The first layer has Rectified Linear Unit
(ReLU) activation while the second has a linear one. The
reward function was formalized based on Section 3.2.

The training of the Q-network uses the following update
rule [41]:

upd

O =

d
o +a- (rt +y maxQ e (st41,4) = Qupa (st,ut))
a t O

aQ@upd (st,at)
deupd
(14)
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Where the ®7 is the weight of the frozen network
and ©*"4 s the network updated in each iteration. The
application of the two networks makes the training more
stable because the supervised signal (r; + y Q (H){rz) remains

similar for several training cycles. The frozen network
is the delayed version of the network with ®%% param-
eters. But the frozen network has to slowly follow up
the changes in the updated network before it becomes
outdated. Therefore the two networks (same architecture
but they differ in parameters) are synchronized accord-
ing to soft update, see Eq. 16. During training we uti-
lized a Boltzmann-sampling for choosing the next action,
see Eq. 16. Boltzmann-sampling chooses the next action
according to the action values. Therefore actions with
similar values are taken into account with similar prob-
abilities, providing the chance to decide which one is
really better. The Boltzmann-sampling ensures a balance
between exploration-exploitation and helps to discover
the environment at the very beginning and conclude in the
optimal policy at the end. The DQN algorithm uses sev-
eral hyper-parameters, for the summary see Table 2. We
found this parameters to perform best after an extensive
grid search and we experienced that the algorithm is quite
robust around these parameters.

e—Q(s,a’)r
(s, a) = ———— (15)
Za/ e—Qsa)T
®[Z:_)§en —(1- S)G{rozen + 8®tupduted (16)

We implemented a simulator for the environment which
is gym compatible [45]. The source code is available on
github [46]. The logic of selecting vehicles is the same as
the one used in the heuristics. For non-collaborative (non-
selected) directions, the simulator works the same as for a
heuristic-based model.

4 Results and discussion

The presented novel models for the reconfiguration of
the platoons are tested via a numerical example and this

Table 2 Hyper-parameters of the RL algorithm

Hyper-parameter name Value
Batch size 32
Discounting factor 0.99
Optimizer Adam
Learning-rate Se-4
Synchronization freq. (¢) 1e-2(16)
Experience replay mem. size 1000

Policy for exploration Boltzmann-sampl. (t = 1.0) eq. 15

Training length 10000
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section presents the simulation results. The numerical
example is illustrated by the simple supply chain shown in
the Fig. 5.

In the example, three departure stations and three des-
tinations were assumed. According to the map, the depar-
ture stations are Dortmund, Leipzig and Dresden, and the
destinations are Bremen, Hamburg and Berlin. The simu-
lation results are obtained using our simulator written by
Python. The calculation of distances between cities was
provided by the Python Geopy module. The results corre-
spond to the mathematical models presented in Section 3.
We consider the speed of every vehicle: v = 70km/h.
Vehicles are generated from a Gaussian distribution with
different parameters for every from-to pair. Table 3 shows
the parameters for the Gaussian distribution used for each
departure and arrival relation. The simulation was per-
formed for four different generated inputs which differ
in the mean value used for the Gaussian distribution.
The mean values for each run are shown in the last four
columns of Table 3.

The vehicles generated with four different parameters
were compared to the results of simulations based on
three different methods. These are the basic model, the
heuristic algorithm and the RL algorithm. In the case of
the basic model, the required destinations will be visited
in the order of Bremen - Hamburg - Berlin on a round trip.
The simulation model for heuristics and deep reinforce-
ment learning is implemented as outlined in Section 3. For
each of the four vehicle generations with different param-
eters, a simulation test was performed for a total of 11
different fixed review times: from a 15 min review time
to a 60 min review time using 5-min increments. We ran
the simulation 10 times for 480 min in each case, that is,
a combination of 11 different fixed time intervals and 4
generated sets of vehicles. Thus, a total of 440 simulations
were performed.

During the simulation runs we determined the total
cost of the run, which is presented in Section 3, and the

Table 3 Parameters for the Gaussian distribution

From To Deviation Mean-1 Mean-2 Mean-3 Mean-4
1 1 2min 2min 4min 8 min 16 min
1 2 4 min 3min. 6min 12min 24 min
1 3 1min 4min 8min  16min  32min
2 1 2min 5min. 10min 20min 40 min
2 2 5min ITmin 2min 4 min 8 min

2 3 3min 4min 8min  16min  32min
3 T 1Tmin 6min  12min 24 min 48 min
3 2 2min 4min 8min  16min 32 min
3 3 2min 3min  6min  12min 24 min

Average of the mean values (A) 3,56 min 7,11 min 14,22 min 28,44 min
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number of vehicles launched during the run. Because the
number of vehicles launched during different runs may
vary, the comparison was made based on the total cost per
vehicle. The cost per vehicle is the quotient of the total
cost and the number of vehicles.

As a first step in the analysis, a comparison was
made for vehicles with an average arrival time of
3.56 min (according to Table 3), using the results
obtained for all fixed intervals. Accordingly, we com-
pared the heuristic-based algorithm and the reinforce-
ment learning algorithm. The results are shown in
Fig. 6.

The results show in this case that reinforcement learn-
ing performs better than heuristics. On average, a lower
total cost can be achieved by using the reinforcement
learning method instead of the simple heuristics if vehi-
cles arrive frequently. We will examine this in more detail
below, such as how the results change with less frequent
arrivals.

Figure 7 shows simulation results for the three mod-
els (basic, heuristic, RL) with an average arrival time of
3.56 min which is a more detailed version of the previ-
ous Fig. 6. Figure 8 shows an average arrival time of 7.11
min. The graphs show the total cost per vehicle as a func-
tion of the different fixed time interval at which vehicles
in the system are dispatched according to the appropriate
method.

The two diagrams show that in these two cases the
RL-based methodology performs better than heuristics.
The basic model, when the platoons do not cooper-
ate with each other after a specified time interval, was
operating at a lower cost. With an average arrival time
of 3.56 min after a 25 min review time, and with an
average arrival time of 7.11 min after a time interval
of 40 min. This can be explained by the geographi-
cal location of the cities in the network used in the
example and the high number of vehicles grouped in a
platoon.

Figures 9 and 10 show, respectively, the results of the
three methods compared with an average arrival time of
14.22 for Fig. 9 and with an average arrival time of 28.44
for Fig. 10.

In the case of the diagrams in Figs. 9 and 10 the heuris-
tics method performs better, so in these two cases the
presented RL-based algorithm (unlike the results in the
Figs. 7 and 8) does not perform better. This is due to the
low number of vehicles and the high arrival time. Thus, if
vehicles arrive infrequently, few vehicles will flow in the
system, resulting in less data. Owing to the small num-
ber of vehicles, the RL algorithm did not sufficiently learn
how to operate the model. Learning cannot be improved
in this case since there is too little data available and the
time horizon is fixed. The basic model performs better
than pairing if you increase the fixed time interval and still
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have enough vehicles to reach the maximum platoon size
allowed.

Figure 11 illustrates the change in platoon size. The
figure shows the average vehicle number for the four dif-
ferent input data generated. By increasing the fixed time
interval at the departure, we can see that we can create
longer platoons. We reach the maximum platoon num-
ber sooner with the more vehicles we have available, so
the lower the average arrival time (1) of the generated
vehicles is.

Overall platoon cooperation is more profitable with
shorter time intervals and higher incoming vehicle num-
bers. If we can create platoons including 10 vehicles, the
basic model-based operation will result in lower costs.

Based on the foregoing, we believe that the proposed
method represents a suitable method for the coordination
of the platoons with a virtual hub in a PI based logistics
network. However, further research is needed to better
exploit the effectiveness of the presented methodology.
In the future, it would be advisable to explore the possi-
bility of combining methodologies and the improvements
that can be achieved with a larger and more complex
network.

5 Conclusion

In the logistics industry, there is a growing trend to reduce
carbon emissions, for which platoon is undoubtedly a
promising option for the future of freight transport. In
this paper, we propose a model that can be used for coop-
eration of platoons. The model can be adopted in the
Physical Internet concept, where communication between
platoons can be implemented in an open, global logis-
tics network. The concept enables examination of the
vehicle cost changes when platoons reconfigure them-
selves at a virtual hub by changing vehicles between
themselves. Cost includes fuel cost, waiting cost and
labour cost.

In the example we compared the basic (non-
cooperative) model with the heuristic-based and the
RL-based model. We see that the RL-based algorithm is
robust, easy to learn and can also deal with stochastic
processes using a small network architecture even with
a large input state space. We find that with frequent
platoon launches, the collaboration is worthwhile, and
the reinforcement learning-based model performs better
when a large number of vehicles enter the system. One of
the future research directions is to further investigate the
DQN algorithm performance over a longer period of time
and trying other RL algorithms as well. In the future, we
also want to extend the model to examine the interaction
of multiple nodes on a larger and more complex net-
work. Furthermore, we would also consider optimizing
the time interval that determines the platoons launch
frequency.
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