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Genistein protects against ultraviolet B–
induced wrinkling and photoinflammation
in in vitro and in vivo models
Sheau-Chung Tang1 , Yu-Ping Hsiao2,3* and Jiunn-Liang Ko2,4*

Abstract

Background: Chronic exposure to ultraviolet (UV) rays causes severe skin damage by inducing oxidative stress and
inflammation. Identifying a safe and natural substance for skin protection is a crucial research goal.

Objective: The aim of this study was to clarify the effects of genistein on skin inflammation and photoaging by
using 3 models (humans: skin parameters; animals: wrinkle formation; and cells: anti-inflammatory effects).

Methods: Food frequency questionnaire data and serum and skin parameter data from 120 volunteers (a group
with a genistein-rich diet [RG group] and a control group). Human keratinocytes were pretreated with genistein
before ultraviolet B (UVB) irradiation. Genistein was topically applied to the dorsal skin of rats.

Results: The blood samples of the RG group had lower serum uric acid levels and blood urea nitrogen levels. The
dynamic elasticity level in the RG group was higher than that in the controls. Genistein pretreatment suppressed
the expression of proinflammatory cytokines (CXCL1, IL-1, MIF, and PLANH1) and the proteins released by UVB-
treated keratinocytes. Topical application of genistein to the dorsal skin of rats reduced the severity of UVB-induced
wrinkling. Both intake and topical application of genistein combated UVB-induced inflammation and aging.

Conclusions: Genistein could be used as a safe and natural compound for use in novel anti-inflammatory agents
for topical application.
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Highlights:
� Genistein suppressed UVB-induced proinflammatory

cytokines (CXCL1, IL-1, MIF, and PLANH1) gene
and protein levels in skin cells.

� Genistein reduced the skin folds and wrinkles
induced by UVB in the animal model.

� Positive correlation between the RG diet and skin
hydration.

Background
UVB is a known common environmental carcinogen
that causes skin aging through the production of reactive
oxygen species (ROS) [1–3]. Latreille et al. revealed that
intake of polyunsaturated fatty acids, such as docosahex-
aenoic acid and eicosapentaenoic acid, had an inverse as-
sociation with UVB-induced photoaging [4]. Dietary
consumption of aloe sterols was reported to protect
mouse skin against chronic UVB damage [5]. These re-
sults indicate that foods can prevent skin aging.
The isoflavone genistein (5,7,40-trihydroxyisoflavone)

is abundant in vegetable protein sources, such as soy-
bean. Epidemiological and experimental studies have in-
dicated that genistein may prevent certain symptoms
and conditions, such as menopausal symptoms, skin
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cancer, heart disease, and melanoma [6–8]. Genistein
decreased serum alanine transaminase and aspartate
transaminase levels in a model of rat liver cancer [9].
Furthermore, it blocked apoptotic and necrotic pathways
by modulating the expression of proapoptotic genes and
proteins [10]. Evidently, genistein has multiple biological
functions.
Certain foods and beverages, such as green tea, fish

oil, and soybean, possess anti-inflammatory and antioxi-
dative properties, which can help prevent or alleviate
various conditions, such as hypertension, gout, and aller-
gies [11–13]. Intake of plant protein is a very healthy
way of eating. A diet rich in genistein (RG diet) protects
against lower-abdominal obesity, inflammation, and in-
sulin resistance [14]. However, whether genistein-rich
food additionally affects physical appearance or can pre-
vent skin disease is unknown.
No evidence is available on the anti-inflammatory and

antiphotoaging effects of long-term genistein supple-
mentation on UVB-treated human skin models. There-
fore, we hypothesized that exposure to genistein would
protect against UVB-induced wrinkle formation and
photoinflammation in in vitro and in vivo models. In
this study, we sought to understand (1) the differences
between the physiological activity of human skin in the
RG group and the control group, (2) the action of genis-
tein against cell inflammation caused by UVB light ex-
posure, and (3) how genistein can be applied to induce
antiwrinkle effects in animals. We administered the food
frequency questionnaire (FFQ) to 120 healthy volunteers
and analyzed their genistein intake data, serum, whole
blood, and urine samples. A cytokine array and animal
model were used to determine the mechanism of genis-
tein’s protective effects against UVB-induced
photoinflammation.

Results
Genistein reduces blood urea nitrogen level
The age range of the 120 participants was 54–56 years.
In the RG (n = 56) and control groups (n = 64), 68% and
56% of the participants were women, respectively. On
average, the participants in the RG group had a larger
waist than those in the control group, but age and body
mass index (BMI) did not differ significantly between
the 2 groups (Table 1). No significant intergroup differ-
ences were noted in terms of blood electrolytes, such as
iron, potassium, sodium, calcium, and chloride (Table
2).
The baseline characteristics of the 2 groups were de-

termined through blood biochemical tests, and a sex-
based division was applied (male: blue dots, female: red
dots) (Fig. 1). Compared with the control group, the RG
group exhibited lower serum uric acid levels (5.34 ± 1.13
mg/dL vs. 4.75 ± 1.21 mg/dL; p = 0.023)(Fig. 1D).

Moreover, triglyceride (TG) levels were significantly
higher in the RG group compared with the control
group (160.89 ± 50 mg/dL vs 114.84 ± 44.02 mg/dL; p =
0.014) (Fig. 1B). Other lipid metabolism–based parame-
ters, such as low-density lipoprotein (LDL) and high-
density lipoprotein (HDL) levels, were not significantly
different between the 2 groups (Fig. 1C). The total iron-
binding capacity and free iron concentration, which are
correlated with iron storage and transport, were also not
significantly different between the 2 groups (Fig. 1E).
These results indicate that most of the serum compo-
nents were evenly distributed, but the RG group exhib-
ited significantly higher TG levels and significantly lower
levels of blood urea nitrogen.

Genistein affects skin pH and pigmentation in vivo
To analyze the effect of genistein on human skin, differ-
ent methods were used to analyze the various skin pa-
rameters (moisture, elasticity, and pigmentation) of the 2
groups (Table 3). We observed no significant differences
between the 2 groups in terms of skin hydration, elasti-
city (skin extensibility), melanin, or the erythema index.
Skin pH levels were significantly higher in the RG group
than in the control group (5.51 ± 0.79 vs. 5.20 ± 0.67; p
= 0.05). We further explored whether sex was an influ-
encing factor. We grouped the individuals on the basis
of sex and genistein intake and then analyzed the

Table 1 Participants’ basic demographic characteristics

Groups Control (N = 64) RG(N = 56)

Mean age in years (± SD) 54.04(± 12.30) 56.35 (± 11.55)

Female 56% 67%

Average waist (inches) 29.3(23.2~37.8) 33.08(24.5~42.0)

BMI (± SD) 24.06 (± 3.75) 23.32(± 2.57)

Duration of RG (months) – 167.92 (± 102)

All participants had direct sunlight exposure of less than 1 hour per day. The
RG group had more than 4 servings/day of plant protein (the control group
had 3 or fewer servings). The FFQ categories are described in the
“Methods” section

Table 2 Participants’ blood biochemistry data

Groups Control (N = 64) RG (N = 56) P-value

TIBC 339.97 (± 47.63) 337.3(± 45.40) 0.69

Fe 88.16 (± 37.57) 78.17 (± 32.46) 0.20

K 4.30(± 0.35) 4.25 (± 0.39) 0.54

Na 141.5 (± 1.78) 141.38 (± 1.73) 0.77

Cl 105.07(± 1.98) 106.26(± 2.35) 0.06

Ca 2.26 (± 0.11) 2.22 (± 0.15) 0.18

The unit of total iron-binding capacity and Fe is μg/dL. The unit of K, Na, Cl,
and Ca levels is mmol/L. The RG group had more than 4 servings/day of plant
protein (the control group had 3 or fewer servings). The FFQ categories are
described in the “Methods” section. All values are represented as the mean ±
SD. All data were analyzed using SPSS 18.0. Statistical analysis was performed
using one-way ANOVA. A p value less than 0.05 was considered statistically
significant. *p < 0.05, **p < 0.01
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aforementioned skin parameters (Fig. 2A). In the RG
group, men had a significantly higher erythema index
than women (p = 0.04). Skin pH levels were higher
among the women than among the men in the RG
group. Conversely, skin pH levels were significantly
higher among the men than among the women in the
control group (p = 0.02).
To understand whether genistein intake had any effect

on the various skin parameters, advanced skin elasticity
measurement was used to analyze the skin after repeated
suction and release. Dynamic elasticity was higher in the
RG group than in the control group, and women had
significantly higher levels than men in the RG group
(Fig. 2B, p = 0.01). These results indicate that compared
with the RG group, the control group had lower skin pH
and a higher erythema index. In addition, the RG group,

Fig. 1 Biochemical characteristics of the blood samples of 120 participants. Volunteers were divided into the RG group and control (C) group. All
values are presented as mean ± standard deviation (SD). The parametric t test and nonparametric Mann–Whitney U test for independent samples
were used to compare groups. A p value of less than 0.05 was considered to indicate statistical significance. *p < 0.05, **p < 0.01. ALB: albumin;
BCG: bromocresol green method, GLO: globulin, TP: total protein, GLU-AC: glucose-AC, TCH: total cholesterol, HDL-C: high-density lipoprotein
cholesterol, LDL-C: low-density lipoprotein cholesterol, BUN (blood urea nitrogen). Red dots: female participants, green dots: male participants

Table 3 Participants’ skin parameters

Groups Control RG P-value

Melanin index 146.58 (± 37.11) 140.21(± 30.15) 0.40

Erythema index 157.68 (± 44) 147.86 (± 32.15) 0.26

Hydration 28.18 (± 6.27) 29.91 (± 6.14) 0.21

Elasticity 1752.2 (± 367.6) 2122.9 (± 1245.8) 0.40

pH 5.20 (± 0.67) 5.51 (± 0.79) 0.05*

The elasticity parameter indicates skin extensibility. Skin parameters were
assessed using the Corneometer CM580. The RG group had more than 4
servings/day of plant protein (the control group had 3 or fewer servings). The
FFQ categories are described in the “Methods” section. All values are
presented as the mean ± SD. Statistical analysis was performed using one-way
ANOVA. A p value less than 0.05 was considered statistically significant. *p <
0.05, **p < 0.01
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especially women in this group, had superior skin elasti-
city to the control group.

Genistein improves skin elasticity in vivo
We analyzed a single skin parameter to explore the ef-
fect of an RG diet on skin elastin. The R values represent
the results at the end of different measurement cycles
and are presented in Fig. 2C. Compared with the control
group, the RG group had more pronounced improve-
ments in R2 (p = 0.04), R4, R5, R7, and R9 values (p <

0.01). However, no significant differences were observed
in R1, R6, and R8 between the 2 groups. Overall, we re-
vealed that skin elasticity significantly improved in the
RG group.
A magnification device designed for observing human

skin was used to observe the texture of the skin and the
distance between the highest peak and lowest valley on
the skin’s surface. The gray level (GL) was obtained (Fig.
3 A and B) and used to determine skin smoothness,
roughness, and wrinkling. The abdomen and arm skin of

Fig. 2 Participants’ skin parameters. (A) Skin hydration was assessed using a corneometer. Basic values for erythema and melanin were measured
using a pigmentation probe (mexameter). A skin elastic meter was used to detect total skin elastic. All values are presented as mean ± SD.
Participants were divided into the RG group and control (C) group. Red box: female participants, green box: male participants. All data were
analyzed using SPSS version 18.0. A p value of less than 0.05 was considered to indicate statistical significance. *p < 0.05, **p < 0.01. (B) Advanced
skin elasticity assay. Skin was subjected to constant negative pressure of 350 mbar in the time–strain mode for 18 s followed by relaxation for 2 s.
(C) Elasticity parameters (R0–R9 and F0–F1) were calculated from the deformation curve and in accordance with the suction applied using the
Cutometer MPA580. Bars represent the mean ± SD. (N = 5; each test was performed at least 5 times). R1 indicates skin total deformation; R2, skin
gross elasticity; R3, skin amplitude; R4, last minute amplitude; R5, pure elasticity of the skin; R6, skin sagginess; R7, biological elasticity; R8, skin
pliability; and R9, skin tiring effect. The black column represents the control group, and the white column represents the RG group. *p < 0.05; **p
< 0.01, compared with other groups

Fig. 3 Skin textures and patterns. (A) Skin texture (arm and abdomen) and the distance between the highest peak and lowest valley. Skin
appearance (magnification: 20×) from magnification device designed for observing human skin. R: right side, L: left side. (B) The gray level. (C)
Quantitative parameters of the skin surface index [skin smoothness (Sesm), skin roughness (Ser), and wrinkles (Sew)] are shown underneath. The
scale range (0–240) represents the depth of the skin. The GL can be obtained from the output data
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the control group were thicker and had a denser popula-
tion of skin cells compared with those of the RG group
(arm: 162 ± 27 vs 138 ± 16, p = 0.053; abdomen: 145 ±
19 vs 124 ± 10, p = 0.06). The GL was obtained from de-
tector the output data, as illustrated in Fig. 3C. The re-
sults confirmed that an RG diet could affect skin
parameters; such a diet improved skin elasticity, reduced
pigmentation, and maintained weak acidity, which pro-
tects the skin.

Correlation between genistein intake and skin parameters
in vivo
To understand the correlation between skin parameters
and RG diet duration, we analyzed the RG diet duration
(in months), pigmentation (melanin and erythema), skin
hydration, and skin elasticity in the RG group and the
control group. No skin parameter (melanin index, ery-
thema index, or hydration) had a significant correlation
with RG diet duration (p = 0.932, 0.446, and 0.077, re-
spectively). When only the data of women in the RG
group were analyzed, a positive correlation was discov-
ered between skin hydration and RG diet duration (p =
0.044). Moreover, women in the RG group had compari-
son favorable skin hydration. The RG diet lasted 1
month, and the skin’s water retention was 0.014% higher
after this diet (β = 0.014 ± 0.006, p = 0.044; Table 4). In-
dividual analyses of the correlations between skin elasti-
city parameters and diet duration revealed that R5, R7,
and R9 had significant positive correlations with RG diet
duration. Using these results and the FFQ scores, we ob-
served that upon the intake of protein derived from soy-
bean, the participants had improved skin hydration. We
divided the RG group into 3 groups: those with high,

moderate, and low soybean intake (Table 5). The high-
intake group had the best skin hydration (7.28 vs. 1.12
[moderate] and 0.01 [low], p = 0.007). These data indi-
cate a positive correlation between RG diet duration,
soybean intake, and skin hydration.

Genistein reduces skin cell inflammation caused by UVB
irradiation in human keratinocytes
To demonstrate that genistein reduced the degree of
UVB-induced skin aging, human keratinocyte (HaCaT)
cells were pretreated with genistein and then exposed to
UVB irradiation. We confirmed the toxicity of genistein
for HaCaT cells by performing an MTT assay, in which
5 μM was the treatment concentration selected (Supple-
mentary Fig. 1). We analyzed the expression of proin-
flammatory cytokines by using a cytokine array;
genistein pretreatment reduced the amounts of proin-
flammatory cytokines (CXCL1, IL-1, and MIF) released
by UVB-treated keratinocytes (Fig. 4A). An analysis of
pixel density from the aforementioned array was con-
ducted, and of the analyzed proinflammatory cytokines,
MIF expression was the most significantly decreased by
genistein treatment (Fig. 4B, p = 0.015). To confirm the
results of this study, an enzyme-linked immunosorbent
assay (ELISA) was used to reveal the performance of ge-
nistein in suppressing cytokine release (Fig. 4 C). The
cytokine release results for IL-1 and MIF were consistent
with those from the cytokine array. The gene expression
levels of these cytokines were also analyzed using quanti-
tative polymerase chain reaction (PCR), and the same
trend was discovered (Fig. 4 D). The levels of cytokines
secreted in response to the UVB-irradiated culture
medium were higher than those observed in the control
medium. Similarly, genistein treatment released signifi-
cantly lowered the levels of CXCL1, IL-1, and MIF com-
pared with the UVB irradiation group (p < 0.05). These
results suggest that decreases in IL-1 and MIF cytokine
secretion were significantly genistein dependent.

Table 4 Relationship between skin parameters and time

Characteristics Time (months)

β SEM P-value

Melanin index − 0.003 0.034 0.932

Erythema index − 0.03 0.039 0.446

Hydration 0.011 0.006 0.077

Female 0.014 0.006 0.044*

Elasticity

R2 0.741 0.690 0.574

R5 0.532 0.015 0.046*

R7 0.221 0.030 0.022*

R8 0.101 0.012 0.032*

Samples were analyzed to determine the relationships between rich genistein
intake duration and skin parameters. Linear regression analysis was applied to
investigate the relationship between the continuous variables and
independent variable. A p value of less than 0.01 was considered statistically
significant and labeled **. β: as the duration of a diet rich in genistein diet
increased, changes were observed in this parameter. SEM, standard error of
the mean. The skin parameters (namely melanin, erythema, hydration, and
elasticity) were assessed using the Corneometer CM580

Table 5 Correlation between participants’ skin parameters and
the FFQ results

Skin
hydration

RG diet time (months)

Ave SD β SEM n P-value

Soybean product

Frequency uptake

1. High 34.13 7.22 7.28 2.61 16 0.007**

2. Moderate 27.97 5.56 1.12 2.31 55

3. Rare 26.85 2.12 0.01 7

FFQ categories are described in the “Methods” section. Subjects who ate more
than 4 servings/day were defined as having high intake; those who ate 2–3
servings/day were defined as having moderate intake; and those who ate
fewer than 2 servings/day were defined as having low intake. ANOVA (analysis
of variance) was used for statistical analysis. Ave, average, SD, standard
deviation, SEM, standard error of the mean, n, number. A p value less than
0.01 was considered statistically significant and labeled **
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Topical application of genistein for reducing photoaging
in an animal model
An animal model was used to determine whether the
topical application of genistein affected UVB-induced
skin aging. Two areas and duplicate areas on the dorsal
skin of the same rats were marked and treated with 0.1%
or 1% genistein. The genistein solution was applied to
the dorsal skin of the rat for 24 h; the skin of the rats
was then exposed to UVB light. The skin of the control
and genistein groups (0.1% and 1%) did not change;
however, the dorsal skin of the UVB-treated control
group had prominent folds and wrinkles (black arrow),
with tissue damage noted (Fig. 5).

Discussion
This study examined the effects of genistein on UVB-
induced skin aging and inflammation by using 3 models
(in vivo, cell, and animal models). Our results demon-
strated that genistein promoted skin hydration, de-
creased the amounts of UVB-induced proinflammatory

cytokines released, and reduced the severity of UVB-
induced wrinkles. We suggest that exposure to genistein
may be beneficial for preventing light-induced skin
aging.
In the cell model, among the 35 proinflammatory cy-

tokines induced by UVB irradiation (Fig. 4), genistein
significantly decreased the expression of CXCL1, IL-1,
and MIF (p < 0.05); among them, genistein had the most
significant inhibitory effect on MIF. MIF plays a critical
role in the pathogenesis of UVB-induced nonmelanoma
skin cancer [15]. MIF overexpression has been impli-
cated in chronic inflammatory diseases and malignancies
[16]. MIF deficiency significantly reduces acute inflam-
matory responses in the skin following UVB exposure
[17]. We demonstrated that genistein effectively inhib-
ited the expression of MIF. However, CXCL1, IL-1, and
MIF cytokines did not differ in the blood samples of the
two groups totaling 120 healthy participants. We specu-
late that MIF may be an indicator of skin cancer, mean-
ing that it does not appear in large quantities in the

Fig. 4 Effect of genistein on UVB-irradiated skin cells. (A) Cytokine array measurements were performed on cell culture supernatants harvested
from cultures pretreated with genistein (5 μM) for 24 h with or without UVB (50 mJ/cm2) irradiation. Each blot represents the immunoreactive
staining of respective antibodies. Staining is absent in the negative control and blank slots. R1, R2, and R3 were used to determine the accuracy
of the procedure. NG, negative control group. (B) Cytokine levels were quantified and analyzed using image analysis software. The relative
expression levels of cytokines were determined through a comparison of the pixel intensity of the respective blots relative to that of the positive
control in the same array. The parametric t test for independent samples was used to determine differences between groups. Values are
presented as the mean ± SD of 2 independent measurements. (C) Commercially available ELISA kits for analyzing the levels of CXCL1, IL-1, MIF,
IL-8, and PLANH1 were used in accordance with manufacturer instructions to quantify fold changes. Relative cytokine release is expressed as a
percentage compared with an untreated control. (D) The relative gene expression levels of cytokines were measured using Q-PCR. *p < 0.05; **p
< 0.01, compared with other groups. #p < 0.05 compared with the UVB group
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blood of healthy people. However, the skin cell line used
in this study was an immortalized model. Skin cell lines
were well modeled to observe the regulatory influence of
genistein on MIF. We suggest that genistein has poten-
tial use for skin cancer treatment.
Studies have shown that UVB irradiation causes skin

injuries and oxidative damage through various pathways,
such as the mitogen-activated protein kinase and nuclear
factor-kappa beta (NF-κB)/p65 pathways [18, 19]. We
also further proved that some proinflammatory cyto-
kines (IL-6, IL-8, MCP-1, and COX-2) were stimulated
by UVB irradiation through the NF-κB/p65 pathway in
keratinocytes and a mouse model [1]. However, those
cytokines were also analyzed in the cell model of the
present study and found to be unaffected by genistein
treatment. Therefore, we surmise that the effects of

genistein were not related to the NF-κB/p65 pathway.
Future experiments can explore the pathways through
which genistein inhibits MIF expression in UVB-
irradiated skin cells.
Through animal experiments (Fig. 4) and those involv-

ing human participants (Fig. 3), we confirmed that genis-
tein significantly reduced inflammation and the severity
of UVB-induced wrinkling. Genistein exhibits beneficial
effects against skin aging through the increased synthesis
of collagen and hyaluronic acid [20], the reduction of
MMP expression, and the stimulation of fibroblast pro-
liferation [21]. Collagen is synthesized primarily by fibro-
blasts residing within the dermis and is the cause of
skin’s strength and elasticity, which are closely related to
skin hydration and the formation of wrinkles. Our re-
sults demonstrated that genistein improved skin

Fig. 5 Animal model observations from the application of genistein. Male SD rats (3 to 4 weeks old) were divided into 4 groups (n = 6 per
group). The hair on the back of the rat was removed 2 to 3 days before the experiments. The back of each animal was marked with India ink,
and the marked area was divided into 4 squares (0.3 × 0.3 cm2 each); these squares were treated with 10 μL of each concentration (0.1% and
1%) of genistein solution in water, and one square was treated with water as a control area. The rats were pretreated with genistein once before
they were exposed to UVB radiation (50 mJ/cm2); subsequently, skin wrinkling was investigated (magnification: 10×)
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elasticity, reduced pigmentation, and maintained weak
skin acidity. We must clarify the mechanism of genis-
tein’s regulation of skin hydration through future
investigations.
Studies have indicated that genistein has estrogen-like

effects [22, 23] and has a higher affinity with estrogen re-
ceptors than other isoflavones have [24, 25]. Therefore,
genistein’s effects are usually more pronounced in
women. In our study, women had higher hydration and
elasticity levels as well as lower LDL levels than the
mean levels in the control and treatment groups (Fig. 1).
Sex and hormones may explain these findings. However,
the age range of the 120 participants was 54–56 years.
In the RG group, the proportion of menopausal women
was 44.7% (17 out of 38 women); in the control group,
the proportion was 45.7% (16 out of 35 women). This
result indicates that gender and menopausal status are
just one of many influencing factors. One study indi-
cated that treating postmenopausal skin with estrogen
achieved superior results when isoflavones were used
[22]. This result is not consistent with our results; more
female participants are required to confirm whether hor-
mones affect skin parameters.
Genistein has been tested in cosmetic antiaging prepa-

rations, and it has achieved notable results in terms of
skin elasticity improvement, antiphotoaging, and skin
cancer prevention. Cosmetic creams containing genistein
have been used to alleviate skin dryness and wrinkles
[26]. However, few studies have explored the effects of
long-term genistein application on the physiological con-
dition or pH of the skin. The RG diet duration (the time
required for a genistein-rich diet to improve health) in
the present study was long (average: 168 ± 102 months);
thus, our data can be used to observe the relationship
between genistein intake and duration. Our data demon-
strated that the skin pH levels of all participants were
within the normal range, although they were higher in
the RG group than in the control group. One study
demonstrated that women have lower skin pH than men
[27]. However, we posit that genistein intake can reduce
the quantity of acid deposits on the skin and higher the
skin’s pH. Animal protein is metabolized into lactic acid
and secreted by the skin and through sweat. A study in-
dicated that nutrient metabolism may affect the skin
through the microbiota [28]. Dietary intake of fiber and
polysaccharides can reduce the accumulation of acidic
substances through changes to probiotics in the gastro-
intestinal tract, reducing the severity of skin acne and
hair follicle inflammation [29]. Whether an RG diet reg-
ulates lactobacillus and then affects the skin’s pH is of
interest. Many studies assessing nutrients and skin in-
flammation have been performed using an atopic derma-
titis model [30, 31]. Few related studies have used
healthy human skin because many variables can affect

the results. In this study, we used various methods to
demonstrate that high genistein intake was beneficial in
both in vivo and in vitro models.

Conclusion
Genistein provided protection against UVB-induced in-
flammation. We demonstrated that an RG diet could
affect the skin condition of participants; their skin exhib-
ited favorable elasticity and hydration. Genistein sup-
pressed the UVB-induced expression of
proinflammatory cytokines (CXCL1, IL-1, and MIF) in
skin keratinocytes. Topically applied genistein effectively
reduced the appearance of wrinkles caused by sun ex-
posure in an animal model. The experimental process
and results are presented in a graphical abstract. Genis-
tein is a safe and natural compound that could be
employed within novel anti-inflammatory agents for top-
ical application.

Methods
Reagents and chemicals
Genistein and phosphate-buffered saline were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s
modified Eagle’s medium (DMEM), penicillin/strepto-
mycin, and fetal bovine serum were purchased from
Gibco-Invitrogen (Carlsbad, CA, USA). The Cutometer
MPA580 (C+K, Köln, Germany) skin detector was pro-
vided by the Department of Dermatology of Hualien
Tzu Chi Hospital (Buddhist Tzu Chi Medical Founda-
tion, Taiwan). ELISA kits for CXCL1 (cat. DGR00B), IL-
1β (cat. DLB50), MIF (cat. SMF00B), and Serpin E1/
PAI-1 (cat. DSE100) were obtained from R&D Systems,
Inc. (Minneapolis, MN, USA). The Human IL-8/CXCL8
Quantikine ELISA Kit (S8000C) was obtained from BD
OptEIA Set and used in accordance with the manufac-
turer’s instructions (Becton Dickinson, NY, USA).

Study design and participants
A total of 137 participants (17 with incomplete informa-
tion) were recruited between August 2016 and January
2018 for a 2-year study conducted by the Department of
Dermatology, Hualien Tzu Chi Hospital, Taiwan. In-
formed consent was obtained from all participants, and
institutional review board (IRB) approval was obtained
prior to study commencement (IRB 104-44-A, Depart-
ment of Dermatology, Hualien Tzu Chi Hospital, Bud-
dhist Tzu Chi Medical Foundation). All participants
were assessed using the FFQ [32–35]. The widely used
instrument has correlation coefficients between 0.29 and
0.47 [36]. The inclusion criteria were as follows: healthy
individuals aged 31–80 years (to confirm the effect of a
long-term RG diet on the skin, the participants had to
be older than 30 years) with BMI < 35 kg/m2. The exclu-
sion criteria were as follows: history of skin cancer,

Tang et al. Genes & Nutrition            (2022) 17:4 Page 8 of 11



photosensitivity disorder or atopy, sunbathing history or
use of sunbeds in the preceding 3 months, photoactive
medication administration, pregnancy, smoking status,
alcohol use disorder, and substance use disorder. Rele-
vant information—average daily exposure to strong sun-
light, alcohol consumption habits (e.g., frequency, type,
and quantity of alcoholic drinks consumed), dietary in-
take assessment results, and supplementary intake (vita-
min pills, etc.)—was acquired. The FFQ covered 23 food
items, and the frequency categories were 4–6 servings/
day, less than 2 servings/day, 1–3 servings/week, and al-
most never [14, 36]. The RG group had more than 4
servings/day of plant protein, the control group had 3 or
fewer servings. To analyze the relationship between ge-
nistein exposure and skin parameters, those in the RG
group were divided into 3 subgroups on the basis of
their soybean intake (high group: more than 4 servings/
day; moderate group: 2–3 servings/day; low group: less
than 2 servings/day). The volunteers were asked to fast
for 8 h before blood samples were drawn for biochemis-
try measurements. Analyses of TG, HDL, LDL, fasting
glucose, and creatinine levels as well as general biochem-
ical analyses were performed at the Department of La-
boratory Medicine, Hualien Tzu Chi Hospital, Taiwan.
Plasma, serum, and urine samples were taken, and skin
images were captured. The morphological
characterization of skin samples was conducted after op-
timized images were captured using a digital microscope
(Leica ATC 2000) fitted with a camera (40× resolution).

Skin parameter assay
Skin hydration was assessed using the Corneometer
CM580. The detectors of MPA580 included a corne-
ometer, pH meter, mexameter, and elasticity probes.
Additional parameters that could be assessed using the
skin elasticity probe included U and R values. A measur-
ing capacitor shows changes in capacitance in accord-
ance with the moisture content of a sample [37]. The
mechanical properties of the epidermis samples were de-
termined using a noninvasive suction-based skin elastic
meter equipped with a 2-mm measuring probe (Supple-
mentary Fig. 2). Interference from sunlight and cosmetic
lotion was avoided. Participants’ forearm areas and ab-
dominal area covered by clothing were selected for test-
ing, and 3-cm × 3-cm regions were marked on both
forearms and the belly (right and left sides). The skin
was marked as the basis of the aperture of the probe at a
constant negative pressure of 350 mbar in the time–
strain mode for 18 s, followed by relaxation for 2 s; the
procedure was performed twice. Various R values could
be obtained to clarify the operation. We explain these
parameters on the basis of two studies in which this
technique has been applied [38, 39]. The R parameters
provided by the cutometer are R2 (gross elasticity or

overall elasticity of the skin), R5 (net elasticity), R7 (bio-
logical elasticity; the ratio of elastic recovery to total de-
formation), and R8 (pliability; the ability of the skin to
return to its original state). The skin deformation curves
generated by the cutometer were mathematically and
statistically analyzed. Basic values for erythema and mel-
anin were obtained using a pigmentation probe (mexa-
meter). All readings were acquired at 25 ± 2 °C and 40
to 50% relative humidity.

Animal model, cell culture, and drug treatments
Animals were purchased from the National Laboratory
Animal Center and housed at the Laboratory Animal
Center, Chung-Shan University. The animal feeding ap-
proach was that used in our previous study [1]. We de-
termined the effects of the topical application of
aqueous genistein solutions (0.1 and 1%) on skin param-
eters. The back of each animal was marked with India
ink, and the marked area was divided into 4 squares.
Each group contained 6 animals. All animal experimen-
tal protocols were approved by the Ethics Committee of
Chung-Shan Medical University Experimental Animal
Center (Institutional Animal Care and Use Committee
[IACUC] approval number: 1837). For the cell culture
model, HaCaT cells were grown in DMEM at 37 °C in a
humidified incubator with a 5% CO2 atmosphere. Cells
were seeded in 6-well plates at a density of 2 × 105 cells
per well and cultured for 24 h in DMEM with genistein
(5 μM). The supernatant was collected and evaluated
using a cytokine array.

UVB exposure
UVB light was supplied using a closely spaced array of
KLBiotech STS-1 sunlamps, and the protocol was the
same as that in our previous study [1]. The output en-
ergy of the UVB (290–320 nm) light was measured using
a UVB photometer (LT Lutron, UV-340A photometer,
International Light, Taiwan). The energy output was 1.5
mW/cm2 and corrected using the Dermaray UV meter
and detector (Gigahertz-Optik, Pochheim, Germany). All
procedures were conducted in accordance with relevant
guidelines and regulations for both human and animal
studies.

Reverse transcription PCR, quantitative real-time PCR, and
cytokine assay
Total RNA was isolated using Trizol reagent (Life Tech-
nologies, Grand Island, NY, USA) in accordance with
the manufacturer’s instructions. Reverse transcription
PCR and quantitative real-time PCR (qRT-PCR were
performed as previously described [1]. The primers for
Q-PCR amplification are presented in Supplementary
Table 1. Cell-conditioned media were centrifuged for 5
min at 1200×g, and supernatants were collected before
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evaluation of cell cytokine secretion profiles. The levels
of IL-8 in the cell supernatants were measured using a
BD Opt EIA Set Human IL-8 ELISA kit following the
manufacturer’s instructions (Becton Dickinson). Levels
of other cytokines (CXCL1, IL-1, MIF, and PLANH1)
were determined using an ELISA kit.

Statistical analysis
The measured values obtained for various parameters
were analyzed using SPSS version 18.0. The parametric t
test for independent samples was used to compare
groups. Analysis of variance (ANOVA) was used for
comparisons of more than 2 groups. A p value of < 0.05
was considered statistically significant.
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