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Abstract 

Background:  Bovine purified protein derivative (bPPD) and avian purified protein derivative (aPPD) are widely used 
for bovine tuberculosis diagnosis. However, little is known about their qualitative and quantitative characteristics, 
which makes their standardisation difficult. In addition, bPPD can give false-positive tuberculosis results because of 
sequence homology between Mycobacterium bovis (M. bovis) and M. avium proteins. Thus, the objective of this study 
was to carry out a proteomic characterisation of bPPD, aPPD and an immunopurified subcomplex from bPPD called 
P22 in order to identify proteins contributing to cross-reactivity among these three products in tuberculosis diagnosis.

Methods:  Trypsin digests of bPPD, aPPD and P22 were analysed by nanoscale liquid chromatography-electrospray 
ionization tandem mass spectrometry. Mice were immunised with bPPD or aPPD, and their serum was tested by indi‑
rect ELISA for reactivity against these preparations as well as against P22.

Results:  A total of 456 proteins were identified in bPPD, 1019 in aPPD and 118 in P22; 146 of these proteins were 
shared by bPPD and aPPD, and 43 were present in all three preparations. Candidate proteins that may cause cross-
reactivity between bPPD and aPPD were identified based on protein abundance and antigenic propensity. Serum 
reactivity experiments indicated that P22 may provide greater specificity than bPPD with similar sensitivity for ELISA-
type detection of antibodies against M. tuberculosis complex.

Conclusion:  The subpreparation from bPPD called P22 may be an alternative to bPPD for serodiagnosis of bovine 
tuberculosis, since it shares fewer proteins with aPPD than bPPD does, reducing risk of cross-reactivity with anti-M. 
avium antibodies.
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Background
Bovine tuberculosis, caused mainly by Mycobacterium 
bovis (M. bovis), is a serious zoonotic infectious disease 
in cattle that can be also transmitted to humans [1]. 

Tuberculosis in cattle is subjected to compulsory eradica-
tion programmes based on the test-and-slaughter policy 
and results in a significant economic impact derived from 
a decreased production, trade restrictions and increased 
mortality rates in the infected herds [2, 3].

In Spain, the single intradermal tuberculin (SIT) test 
and interferon-gamma (IFN-γ) assay are used to diagnose 
bovine tuberculosis in official eradication programmes. 
Both tests depend on cell-mediated immune responses 
triggered by Th1 lymphocytes and a bovine purified 
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protein derivative (bPPD) obtained from M. bovis. While 
bPPD is useful, it contains antigens shared by non-tuber-
culous mycobacteria and mycobacterial disease vaccines 
[4–7], giving rise to immune cross-reactions that limit its 
diagnostic specificity. For this reason, vaccination of cat-
tle against mycobacterial diseases such as tuberculosis 
and paratuberculosis is prohibited in countries running 
tuberculosis eradication programmes. For the same rea-
son, the diagnostic reliability of recommended tuberculo-
sis tests can be improved by comparing reactivity against 
bPPD with reactivity against avian purified protein 
derivative (aPPD), derived from M. avium. However, this 
comparative testing requires additional time, reagents 
and labor. In addition, it can reduce overall sensitivity, 
since animals that show greater immunoreactivity against 
aPPD than bPPD are often judged negative for tuberculo-
sis when in fact they are infected with M. bovis [8, 9].

While standard tuberculosis tests focus on cell-
mediated immune responses, recent work highlights 
the importance of humoral responses. Early immune 
responses in bovine tuberculosis are dominated by cell-
mediated immunity. However, some infected animals 
may have an antibody response in the absence of cell-
mediated responses, particularly when the bacterial load 
is high [10, 11]. Therefore, researchers have been devel-
oping serological assays as diagnostic tests to detect 
infected animals missed by skin tests and the IFN-γ assay 
[12–15]. Serological tests are simple and inexpensive 
and can be used to screen many animals in a short time. 
Preparations of bPPD and P22 have been used as coating 
antigens in serological immunoassays to detect infected 
domestic and wild animals [16–20].

Improving diagnostic tests based on bPPD and aPPD 
requires detailed understanding of their protein composi-
tion, which would allow these reagents to be standardised 
and further optimised to reduce cross-reactivity. How-
ever, the composition of both reagents is poorly under-
stood, and available data are to some extent contradictory 
[21, 22]. Proteomic analysis of bPPD and aPPD used in 
the UK and Brazil [22] identified 116 proteins in two 
bPPD preparations and 87 in two aPPD preparations; 
32 proteins were shared between bPPDs and aPPDs. A 
similar study of a bPPD preparation used in South Korea 
[21] identified 271 proteins; 33 were also present in the 
previously analysed preparations from the UK and Bra-
zil, and 15 were T cell antigens that induce cell-mediated 
immune responses detectable by standard diagnostic 
tests. These results provide molecular insights into pos-
sible false positives due to bPPD, since the T cell antigens 
showed an average sequence similarity of 78% with M. 
avium and 74% with M. paratuberculosis proteins.

Given the usefulness of proteomic analysis of bPPD 
and aPPD, we studied preparations from CZ Veterinaria 

widely used in European bovine tuberculosis eradication 
programmes. We also performed proteomic analysis of 
P22, a novel protein complex affinity-purified from the 
bPPD preparation for the first time, which may serve as 
an alternative antigen in tuberculosis immunodiagnosis.

Methods
Ethics statement
All animal experiments in this study were conducted 
according to Spanish regulations (RD 53/2013) and Euro-
pean regulations (EU Directive 2010/63/EU). All animal 
procedures were approved by the Ethics Committee of 
the Instituto de Salud Carlos III (permit CBA22_2014-
v2) and by the Community of Madrid (permit PROEX 
278/14).

Immunopurification of P22
BALB/c mice were hyperimmunised with bPPD (CZ 
Veterinaria, Porriño, Spain), giving rise to a hybridome 
that secretes a specific monoclonal antibody against an 
epitope shared by two proteins, MPB70 and MPB83, 
which form part of a multiprotein complex within bPPD. 
This monoclonal antibody was conjugated to a HiTrap 
NHS-activated HP column (GE Healthcare, Little Chal-
font, UK) according to the manufacturer’s protocol. The 
column was loaded with bPPD and the complex con-
taining MPB70 and MPB83, which we named P22, was 
immunopurified (this process has been patented under 
patent EP16382579, “Methods and compositions for 
tuberculosis diagnosis”).

Sample preparation for proteomic analysis
Batches of bPPD prepared from M. bovis strain AN5 
and of aPPD prepared from M. avium strain D4 ER 
were obtained from CZ Veterinaria. P22 was obtained 
as described above. Each sample (bPPD, aPPD and P22) 
was analysed in three biological replicates. The protein 
mixtures were precipitated using trichloroacetic acid/
acetone, and total protein concentration was determined 
using a Pierce protein assay at 660  nm (ThermoFisher 
Scientific, MA, USA). Protein pellets (20 µg) were resus-
pended and denatured in 20  µl of 7  M urea/2  M thio-
urea/100  mM TEAB (pH 7.5), then reduced with 2  µl 
of 50  mM Tris (2-carboxyethyl) phosphine (pH 8.0, AB 
SCIEX) at 37  °C for 60  min, and finally incubated for 
10 min at room temperature with 2 µl of 200 mM methyl 
methanethiosulfonate (ThermoFisher Scientific) to block 
cysteines. To reduce urea concentration, samples were 
diluted to a final volume of 70 µl using 25 mM TEAB.

Proteins were digested overnight at 37  °C with 
sequencing-grade modified trypsin (Sigma-Aldrich, 
MO, USA) added in a trypsin:protein (w/w) ratio of 1:20. 
Digestion was stopped by adding 1% trifluoroacetic acid, 
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and reactions were desalted by passage through StageTip 
C18 Pipette tips (ThermoFisher Scientific) [23]. Desalted 
eluates were dried-down and stored until proteomic 
analysis.

Liquid chromatography and mass spectrometry
Protein digests (1 µg) were analysed by one-dimensional 
nanoscale liquid chromatography-electrospray ionization 
tandem mass spectrometry on an Eksigent nanoLC Ultra 
1D plus (AB SCIEX) coupled to a 5600 Triple TOF® mass 
spectrometer (AB SCIEX) equipped with a Nanospray III 
source. The analytical column was a silica-based reverse-
phase Waters Acquity UPLC® M-Class Peptide BEH 
C18 column (75 µm × 150 mm, 1.7 µm particles, 130 Å 
pore). The trap column was an Acclaim C18 PepMap™ 
100 (100 µm × 2 cm, 5 µm particles, 100 Å pore; Ther-
moFisher Scientific), which was connected ahead of the 
analytical column. The loading pump delivered a solution 
of 0.1% formic acid in water at 2 µl/min. The nano-pump 
provided a flow-rate of 250  nl/min and was operated 
under gradient elution conditions. Peptides were sepa-
rated using a gradient ranging from 2 to 90% mobile 
phase B (mobile phase A: 2% acetonitrile, 0.1% formic 
acid; mobile phase B: 100% acetonitrile, 0.1% formic 
acid). The gradient lasted 250  min in the case of bPPD 
and aPPD, and 30 min in the case of P22. The injection 
volume was 5 µl.

Data were acquired on the TripleTOF system using the 
following operating parameters: ion-spray voltage float-
ing, 2300  V; curtain gas, 35; interface heater tempera-
ture, 150; ion source gas 1, 25; and declustering potential, 
100  V. Data were acquired in data-dependent acquisi-
tion (DDA) mode using Analyst TF 1.7 software (AB 
SCIEX). A mass spectrometry survey scan (0.25  s) over 
the mass range 350–1250 Da was followed by 35 tandem 
mass spectrometry scans (100  ms) over the mass range 
100–1800 Da, giving a total cycle time of 4 s. Switching 
criteria were defined as the presence of ions at an abun-
dance of  >  90 counts per sec with charges of 2–5 and 
350 < m/z < 1250. Former target ions were excluded for 
15 s. Collision energy was controlled using a DDA rolling 
collision energy script.

Proteomic data analysis
Data from mass spectrometry and tandem mass spec-
trometry were processed using Analyst® TF 1.7 software 
(AB SCIEX). Raw data were converted into mgf files, 
which were searched against the NCBI RefSeq protein 
databases for M. bovis AN5 in the case of bPPD and 
P22 (15,834 entries in May 2016) or for M. avium subsp. 
avium ATCC 25291 in the case of aPPD (8712 entries in 
May 2016). These searches were conducted using Mas-
cot Server 2.5.1 (Matrix Science, London, UK), and they 

included the corresponding reversed entries. Searches 
were conducted with methylthiolation (C) as a fixed 
modification and with the following variable modifica-
tions: acetyl (Protein N-term), Gln to pyro-Glu (N-term 
Q), Glu to pyro-Glu (N-term E) and Oxidation (M). Pep-
tide mass tolerance was 25 ppm, fragment mass tolerance 
was 0.05  Da, and 2 missed cleavages were allowed. The 
false discovery rate (FDR) had to be  ≤  1% for peptide 
identification to be considered successful.

The method of spectral counts [24] was used to assess 
relative abundance of different proteins in bPPD, aPPD 
and P22. Spectral counts for different proteins were 
first normalised by dividing them by the total spectral 
counts of the sample [25]. Relative abundance was repre-
sented as the mean of the replicates ± standard deviation 
(SD). Average antigenic propensity (AAP) of proteins 
was determined using the Kolaskar and Tongaonkar 
method [26] (http://imed.med.ucm.es/Tools/antigenic.
pl) in order to identify proteins likely to elicit an antibody 
response. If the entire protein showed AAP > 1.0, then all 
amino acid residues within the protein with AAP  >  1.0 
were considered likely to be antigenic. Sequences of pro-
teins were compared against those in the NCBI database 
using BLAST searches (http://blast.ncbi.nlm.nih.gov/
Blast.cgi). Venn diagrams were prepared using an open-
access plotter (http://omics.pnl.gov/software/VennDia-
gramPlotter.php).

Indirect ELISA
Four female BALB/c mice were immunised with three 
inoculations of bPPD and another four mice with three 
doses of aPPD. These inoculations were administered at 
least 2 weeks apart. Sera from the mice were assayed for 
reactivity against bPPD, aPPD or P22 using an in-house 
indirect ELISA as follows. Plates were coated with bPPD, 
aPPD or P22 at 10 μg/ml, then blocked with 2% bovine 
serum albumin in phosphate-buffered saline (PBS) and 
washed with PBS containing 0.05% Tween 20 (PBST). 
Serial twofold dilutions of serum (starting at 1:8) were 
prepared and assayed in triplicate, with ELISA plates 
incubated for 1 h at 37 °C. Next, horseradish peroxidase-
conjugated goat anti-mouse IgG antibody (SouthernBio-
tech, AL, USA) was added, and colour was developed by 
adding o-phenylenediamine substrate (OPD,  Sigma–
Aldrich). The reaction was stopped using 3  N H2SO4. 
Optical density was measured at 492 nm. Negative con-
trol serum was pooled from four female BALB/c mice 
that were not immunised.

Results and discussion
Bovine tuberculosis is a serious problem for public health 
and animal health, and the relative lack of specificity and 
sensitivity of current standard diagnostic tests based on 
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bPPD and aPPD means that some animals showing false 
positive results for tuberculosis infection are needlessly 
slaughtered, while animals showing false negative results 
are spared and may pose a threat to disease control and 
eradication. Improving bPPD as a diagnostic agent has 
become even more important as serological tuberculosis 
tests become more attractive than SIT and IFN-γ assays.

Here we provide detailed proteomic descriptions of 
bPPD and aPPD and identify components common to 
both preparations. These results may help guide efforts to 
improve the diagnostic performance of bPPD and, in par-
ticular, reduce cross-reactivity. Finally, we propose a less 
complex bPPD-derived immunoproduct more amenable 
to standardisation and less likely to cross-react with anti-
bodies against M. avium proteins, which may serve as a 
substitute for bPPD in immunodiagnostic tests against 
tuberculosis.

Proteins in bPPD, aPPD and P22
We identified 2678 peptides in bPPD, 6465 in aPPD and 
492 in P22. We then reconstructed the proteins present 
in each preparation and we included only proteins that 
(1) were represented by at least two peptides in each 
replicate where they were present, and (2) were present 
in at least two of the three replicates. In this way, our 
study identified 456 proteins in bPPD (Additional file 1), 
1019 in aPPD (Additional file  2) and 118 in P22 (Addi-
tional file 3). The proteins identified in bPPD correspond 
to at least 8.5% of the coding sequences in the M. bovis 
genome; the proteins in aPPD, to at least 23.3% of the M. 
avium subsp. avium coding sequences; and the proteins 
in P22, to 1.5% of M. bovis coding sequences.

We were able to identify far greater numbers of proteins 
in bPPD and aPPD than previous studies, even though we 
used the same source strains for bPPD and aPPD as those 
studies. Studies of bPPD in UK, Brazil and South Korea 

identified only 104, 49 and 271 proteins, respectively [21, 
22]. Studies of aPPD in UK and Brazil found only 63 and 
57 proteins, respectively [22]. These discrepancies may 
reflect differences in how the PPDs were obtained from 
bacterial culture, as well as hardware and procedural dif-
ferences in how proteomics data were obtained (e.g. mass 
spectrometer model, liquid chromatography flow rate, 
in-gel versus in-solution digestion), and how proteomics 
data were searched against the databases.

Tables  1, 2 and 3 show the 10 most abundant proteins 
in bPPD, aPPD and P22, respectively. These account for 
approximately 50% of total proteins determined in bPPD 
and P22 but no more than 15% in aPPD. These results 
imply that the vast majority of antibodies induced by M. 
bovis infection should be detectable in a serodiagnostic 
test based on bPPD or P22. Our estimates of relative pro-
tein abundances in the three preparations were obtained 
without labelling, which means that they are influenced 
by the proteomics methodology, particularly the dura-
tion of the dynamic exclusion process [25, 27]. Label-free 
abundances will also underestimate actual abundance in 
mixtures in which one or a few proteins dominate strongly. 
Thus, our abundance estimates are likely to be relatively 
accurate in the case of aPPD, in which no protein accounts 
for more than 2.7% of total protein, but they are likely to be 
underestimated in the case of bPPD, in which the ESAT-
6-like protein EsxB (CFP-10) accounts for 12.2% of total 
protein, and in the case of P22, in which MPB70 accounts 
for 26.0% of total protein. The high abundance of MPB70 
in M. bovis and its immunological properties suggest that 
replacing bPPD with P22 may increase the sensitivity of 
bovine tuberculosis immunological diagnosis [28].

Proteins shared among bPPD, aPPD and P22
A total of 146 proteins were found to be common to 
bPPD and aPPD, accounting for 32 and 14.3% of total 

Table 1  Ten most abundant proteins in bPPD identified by liquid chromatography-mass spectrometry

AAP average antigenic propensity

No. NCBI accession Name Relative abundance (%)
Mean ± SD

AAP

1 489495023 ESAT-6-like protein EsxB 12.2 ± 1.1 0.9934

2 489495046 6 kDa early secretory antigen target 11.4 ± 2.0 0.9935

3 489509783 Cell surface protein MPB70 8.5 ± 0.9 1.0478

4 489513185 Molecular chaperone GroES 3.7 ± 0.1 1.0245

5 489509769 Cell surface protein MPB83 3.4 ± 0.1 1.0336

6 489497323 Molecular chaperone GroEL 3.0 ± 0.2 1.025

7 489516779 ESAT-6-like protein EsxL 2.21 ± 0.1 1.0118

8 489503953 ESAT-6-like protein EsxN 2.1 ± 0.0 1.0193

9 489504801 Hypothetical protein MPB63 2.0 ± 0.0 1.0332

10 489505308 Alpha-crystallin 1.6 ± 0.3 1.0135
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proteins in the respective preparations. Of these 146 pro-
teins, only 43 were present in P22 (Fig. 1). The numbers 
of these proteins with relative abundances > 0.1% based 

on spectral counting were 61 in bPPD, 92 in aPPD and 
43 in P22 (Additional file  4). Estimation of the ability 
of these proteins to induce a B cell-mediated immune 
response [26] identified 32 that we predict contribute 
to cross-reactivity (Table  4), either because they show 
an abundance ≥ 0.5% in at least one of the two PPDs or 
because they have AAP ≥ 1.04. Only 21 of these 32 pro-
teins are present in P22 (Table 4), suggesting that it may 
provide greater diagnostic specificity than bPPD.

Experimental comparison of the immunogenicity of bPPD, 
aPPD and P22
We hypothesised that P22 could offer greater specificity 
than bPPD in serodiagnosis because P22 shares far fewer 
proteins with aPPD, while still offering comparable sen-
sitivity since P22 and bPPD share seven highly abundant 
proteins, five of which are predicted to be immunogenic 
(Tables 1, 3).

We compared the ability of immunosera from mice 
hyperimmunised with bPPD or aPPD to recognise bPPD, 

Table 2  Ten most abundant proteins in aPPD identified by liquid chromatography-mass spectrometry

AAP average antigenic propensity

No. NCBI accession Name Relative abundance (%)
Mean ± SD

AAP

1 489973362 Bacterioferritin 2.7 ± 1.6 1.0226

2 497662805 ModD protein, partial 1.9 ± 0.4 1.0170

3 497665169 Molecular chaperone GroEL 1.6 ± 0.2 1.0244

4 500044420 PPE family protein 1.5 ± 0.3 1.0271

5 489970321 50S ribosomal protein L7/L12 1.4 ± 0.0 1.0327

6 564987547 Acyl dehydratase 1.4 ± 0.7 1.0457

7 489970303 Elongation factor Tu 1.3 ± 0.4 1.0226

8 489970531 Hypothetical protein 1.2 ± 0.2 1.0136

9 4566238 10 kDa heat shock protein 1.1 ± 0.1 1.0261

10 489973377 Hypothetical protein 1.1 ± 0.1 1.0157

Table 3  Ten most abundant proteins in P22 identified by liquid chromatography-mass spectrometry

AAP average antigenic propensity

No. NCBI accession Name Relative abundance (%)
Mean ± SD

AAP

1 489509783 Cell surface protein MPB70 26.0 ± 2.6 1.0478

2 489509769 Cell surface protein MPB83 5.4 ± 0.8 1.0336

3 489495046 6 kDa early secretory antigen target 4.4 ± 2.3 0.9935

4 489505073 Hypothetical protein 2.6 ± 0.1 1.0401

5 489497323 Molecular chaperone GroEL 2.4 ± 0.6 1.0250

6 489495023 ESAT-6-like protein EsxB 2.3 ± 0.3 0.9934

7 489498552 Elongation factor Tu 2.0 ± 0.2 1.0225

8 489505308 Alpha-crystallin 1.9 ± 0.7 1.0135

9 489501012 5-Methyltetrahydropteroyltriglutamate–homocysteine methyltransferase 1.8 ± 0.5 1.0402

10 489504801 Hypothetical protein MPB63 1.4 ± 0.1 1.0332

Fig. 1  Identification of proteins shared among bPPD, aPPD and P22



Page 6 of 10Infantes‑Lorenzo et al. Clin Proteom  (2017) 14:36 

Table 4  Putative proteins shared among bPPD, aPPD and P22 that may contribute to cross-reactivity

No. NCBI accession Description Relative abundance in  %
Mean ± SD

AAP Ident/query coverage

bPPD aPPD P22 bPPD aPPD

1 489513185
4566238

Molecular chaperone GroES
10 kDa heat shock protein

3.6 ± 0.0 1.1 ± 0.1 1.0 ± 0.3 1.0243 1.0261 97/100

2 489497323
497665169

Molecular chaperone GroEL
Molecular chaperone GroEL

3.0 ± 0.2 1.6 ± 0.2 2.5 ± 0.6 1.0251 1.0244 94/100

3 489516779
489971186

ESAT-6-like protein EsxL
Hypothetical protein

2.2 ± 0.1 0.7 ± 0.2 1.4 ± 0.3 1.0124 1.0238 87/100

4 489503953
489971186

ESAT-6-like protein EsxN
Hypothetical protein

2.1 ± 0.0 0.7 ± 0.2 1.2 ± 0.4 1.0193 1.0238 94/100

5 489496900
497665296

Molecular chaperone DnaK
Molecular chaperone DnaK

1.5 ± 0.1 0.8 ± 0.2 0.9 ± 0.1 1.0157 1.0149 95/94

6 489500428
489971186

ESAT-6-like protein EsxI
Hypothetical protein

1.4 ± 0.1 0.7 ± 0.2 – 1.0154 1.0238 87/100

7 489498552
489970303

Elongation factor Tu
Elongation factor Tu

1.2 ± 0.0 1.3 ± 0.4 2.0 ± 0.2 1.0225 1.0226 97/100

8 489506691
489969124

Meromycolate extension acyl carrier protein
Acyl carrier protein

1.0 ± 0.1 0.7 ± 0.3 – 1.0236 1.0243 92/100

9 499253161
489971186

Secretion protein
Hypothetical protein

0.7 ± 0.2 0.7 ± 0.2 – 1.0113 1.0238 93/100

10 489506256
489968974

Cell wall synthesis protein Wag31
DivIVA domain-containing protein

0.7 ± 0.1 0.7 ± 0.2 1.0 ± 0.4 0.9988 1.0052 86/100

11 489501012
497661234

5-Methyltetrahydropteroyltriglutamate
5-Methyltetrahydropteroyltriglutamate

0.6 ± 0.0 0.1 ± 0.0 1.8 ± 0.5 1.0388 1.0374 86/99

12 489500440
489971185

peptidase M22
peptidase M22

0.5 ± 0.0 0.7 ± 0.3 0.6 ± 0.2 0.9816 0.9844 87/100

13 489498442
489970321

50S ribosomal protein L7/L12
50S ribosomal protein L7/L12

0.5 ± 0.0 1.4 ± 0.0 – 1.0392 1.0327 93/100

14 489504514
489973362

Bacterioferritin
Bacterioferritin

0.5 ± 0.1 2.7 ± 1.6 0.8 ± 0.1 1.0193 1.0226 88/100

15 489495992
497665638

Diacylglycerol acyltransferase
Diacylglycerol acyltransferase

0.5 ± 0.1 0.6 ± 0.0 0.9 ± 0.3 1.0142 1.0141 85/95

16 489504572
500042691

Diacylglycerol acyltransferase
Diacylglycerol acyltransferase

0.5 ± 0.01 0.9 ± 0.1 1.0 ± 0.1 1.0166 1.0192 81/95

17 489998054
656316315

Serine protease
Peptidase S1

0.5 ± 0.0 0.9 ± 0.2 – 1.0357 1.0264 73/96

18 489503193
497663153

Universal stress protein
Universal stress protein

0.4 ± 0.0 0.6 ± 0.0 0.4 ± 0.0 1.0434 1.0431 88/100

19 489513178
497664719

Molecular chaperone GroEL
Molecular chaperone GroEL

0.4 ± 0.0 0.7 ± 0.1 0.6 ± 0.1 1.0416 1.0399 84/98

No. NCBI accession Description Relative abundance (%) ± SD AAP Ident/query coverage

aPPD P22 bPPD aPPD

20 554796584
656316442

aconitate hydratase
aconitate hydratase

0.3 ± 1.0 0.6 ± 0.2 1.0 ± 0.2 1.0252 1.0245 89/99

21 489509166
497663814

Hypothetical protein
Hypothetical protein

0.3 ± 0.0 0.7 ± 0.2 – 1.0146 1.0152 87/100

22 489997754
500042691

diacylglycerol acyltransferase
diacylglycerol acyltransferase

0.2 ± 0.1 0.9 ± 0.1 1.0 ± 0.1 1.0225 1.0188 83/96

23 489501803
497661528

ATP synthase subunit beta
F0F1 ATP synthase subunit beta

0.2 ± 0.0 0.6 ± 0.1 0.3 ± 0.3 1.0239 1.0238 95/98

24 489496308
564987547

Acyl dehydratase
Acyl dehydratase

0.1 ± 0.1 1.4 ± 0.7 0.7 ± 0.0 1.0414 1.0457 80/99

25 489509098
489972034

Iron-dependent repressor IdeR
Dihydrofolate reductase

0.1 ± 0.0 0.2 ± 0.0 – 1.0362 1.0409 93/100
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aPPD and P22. Serum from mice immunised with aPPD 
reacted more strongly against aPPD and less strongly 
against bPPD and P22, indicating substantial cross-reac-
tion (Fig.  2a). Similarly, serum from mice immunised 
with bPPD reacted against bPPD and P22, but it also 
cross-reacted with aPPD (Fig. 2b). These results suggest 
that, in the field, animals reacting against both aPPD 
and bPPD, particularly those reacting more strongly 
against aPPD, may be incorrectly categorised as negative. 

Using P22 in ELISA-type assays may avoid this problem, 
offering greater specificity and comparable or greater 
sensitivity than bPPD for tuberculosis serodiagnosis. 
Proof-of-concept surveys testing P22 for serodiagnosis of 
animal tuberculosis are ongoing. Casal et al. [20] showed 
that an antibody detection test significantly improved 
the sensitivity of in  vivo bovine tuberculosis diagnosis. 
Hence, diagnostic techniques detecting both cellular and 
humoral responses may be an alternative for controlling 

NCBI accession codes and protein names are reported in normal text for bPPD and in italics for aPPD

AAP average antigenic propensity

Table 4  continued

No. NCBI accession Description Relative abundance (%) ± SD AAP Ident/query coverage

aPPD P22 bPPD aPPD

26 489996564
497664056

D-3-phosphoglycerate dehydrogenase
Phosphoglycerate dehydrogenase

0.1 ± 0.0 0.3 ± 0.0 – 1.0603 1.0551 89/100

27 489500222
495529442

Molybdenum cofactor biosynthesis protein
Molybdenum cofactor biosynthesis protein

0.1 ± 0.0 0.1 ± 0.0 0.3 ± 0.4 1.0536 1.0476 96/91

28 554793963
497660570

Hypothetical protein O217_19000
Hypothetical protein

0.1 ± 0.0 0.4 ± 0.0 0.2 ± 0.2 1.0490 1.0422 85/89

29 489497388
489970521

Dihydrolipoyl dehydrogenase
Dihydrolipoyl dehydrogenase

0.1 ± 0.0 0.1 ± 0.0 0.3 ± 0.3 1.0408 1.0343 90/99

30 489497373
489970531

hypothetical protein
hypothetical protein

0.1 ± 0.0 1.2 ± 0.2 – 1.0212 1.0135 76/100

31 489997334
497663425

Phosphoglycerate kinase
Phosphoglycerate kinase

0.1 ± 0.0 0.2 ± 0.0 – 1.0415 1.0428 82/88

32 489497373
489970531

Hypothetical protein
Hypothetical protein

0.1 ± 0.0 1.2 ± 0.2 – 1.0209 1.0136 76/100

Fig. 2  Indirect ELISA for serum reactivity from animals immunised with a aPPD or b bPPD against bPPD, aPPD and P22. As a negative control, serum 
was obtained from non-immunised mice (yellow line). The inset shows results obtained at serum dilutions of 1:128. OD optical density
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bovine tuberculosis outbreaks in high-prevalence set-
tings. Moreover, some antibody detection techniques 
have been shown to give the best performance in cattle 
with gross tuberculosis lesions [29].

We identified 32 highly abundant and immunogenic 
proteins that contribute to cross-reactivity between 
aPPD and bPPD (Table  4). These results are consistent 
with previous proteomics work highlighting the impor-
tance of the chaperones DnaK, GroEL, and GroES as well 
as elongation factor Tu and acyl carrier protein as sources 
of cross-reactivity [21, 22, 30]. Chaperones, which are 
conserved among most mycobacteria and other bacteria 
that cause respiratory disease [31], play important roles 
in humoral and cellular innate and adaptive immune 
responses [32, 33]. Our results, then, are consistent 
with work suggesting that false-positive serodiagnosis 
of tuberculosis tends to reflect immune responses due 
to homologous vaccination antigens or environmental 
mycobacteria [34, 35].

Our results here, based purely on antibody-based 
immune responses, suggest that P22 may be a superior 
alternative to bPPD. It would be important to verify this 
by experimentally assessing T cell-mediated immune 
responses, which cooperate with antibody-based responses 
to mount a collaborative defense [36]. We expect that T 
cell-mediated responses would be similar to the antibody-
based responses described here because several of the most 
abundant proteins in bPPD are powerful T immunogens, 
including MPB70, MPB83, ESAT-6 and CFP-10 [37–42].

Conclusion
On the basis of these results, we propose that a subprepa-
ration of bPPD called P22 may be an alternative to bPPD 
for tuberculosis diagnosis, offering greater specificity as 
well as similar or even greater sensitivity for ELISA-type 
detection of antibodies against M. tuberculosis com-
plex. P22 should be tested in field studies of tuberculo-
sis serodiagnosis, and its ability to elicit T cell-mediated 
responses should be analysed, since it contains several 
antigens recognised by T cells, including MPB70, MPB83, 
ESAT-6 and CFP-10. In addition, we have analysed the 
protein composition of bPPD and aPPD, assessing the 
relative abundance and immunogenicity of major com-
ponents. We identified several highly antigenic proteins 
specific to M. bovis, such as MPB70, MPB83, MPB63 
and MPB64, which may therefore be the most useful in 
serological diagnosis of tuberculosis. We also identified 
several proteins common to bPPD and aPPD that may 
help explain the cross-reactivity between them in stand-
ard tuberculosis tests; these shared proteins include the 
chaperones GroES and DnaK, meromycolate extension 
acyl carrier protein, secretion protein and 50S ribosomal 
protein L7/L12.
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