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Abstract

The dynamic field of neurosciences entails ever increasing search for molecular mechanisms of disease states,
especially in the domain of neurodegenerative disorders. The previous century heralded the techniques in proteom-
ics when indexing of the human proteomes relating to various disease conditions became important. Early stage
research in certain diseases or pathological conditions requires a more holistic approach of first discovering the pro-
teins of interest for the condition. Despite its limitations, proteomics is one of the most powerful techniques available
to us today to dissect the molecular scenario in a particular disease situation. In this review we will discuss about the
current clinical research in neurodegenerative disorders that employ proteomics techniques. We will specifically focus
on our understanding of Alzheimer’s disease, traumatic spinal cord injury and neuromyelitis optica. Discussions will
include ongoing worldwide research in these areas, research in India and specifically our laboratory in these domains

of neurodegenerative conditions.
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Background

The most polarized cells of the human body, neurons, are
a specialized type with respect to their functional prop-
erties. Development and function of neurons are closely
linked to the bidirectional transport of molecules from
the synaptic end to the cell body. This very synaptic sig-
nal, which when disrupted, causes the dysfunction of
neuronal activities. Disruption in axonal transport is the
cause of several neurodegenerative disorders [1, 2]. In the
realm of peripheral neuron injury, retrograde transport
of molecules from the site of injury to the cell body of a
peripheral neuron primes the latter to regenerate [3, 4].
This phenomenon is absent in the central nervous system
(CNS), with the consequence of regeneration after CNS
injury being elusive even with years of research. Partly
because of the large distance separating the axon end
from the cell body, many molecular events after a trauma
or a neuronal disease occur without any transcriptional
manifestations [5]. Local proteolysis, protein synthesis
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and post translational modifications are the key to under-
standing axonal events after an assault or a disorder of
the neuron [5]. Proteomics approaches have therefore
come to the limelight in recent times. In this review, we
will discuss the contributions of our group from this per-
spective and also the prospective ideas in three neurolog-
ical degenerative situations, namely Alzheimer’s disease
(AD), traumatic spinal cord injury (SCI) and neuromy-
elitis optica (NMO) and explore the advances in under-
standing these pathological processes using proteomics
approaches.

Ethics statement

The data provided in the review was collected by a joint
collaborative study of SINP and NRSMC&H, Kolkata,
India, after it was approved by Institutional Ethical Com-
mittees. An informed written consent was obtained from
the subjects as per Helsinki Declaration, 2013.

Clinical proteomics in AD

During the past few years Mass spectrometry (MS) based
proteomics tools have been used extensively to study AD-
related proteome changes in blood (plasma and serum),
cerebrospinal fluid (CSF) samples and in postmortem
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brain tissues [6]. Since the pathological processes of AD
start decades before the first symptoms appear, the objec-
tive of all AD proteomics studies have been to identify
precisely the early diagnostic and prognostic biomarkers.
Here we review reports that have used diverse samples
including blood, CSF, brain tissues and also discuss dif-
ferent aspects of proteome status like posttranslational
modifications (PTMs), redox proteomics and interaction
proteomics.

Blood and CSF proteomics studies are being done for
more than a decade to identify AD-related biomarkers,
of which the most widely researched one is the peptide
Amyloid B (Ap). Utility of AP as a predictor of demen-
tia and AD is well established and it is evident that lower
AB,,:AB,, ratios are mainly associated with the disease
[7]. In 2007, a plasma proteomic study in AD patients
identified six potential plasma biomarkers using 2D-GE
and LC/MS/MS [8]. Some of them, for example a-1 anti-
trypsin, could be validated for its higher expression level
in plasma of AD patients using ELISA. Apolipoprotein
] was found to be in lower abundance in plasma of AD
patients in an isoform-specific manner. This observa-
tion could only be achieved through 2-DE but could not
be validated through biochemical methods like ELISA
or Western blot. Recently, a large scale replication study
was conducted for 94 proteins out of 163 potential candi-
date biomarkers found in 21 published blood proteomics
studies. 9 were found to be associated with AD-related
phenotypes [9]. It was concluded that there are repli-
cable changes in proteomic expressions in blood of AD
patients that can be identified by different studies with
some consistency.

The rationale of studying plasma and CSF biomarkers
for AD has been explicitly reviewed [10] and the diagnos-
tic performance of the core CSF biomarkers, namely total
tau, phosphorylated tau and AP-42 has been discussed.
But studying these traditional biomarkers is not suffi-
cient to identify preclinical AD. Study of differential pro-
teome from whole tissue/body fluids in the disease model
compared to that of the normal control is of immense
importance in order to identify key, novel protein can-
didates for the disease. Recently, combination of Af, tau
and p-tau along with several novel biomarkers in CSF
have been used extensively for diagnostic confirmation of
AD [11]. 1t is realized that co-development of biomark-
ers for early diagnosis and novel therapeutic approaches,
together could be the way to go.

A recent review has extensively discussed the features
of neurodegeneration proteomics and its importance in
relation to PTM [12]. Evaluation of functional alterations
in proteins due to PTMs can be achieved by means of a
battery of proteomic tools. For the elucidation of patho-
genic mechanisms, study of PTMs in AD is of immense
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importance and would become the future of proteomics
research to understand the disease process. Very recently,
the CSF glycoproteome was studied as a fingerprint of the
brain glycoproteome of AD patients [13] and it is con-
cluded that CSF N-glycome analysis may provide reliable
biomarkers for early diagnosis of the disease. In many
studies, proteins from CSF of AD patients are shown to
have differential isoforms in terms of glycosylation [14],
S-nitrosylation [15] and histone protein modifications
[16] in different tissue sections of the AD brain. Recently
quantitative phosphoproteomics studies in the frontal
cortex [17] and hippocampi [18] of AD brains have deci-
phered the deregulation of biological pathways in AD
due to alteration in the PTM status. A more recent study
deals with changes in protein phosphorylation status
in the inferior parietal lobule of subjects with different
stages of the disease (AD, Mild Cognitive Impairment,
MCI, Pre-Clinical Alzheimer’s Disease, PCAD) and con-
trol brain [19]. Phosphorylation status of nineteen pro-
teins is found to be different in these stages of the disease.
These proteins are involved in energy metabolism, neu-
ronal plasticity, signal transduction and oxidative stress
response. The same group has studied and discussed
the effects of AB-induced oxidative stress, its redox pro-
teomics and its importance in disease pathology and
progression [20, 21]. Also, selectively oxidized proteins
namely, creatine kinase BB, glutamine synthase, ubiqui-
tin carboxy-terminal hydrolase L-1, alpha-enolase, triose
phosphate isomerase and neuropolypeptide h3 in human
samples were identified and can be studied in future to
understand the AD pathogenesis better [22, 23]. Redox
proteomics analysis has been conducted to identify spe-
cific carbonylated proteins (for example, alpha-enolase,
glutamine synthetase, protein disulfide isomerase A3
etc.) in the hippocampus at the very early stage in AD
mouse model [24].

A recent study with micro dissected neurons from the
temporal cortex of AD brain has identified more than 400
proteins using LC—MS analysis [25]. Several recent stud-
ies have dealt with targeted and localized quantitative
proteomics in presynaptic and postsynaptic tissue sam-
ples in AD and have identified a large number of proteins
relevant to the disease process [26—28]. All these studies
aim at identifying novel candidates or imprints for early
diagnosis of a neurodegenerative condition like AD.

AD clinical proteomics in India: Interaction
proteomics with focus on APP intracellular

domain (AICD)

There have not been many studies in the domain of
Alzheimer’s disease research employing proteomics
approach. Although there are extensive reviews discuss-
ing employment of proteomics for biomarker discovery
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in neuropsychiatric disorders [29] and of the relation of
AD and type-2 diabetes [30], only one clinical proteom-
ics study with AD CSF samples has been conducted [31].
This study has found Apolipoprotein E, Apolipoprotein J,
Hemopexin, Complement factor b and complement C4b
to be differentially abundant in AD versus control CSF
samples.

Our laboratory focuses on interaction proteomics of
amyloid precursor protein (APP) intracellular domain
(AICD). AICD generated by post y-secretase cleavage of
APP has been an important molecule of the AD pathway
and has drawn the focus of many researchers [32-35]. In
the dephosphorylated state, it acts as a transcriptional
transactivator to regulate the expression of several genes
including GSK3p [36]. Once phosphorylated, it interacts
with a plethora of other cellular adaptors, heavily influ-
encing the cellular machinery. In an attempt to identify
the intracellular interacting partners of phosphorylated
AICD, we found twenty novel AICD interacting partners
from mouse neuroblastoma cells [37]. Molecular func-
tions of several of these interactors, for example ApoA4,
GAB2, HSPAS, vimentin etc., could be correlated to AD,
revalidating that AICD and its interactions have implica-
tions towards AD pathophysiology. In a different study,
we could identify AICD interacting proteins from CSF of
AD patients and also compare the differential expressions
of these interactors with respect to that of non-demented
control patients [38]. Keeping the need for identifying
the indirect candidates involved besides the direct ones
for in-depth exploration of the molecular networks of
the disease, we transfected AICD in mouse and human
neuroblastoma cell lines and identified differential
expressions of proteins belonging to diverse molecular
pathways [39], for example, ER-stress (GRP78), struc-
tural remodeling (vimentin) and general stress (HSP90p,
HSPAS).

Clinical proteomics in spinal cord injury

Acute traumatic injury of the spinal cord resulting in par-
tial or total deficits in sensory and/or motor functions
is widely prevalent worldwide and leads to considerable
decline in the quality of life [40]. Though relative annual
incidences of SCI vary with the geographical region and
the time period of the study [41], studies show that global
average incidence is highest in Asia [40] with 43.8 per-
sons per million people afflicted. Traffic accidents [42],
fall from height [43] and violence [44] constitute some of
the major reasons for SCI.

Autonomic dysfunctions that follow SCI set the major
decline in the quality of life of afflicted persons. An injury
above the C3 level in the vertebral column may lead to
immediate cardiac arrest necessitating assisted respira-
tion [45]. While the autonomic deregulations may last
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for a period of weeks after an injury, grossly the patho-
physiology of SCI is divided into primary and secondary
injuries. The initial trauma to the spinal cord is called pri-
mary injury and it is a prognostic indicator of SCI [46].
Following the primary injury, secondary injury sets in
[47] and may last from months to years. This phase wit-
nesses a plethora of degenerative phenotypes attributed
to multitudes of molecular responses to injury [48].

Therefore, in spinal cord injury research, it is very
important to get a clear picture of the molecular anatomy
at the vicinity of the injury. On the other hand, for the
peripheral nerve injuries, which comprise a greater sub-
set of neuronal injuries, study of molecular parameters
promoting axonal regeneration is of paramount impor-
tance [49]. Axon forms an important tissue to analyse
changes following an injury. This is because of a temporal
sequence of three events promoting neuron regeneration:
discharge of axonal potentials induced by injury, inter-
rupted normal supply of retrogradely transported target-
derived factors, and retrograde injury signals travelling
from the injury site back to the cell body, also called posi-
tive injury signals [50]. Here, the necessity of biomarker
analysis is born. Especially, proteomics approaches are
preferred to those of genomics in the domain of axonal
regeneration and degeneration because changes in axons
often occur without any transcriptional events in the cell
body, following a pathological condition [5]. Moreover,
a large number of PTMs to proteins accompany axonal
degeneration and regeneration, which has been rightfully
termed as a ‘postgenomics’ problem. A series of elegant
work from the group of Perlson et al., beginning with
proteomics approach, showed that vimentin is translated
at the site of axonal injury [51], it is retrogradely trans-
ported from the site of injury to the cell body on dynein
motor [52] and binds with ERK preventing its dephos-
phorylation [53].

Clinical proteomics tools to discover molecular
interplay post SCI

Application of proteomics in biomarker analysis in trau-
matic SCI has found inflammatory cytokines at elevated
levels and documented the elevation of tau, S100beta,
GFAP and MCP-1 in a severity dependent fashion [54].
Commonly deregulated proteins as fished out by prot-
eomics studies, include plasma proteins, HSPs, glyco-
lytic enzymes, antioxidants and proteins participating in
DNA damage and repair, protein degradation, cell sign-
aling and structural proteins [55, 56]. Transgelin and
protein S100-A11 were found to be biomarkers of blad-
der healing in the secondary injury phase of rats [57]. An
early study with insoluble segments of injured rat spinal
cord using 2-DE followed by MALDI-TOF/TOF found
decreased abundance of pyruvate dehydrogenase beta,
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aconitase 2, fumarate hydratase 1, and ATP synthase
subunit 6, which can lead to ATP depletion. On the other
hand, antioxidant proteins such as catalase and PRDX-1
were decreased [58]. Implication of antioxidants were
further shown with the aid of 2-DE where decreased
abundance of catalase (CAT) and Mn-superoxide dis-
mutase (Mn-SOD) were detected at the lesion centre
14 days post SCI in rats [59]. Additionally galectin-3, beta
actin, actin regulatory protein (CAPG) and F-actin cap-
ping protein subunit beta (CAPZB) were found increased
at similar time period post injury suggesting a decrease
in antioxidant function and increase in growth inhibit-
ing proteins post SCI. Treatment with acidic fibroblast
growth factor (aFGF) down-regulated regeneration-
blocking secondary phase proteins like S100beta, GFAP
and the keratin sulphate proteoglycan, lumican, as dem-
onstrated using proteomic approaches in rat SCI model
[60]. Tyrosine 3-monooxigenase/Tryptophan 5-monoox-
igenase activation protein (YWHAZ), a hub of several
signal transduction pathways, glutathione peroxidise 3,
involved in detoxifying hydrogen peroxide and S100a8,
which is zinc and calcium binding protein involved in
immune response regulation, were found to be biomark-
ers of severity in rats at 24 h post injury [61]. Afjehi-
Sadat et al. showed higher abundance of 14-3-3 epsilon
protein, dynein light chain 1, and tubulin beta-5 chain
and decreased abundance of adenylyl cyclase associated
protein 1, dihydropyrimidinase-related protein 2, F-actin
capping protein subunit beta, glyceraldehyde-3-phos-
phate dehydrogenase, stress-induced phosphoprotein
1 and transthyretin in injured tissue of SCI in rats. Free
oxygen radical attack on proteins in SCI was indicated by
PTM analysis [62].

Limitations of identifying a larger number of proteins
using conventional 2-DE methods prompted researchers
to use multiplex array proteomics to analyse low abun-
dance proteins from CSF available in small volumes. A
cytokine profiling from CSF of cervical SCI rats at 12 days
post injury revealed MMP-8 to be an elevated biomarker
[63]. Proteomics approaches have been employed to
decipher the temporal changes of protein expression
after SCI. This is particularly important because protein
expression pattern is drastically disturbed following an
injury and there is a prolonged persistence of irregulari-
ties in protein expression patterns thereafter. Zhu et al.
found that 24 h post injury is the key time when the pro-
tein expression changes drastically in a rabbit SCI model
[64].

Use of labeling with iTRAQ reagent coupled with prot-
eomics approaches have derived significant results in the
domain of SCI. LC-MS/MS with iTRAQ reagent labeling
identified proteins involved in ubiquitination, endocy-
tosis and exocytosis, energy metabolism, inflammatory
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response, oxidative stress, cytoskeletal disruption, and
vascular damage as altered significantly at 24 h after
SCI in rats [65]. Heat shock proteins were significantly
differentially expressed in a rat model of SCI found in a
study using iTRAQ and 2D LC-MS/MS [66] pointing
to their potential role after SCI. 2-DE followed by nano
ultra-high performance liquid chromatography-elec-
trospray tandem mass spectrometry (NanoUPLC-ESI-
MS/MS) identified proteins associated with apoptosis,
nerve signal transduction and metabolism to be differ-
entially regulated in rat SCI followed by treatment with
basic fibroblast growth factor long circulation liposome
(bEGE + LCL) [67].

Proteomics of SCl in India

Currently, even though there are numerous studies being
done on various, mostly rehabilitative [68], epidemiologi-
cal [69], financial [70], clinical [71, 72] and surgical [73]
aspects of SCI in India, use of proteomics approach to
get into the molecular level has been done only in our
laboratory.

We have been focusing on the molecular interplay
occurring in the secondary phase of SCI, which essen-
tially manifests as the various phenotypic dysfunc-
tions associated with this stage. For this purpose we
conducted a clinical sampling with 14 SCI patients at
1-8 days post injury and contrasted their cerebrospi-
nal fluid (CSF) from complete and incomplete injury
types. The injury severities were ascertained using the
American Spinal Injury Association (ASIA) Impairment
Scale (AIS) [74]. 2-DE followed by MALDI MS/MS was
employed to identify CSF proteins from SCI patients
and furthermore, 2D-DIGE was conducted to contrast
the different AIS samples of CSF [56]. Forty-nine pro-
teins were identified from CSF of SCI cases. Eight of
them were differentially abundant (>=+1.5 fold) among
AIS A (complete injury) and AIS C (incomplete injury)
CSF samples. The status of the differentially abundant
proteins among the AIS groups was further checked
for CSF taken at 15-60 post injury from an additional
6 patients.

Application of bioinformatics tools to the identified
proteins from SCI CSF yielded a protein—protein inter-
action network (PPIN) consisting of the identified pro-
teins and their secondary interactors. From this network,
interaction modules were created where protein mem-
bers within a module interact more with one another
than with proteins outside of the module. We adopted
the Newman—Girvans modularization (NGM) algorithm
[75-77]. Thus a modularised network was formed. The
network was further enriched [78] to identify biological
functions associated with the modules. This was done
using GeneCodis3 [79].
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Finally identifying the modules where the differentially
abundant proteins were found, we zeroed in on the per-
turbed biological pathways post SCI at the secondary
phase. The significantly perturbed pathways were mRNA
metabolism, protein phosphorylation, iron transport,
lipid and ATP catabolism, tRNA and rRNA transcription
and DNA repair. We therefore identified some molecular
pathways that lose their balance post SCI and we started
off with identifying the entire proteome of SCI CSF and
gradually narrowing down from there. The employment
of proteomics tools was immensely useful in our case as
we did not start with any particular protein or pathway
in mind. This holistic approach with gradual focus on the
important results is thus a preferred choice not only in
the domain of biomarker discovery but also in a situation
like ours, where a molecular dissection is being carried
out.

Neuromyelitis optica

Neuromyelitis optica (NMO) or Devic’s disease is an
autoimmune inflammatory disease that affects the cen-
tral nervous system, predominantly the optic nerves and
spinal cord [80, 81]. Devic’s disease, because of its resem-
blance with multiple sclerosis was initially speculated to
be a variant of the latter. But with advances in clinical
and immunological studies, the existence of NMO as a
distinct disease has been established [82, 83]. The clinical
features associated with the disease include optic neuri-
tis and transverse myelitis [84]. The disease can be either
monophasic or relapsing [84]. In 2006 after the discovery
of anti AQP4-IgG [85] the initially proposed diagnostic
criteria for NMO was revised. The seropositivity of NMO
autoantibody together with optic neuritis and longitudi-
nal extensive transverse myelitis was then considered as
the defining parameter for NMO [86].

As compared to other neurodegenerative disorders
the global distribution of NMO is rather limited [87]. Its
prevalence among Caucasians is low where the abun-
dance of multiple sclerosis is high [88, 89]. Higher inci-
dence of NMO has been reported among south Asian
countries like India, Korea and the Philippines [90].
Demographic studies reveal that women are more predis-
posed to the disease than men [91, 92]; this is true even
for the paediatric cases [93]. The disease mainly afflicts
young adults with ages ranging mostly under 18 years
although there have been some reports of late onset too
[94, 95]. The administration of immunosuppressive drugs
has been the major treatment for the disease [96].

Advances in proteomic study of NMO

The presence of serum antibody NMO-IgG among the
patients [85] was initially considered to be highly spe-
cific for disease confirmation but later it was seen that
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all patients were not NMO-IgG seropositive. Evidently
it became crucial to look for other biochemical mark-
ers of the disease. Proteomic analysis which has been
extensively employed in biomarker discovery for simi-
lar diseases like multiple sclerosis [97] was extended
thereafter for the detailed study of NMO. The major
study of NMO proteomics has been conducted in CSF,
blood and urine. The insight into different CNS diseases
is provided by CSF proteomics [98, 99]. CSF compara-
tive proteomics with multiple sclerosis, NMO and nor-
mal patients by Jiang et al. led to identification of four
proteins namely—Pre-Albumin (PA), Keratinl, transfer-
rin and Keratin 9 [100]. PA had high expression levels
among multiple sclerosis patients while Keratin 1 was
significantly increased in NMO patients. Transferrin
(Tf) is a crucial marker for blood—brain-barrier (BBB)
damage [101] and its high levels in NMO are indica-
tive of the damage caused to the blood—brain-barrier
because of NMO pathogenesis. In a separate study
by Bai et al., proteome analysis in the CSF of NMO
patients in comparison to control group revealed the
up regulation of Neurofilament, Haptoglobin, immu-
noglobulin kappa chain C region (IGKC) and immuno-
globulin heavy chain gamma 3 (IGHGS3) levels [102]. In
the same group of patients there was downregulation in
alpha-1pB-glycoprotein (A1BG), fibrinogen gamma chain
(FGG), apolipoprotein A-IV (ApoA-IV), apolipoprotein
E (ApoE), transthyretin (TTR) and vitamin-D binding
protein (DBP) levels. Among NMO patients the rise in
IGKC and IGHG3 and the downregulation of ApoA-IV
levels hints at the involvement of immunological mecha-
nisms in disease progression. Neurofilament, a protein
localised in the axon usually reflects the axonal health
[103]. The expression of this protein in NMO poses it as
a biomarker for the disease. In another serum proteomic
study by Jiang et al., there was a two-fold elevation in the
levels of haptoglobin in NMO patients in comparison to
control as well as multiple sclerosis cases [104]. Nielson
et al. revealed an increase in levels of immunoglobulins
Ig-G3, Ig-K and Ig-L in the urine proteome of NMO sub-
jects in comparison to healthy subjects [105]. The differ-
ential expression profiles that have been obtained using
two dimensional (2D) gel electrophoresis in combina-
tion with mass spectrometry, in totality, projects several
probable biomarkers that would guide in the diagnosis
of NMO.

The futuristic approach of such proteomic profiling
studies is to investigate the potential cellular players that
are differentially expressed among the seropositive and
seronegative groups of NMO patients. This would be
extremely crucial both in terms of classification as well
as treatment of these two different subgroups of NMO
patients.
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Conclusions

The endeavor in our laboratory for the past 8 years has
been centered on understanding mechanisms leading
to nervous system trauma—be it a disease or an injury.
Starting with Alzheimer’s disease, additional require-
ment of biomarkers aside from the most basic CSF ones,
tau, phosphorylated tau and AB-42, prompted proteom-
ics based research in this domain. The search identified
several plasma and CSF biomarkers for AD. Further on,
research from our laboratory has highlighted the interac-
tion proteome of AICD in a cell based and clinical model.
The follow-up studies dealing with candidate biomark-
ers identified through proteomics which are function-
ally linked to important biochemical pathways, are very
crucial for the advancement of understanding the disease
pathophysiology.

Coming on to spinal cord injury, the bulk of biomarker
discovery has always employed proteomics methods.
Since the lack of primary neuron regeneration beyond
the injury point remains evasive, there is tremendous
ongoing research in this area. Proteomics research in
past decades have highlighted the role of cytokines in
trauma pathology as well as those of plasma proteins,
HSPs, glycolytic enzymes, antioxidants and DNA dam-
age and repair proteins, protein degradation, cell signal-
ing and structural proteins. Research from our laboratory
has highlighted several perturbed molecular pathways
post SCI, which include protein phosphorylation, DNA
repair, mRNA metabolism, iron transport tRNA and
rRNA transcription and lipid and ATP catabolism.

Neuromyelitis optica is a relatively less studied patho-
logical condition when compared to the previous two
and we have just started working with clinical samples.
Anti AQP4-IgG was discovered in 2006 as a biomarker
for NMO. A curious feature of this disease is that in sev-
eral cases it has been observed that patients with NMO
were not seropositive for the NMO-IgG. This prompted
us to look for reliable candidate biomarkers and although
studies have been limited so far, proteomics approaches
look promising in this particular upcoming area of neu-
rological disorder.

While working with nervous system we believed that
proteomics approaches favor the initial ‘biomarker dis-
covery’ stage of a research paradigm of a disease. It is
particularly useful in diseases of the neurological dis-
orders or injury as CSF and plasma form the common
target sources of protein profile detection in the initial
and also subsequent stages of identification of pathology
mechanisms. Figure 1 represents the research strategies
adopted by the Mukhopadhyay laboratory to study the
three neuro-pathological conditions, AD, SCI and NMO.
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AICD interactome:
clinical and cellular

Rinding putative
disease markers

Perturbed pathways
during secondary phase

Fig. 1 A representative diagram of the paradigm adopted by our
laboratory in neurodegeneration research. Starting with Alzheimer’s
disease, in proteomics domain, we found out the interacting partners
of AICD in CSF and AICD-transfected human and mouse cell lines.
Twenty novel AICD interactors were found in mouse neuroblastoma
cells. The study was further followed up in human CSF, where differ-
entially expressed AICD interactors were found out. Finally, differential
expression of AICD interactors were studied in human and mouse
neuroblastoma. Moving forward to spinal cord injury, we looked at
differentially abundant proteins in the CSF of SCI patients with dif-
ferent severity grades of injury. An interaction network was created
using the proteins found in the CSF of AIS grade A injury and modu-
larization of the same revealed a number of perturbed pathways.
Finding putative disease markers for the rather evasive successful
marker hunting in neuromyelitis optica remains a future perspective
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