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Abstract

We proposed a precise calibration process of Al0.9Ga0.1As/GaAs DBR micropillar cavity to match the single InAs/GaAs
quantum dot (QD) exciton emission and achieve cavity mode resonance and a great enhancement of QD
photoluminescence (PL) intensity. Light-matter interaction of single QD in DBR micropillar cavity (Q ∼ 3800) under
weak coupling regime was investigated by temperature-tuned PL spectra; a pronounced enhancement (14.6-fold) of
QD exciton emission was observed on resonance. The second-order autocorrelation measurement shows
g(2)(0) = 0.070, and the estimated net count rate before the first objective lens reaches 1.6 × 107 counts/s under
continuous wave excitation, indicating highly pure single-photon emission at high count rates.
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Introduction
Quantum light source that emits single photons is the key
device of quantum information processing [1–3]. High
photon extraction efficiency, strong suppression of multi-
photon emission, and high indistinguishability [4] of the
emitted single photons are desired. Among all the ways
to realize quantum light sources such as atomic systems
[5], parametric down-conversion [6], or vacancy centers
in diamond [7, 8], semiconductor InAs/GaAs quantum
dots (QDs) are promising candidates to realize practical
monolithic quantum light sources for quantum communi-
cation and other applications such as quantum-enhanced
sensing [9] or quantum imaging [10]. The advantages of
InAs/GaAs QDs include extremely narrow linewidth [4],
stable and on-demand emission with high single photon
emission rate (can be enhanced by the cavity coupling)
[11], easy to tune through physical multi-fields [12–14],
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more suitable for fiber-array coupling output [15], and
the wavelength is tunable (840∼1300 nm at present) for
potential telecom quantum information application [16].
Despite its advantages, the key issue to realize a practi-
cal QD single-photon source is how to further improve
the brightness (i.e., count rates) of single photon source,
which will greatly improve the efficiency of quantum
information transmission [4]. Therefore, it is necessary
to improve the extraction efficiency of QD emission
and improve their brightness by means of coupling QDs
with microcavities, including micropillars [11], microdisk
[17], photonic crystals [18], and microstructures like
microlenses [19–22]. Meanwhile, the light-matter inter-
action of different systems and the coupling effect in the
visible and infrared range have been extensively studied
[23–27]. In recent years, the study of semiconductor QDs
embedded in micropillar cavities and their cavity elec-
trodynamic effects has attracted extensive attention for
high Q value, low mode volume [11], and its convenience
in direct fiber-coupling output [28–33]. Furthermore, a
perfect resonant coupling of the cavity mode with QD
luminescence wavelength is another key challenge [34,
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35]. In this work, a pronounced crossover phenomenon
of exciton energy and micropillar cavity mode (Q ∼ 3800)
and an enhancement of exciton emission intensity were
observed and an experimental precise cavity mode cali-
bration process was proposed, which can achieve a perfect
coupling of micropillar cavity mode and wavelength of
QDs and then produce a single photon source with high
brightness and high single-photon purity.

Methods
The investigated sample was grown by solid-source
MBE (VEECO Gen930 system) on semi-insulating
GaAs(001) substrate. The sample structure consists of,
in sequence, 500-nm-thick GaAs buffer layer, 25.5 pairs
Al0.9Ga0.1As/GaAs bottom DBR, one λ-thick GaAs cav-
ity, and 15 pairs Al0.9Ga0.1As/GaAs upper DBR with the
same period. In the center of one λ-thick GaAs cavity,
the active InAs/GaAs QDs layer for single-photon emis-
sion was grown in Stranski-Krastanov growth mode with
indium deposition amount gradient on chip so that cer-
tain regions satisfy the proper deposition amount for
dilute single QD formation with exciton emission wave-
length around 910∼930 nm [36]. The above-lying layer of
the InAs QDs layer is a 10-nm-thick GaAs cladding layer.
Above the cladding layer is a Be δ-doping layer with an
average sheet doping density of about 2 × 108 cm−2 to
increase QD brightness [37, 38], and the overall schematic
structures of the formal sample was demonstrated in the
Fig. 1b.
In order to couple the DBR cavity mode with the emis-

sion wavelength of InAs QD perfectly, we performed a
precise cavity mode calibration process. The calibration
process is as follows: firstly, determine the InAs/GaAs sin-
gle QD exciton emission wavelength by μPL spectroscopy
(usually, ∼ 920 nm at 10 K); then, grow a pre-grown QD
sample with a fewer Al0.9Ga0.1As/GaAs DBR periods (6.5
pairs lower and 4 pairs upper DBR) with the thicknesses
defined by λ/4n (λ: the designed center wavelength of
the DBR cavity, n: material refraction index); after grow-
ing the pre-grown sample, measure its optical reflection
spectra at 300 K and 77 K respectively to obtain the shift
rate of the cavity mode; then, define the mismatch ratio of
DBR thickness at the same temperature; for here, we have
defined the measured cavity mode position of the pre-
grown sample (e.g., λ1) and the mismatch ratio is λ/λ1 so
that we grow the formal sample (25.5 pairs lower and 15
pairs upper DBR) with DBR thickness (i.e., growth time)
multiplying the mismatch ratio. The samples grown by
this method can accurately obtain a perfect phase match-
ing in DBR microcavity as designed, thus coupling with
the emission wavelength of single InAs QDs and achieving
an optimal enhancement of QD emission.
In this work, the micropillar arrays were fabricated on

the DBR cavity-coupled QD samples by electron beam

photolithography (EBL) and inductive coupled plasma
(ICP) etching; the serial number is designed and fab-
ricated on the surface of the sample to identify every
single micropillar. In temperature-tuned PL spectra mea-
surements, the sample was cooled in a cryogen-free bath
cryostat with the temperature finely tuned from 4 K to
60 K and excited by a He-Ne laser at the wavelength of
632.8 nm. The confocal microscope setup with an objec-
tive lens (NA, 0.70) focuses the laser into a spot in a
diameter of 2 μm and collects the luminescence effec-
tively into a spectrograph, which enables scanning of
micro-region to search single QD exciton spectral lines.
Micro-photoluminescence (μPL) spectra was detected
by a 0.75-m-long focal length monochromator equipped
with a liquid-nitrogen-cooled Si CCD detector for spec-
trograph. The attenuation slice was set in the spectral
system to tune the excitation power, as to identify the style
of exciton. To investigate the coupling phenomenon of
exciton and cavity mode, the μPL spectra was measured
at various stable temperatures ranging from 6 to 45 K.
To investigate the radiative lifetime of the exciton, a time-
correlated single photon counting (TCSPC) board were
used for time-resolved μPL measurement. To measure
the second-order autocorrelation function g(2)(τ ), the QD
spectral line luminescence was sent to a fiber-coupled
Hanbury-Brown and Twiss (HBT) setup [20] and detected
by two Si avalanched single-photon counting modules
(SPCM-AQR-15; time resolution, 350 ps; dark count rate,
80 counts/s; dead time, 45 ns) and a time coincidence
counting module.

Results and discussion
Figure 1a shows the reflection spectra at room tempera-
ture (T = 300 K) of the pre-grown sample with 6.5 pairs
lower and 4 pairs upper DBR and the formal sample after
the cavity mode calibration process with 25.5 pairs lower
and 15 pairs upper DBR stacks. The cavity mode calibra-
tion process is to compare the measured central funda-
mental cavity mode (933.5 nm of pre-grown sample at 300
K) with the emission wavelength of InAs QD (917.5 nm at
6.0 K), and then convert both into the same temperature
to obtain the mismatch ratio. When growing the formal
sample, multiply the DBR growth time by the mismatch
ratio to achieve accurate calibration of the cavity mode
to couple with the emission wavelength of single InAs
QDs. Comparing the reflection spectra of the pre-grown
sample and the formal sample, cavity mode position was
moved from 933.5 to 941.0 nm as expected. Figure 1c
shows the scanning electron microscope (SEM) image of
the micropillar cavity. As shown in the SEM image, the
micropillars with a diameter of 2.0 μm and a height of 6.5
μm have very smooth sidewalls and high-quality struc-
ture appearance, and the InAs QDs were embedded in a
λ-thick GaAs cavity and sandwiched between 25.5 pairs
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Fig. 1 a The reflection spectra at room temperature (T = 300K) of the pre-grown sample with 6.5 pairs lower and 4 pairs upper DBR and the formal
sample after the precise cavity mode calibration process with 25.5 pairs lower and 15 pairs upper DBR. b Schematic structures of the formal sample.
c Scanning electron microscope (SEM) image of the micropillar cavity with diameter of 2.0 μm and height of 6.5 μm

lower and 15 pairs upper DBR stacks in order to enhance
the photon collection efficiency.
Figure 2a shows the exciton line (X) at 917.24 nm and

cavity mode (CM) line at 917.54 nm which is the typi-
cal non-resonance circumstance of the QD embedded in
a micropillar cavity. In order to couple the DBR cavity
mode with the wavelength of InAs QD perfectly, a pre-
cise cavity mode calibration process was carried out. After
calibrating, the cavity mode coupled with the QD per-
fectly, which shows in the Fig. 2b where there is only X
line at 919.10 nm. On resonance, compared with non-
resonance circumstance, the PL intensity of the X line
get enhanced greatly from 42k to 95k cps. The detuning
energy of the QD and CM is 73.4 μeV based on the fitting
results. According to the time-resolved measurements of
resonant and non-resonant circumstance, the perfect cou-
pling of QD and the cavity mode reduces the lifetime
from 0.908 to 0.689 ns as shown in Fig. 2c. The strong
enhancement of emission intensity and the decrease of
lifetime are related to the increased spontaneous emission
rate for the resonant QD exciton due to the Purcell effect
[39].

The excitation power-dependent μPL spectra of
InAs/GaAs QD coupled with micropillar was studied by
using continuous-wave (CW) He-Ne laser for above-band
excitation as Fig. 2d shows. The quality factor (Q) of the
micropillar cavity is estimated to be 3800. The identifi-
cation of these emission lines is demonstrated by their
power dependencies. With the increase of the excitation
power, the PL intensity of the X line and cavity mode
line is enhanced obviously. The integrated PL intensity of
both X line and CM lines in a log-log scale shows a linear
dependence under low excitation power and saturated
under high excitation power. The solid lines are linear
fitting to the data in a double-logarithmic plot. The fitting
results show that the PL intensity and excitation power
have an exponential relationship where the n (I ∝ Pn) of
X and CM line are 0.85 and 0.87 respectively, indicating
that the emission line type is exciton line. The devia-
tion of the exponent from the ideal value expected for
the exciton line (nX = 1) might be due to the effect of
nonradiative recombination centers in the vicinity of the
QDs [4], which affect the carrier distribution at different
carrier densities.
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Fig. 2 a μPL spectra of the QD exciton of the uncalibrated sample at 6.0 K with the exciton (X) line and the cavity mode (CM) line. b μPL spectra of
the QD exciton of the calibrated sample at 6.0 K. Colored lines: Lorentz fitting of the experimental data. c Time-resolved measurements of
uncalibrated sample and the calibrated sample at 6.0 K. d Excitation power-dependent μPL spectra of the uncalibrated sample at 6.0 K; inset:
integrated PL intensity of X and CM as a function of excitation power in a log-log scale

Figure 3a shows the temperature-tuned PL spectra of
the uncalibrated sample. According to the Fig. 3a, the
exciton (X) line and the cavity mode (CM) line moved at
different shift rates by increasing the temperature from 6.0
to 45.0 K. The CM line shifted from 917.54 nm (6.0 K) to
918.01nm (45.0 K) and the CM shift rate is 0.018 μeV/K,
while the X line shifted from 917.24 nm (6.0 K) to 919.07
nm (45.0 K) and the X shift rate is about 0.069 μeV/K.
The exciton emission shift rate is greater than the cav-
ity mode shift rate as expected. By comparing the curves
of X and CM lines, the two curves intersect at the tem-
perature of 24.0 K, indicating a point where the exciton
and the cavity mode reach resonance at 24.0 K. At reso-
nance, there is an enhancement of the exciton emission
and the observed enhancement of emission is about 14.6-
fold where the exciton PL peak intensity increased from
6.5 × 103 cps to 9.5 × 104 cps. The pronounced crossing
phenomenon of the cavity mode and exciton energies is
demonstrated in the Fig. 3a, which indicates that the light-
matter interaction conforms to weak coupling regime.
To confirm the anti-bunching effect of single-photon

emission of the QD exciton line, the second-order cor-
relation function g(2)(τ ) of both the uncalibrated sample

and the calibrated sample was measured with HBT setup
under CW excitation. Figure 3b and c shows themeasured
second-order correlation function of the X line under res-
onance as a function of the delay time τ . The data could
be fitted with the following expression: g(2)(τ ) = 1−[ 1 −
g(2)(0)] exp(−|τ |

T ) [40]. Figure 3b shows the second-order
correlation function of the sample without the calibra-
tion process. In order to obtain a better single-photon
performance, the single QD exciton X line of the uncal-
ibrated sample was tuned into resonance under 24.0
K to measure the g(2)(τ ). The second-order correlation
function at zero delay of the uncalibrated sample under
temperature-tuned resonance is g(2)(0) = 0.258. Figure 3c
shows the g(2)(τ ) of the QD exciton after the precise cal-
ibration process under 6.0 K, where g(2)(0) = 0.070.
Both are less than 0.5, which indicates an obvious anti-
bunching effect and proves a single-photon emitter with
strong suppression of the multi-photon emission at zero
time delay. Due to the precise cavity mode calibration pro-
cess, the perfect coupling between QD exciton and cavity
mode improved the single-photon purity from 74.2% to
93.0%. Figure 3d shows the radiative lifetime and g(2)(0)
of the exciton emission for the calibrated sample under
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Fig. 3 a Contour of temperature-tuned PL spectra of the uncalibrated sample from 6.0 to 45.0 K. The second-order correlation function g(2)(τ ) of
the QD exciton (X) line under CW excitation of the sample without the calibration process (b) and the calibrated sample (c). d The radiative lifetime
and g(2)(0) of the exciton emission for the calibrated sample under different excitation power

different excitation power. The curves fitting of g(2)(τ ) =
1 − exp(−|τ |

T ) gives the exciton radiative lifetime (T),
and the figure demonstrates that T becomes shorter as
the excitation power increases, while g(2)(0) at lower
excitation power is smaller than that at saturated exci-
tation power, indicating a purer single photon emission
under lower excitation power.
To obtain the net single-photon count rate of the QD

exciton after the precise calibration process, we estimated
all the optical loss including the photon detection effi-
ciency and the transmission loss. The photon detection
efficiency of the Si detector is 33%, and the transmission
loss is 81% including objective lens collection efficiency
(66%), narrow bandpass filter efficiency (40%), fiber col-
limator (80%), and multimode fiber coupling efficiency
(90%). Based on the count rate (1.0 × 106 counts/s) on
two Si single-photon detectors in the coincidence mea-
surements and corrected photon count rate by the factor
of [ 1 − g(2)(0)]1/2 [41], we estimate the net single-photon
count rate is 1.6 × 107 counts/s at the first objective lens.
The results indicate that during the sample growth stage,

the perfect coupling between the cavity mode and QD
exciton can produce a purer and brighter single-photon
source through the precise calibration process.

Conclusions
In conclusion, we presented a bright single-photon source
at 919 nm by fabricating InAs/GaAs QD in a micropil-
lar Al0.9Ga0.1As/GaAs DBR cavity. The temperature-
tuned PL spectra demonstrates a pronounced (14.6-fold)
enhancement of QD exciton emission at the crossing with
the cavity mode under the weak coupling regime. With
the help of the precise cavity mode calibration progress,
it is easy to obtain a perfect phase matching in DBR
microcavity to reach an optimal cavity mode spacial dis-
tribution as theoretically designed and thus achieving an
optimal enhancement of QD emission. The perfect cou-
pling between QD exciton and cavity mode enhanced the
PL intensity by 2.3 times and the single-photon purity
improved from 74.2 to 93.0%. The second-order autocor-
relation measurement yielded g(2)(0) = 0.070 under cav-
ity resonance, indicating single-photon emission at a high
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count rate with 1.6 × 107 counts/s before the first objec-
tive lens. This work demonstrates a highly feasible method
for perfect coupling of QD with cavity mode and the fab-
rication of high-purity and high-brightness single-photon
sources.
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