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Abstract

We present a low threshold-current and fast wavelength-tuning external cavity quantum cascade laser (EC-QCL)
using a scanning galvanometer in the Littman-Metcalf cavity geometry. The EC-QCL could repeatedly swept at
100 Hz over its full tuning range of about 290 nm (2105 cm−1 to 2240 cm−1), providing a scan rate of 59.3 μm s−1. The
continuous-wave (CW) threshold current of the EC-QCL was as low as 250 mA and the maximum output power was
20.8 mW at 400 mA for a 3-mm-long QCL gain chip. With a sawtooth wave modulation, a scan resolution of
< 0.2 cm−1 can be achieved within the tuning range. The low power-consumption and fast swept-wavelength
EC-QCL will be beneficial to many applications.
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Background
The mid-infrared (MIR) region of the electromagnetic
spectrum is the molecular fingerprint region, since
fundamental ro-vibrational transition energies of most
molecules lie in this spectral region. Laser absorption
spectroscopy in the MIR region is important for a
diverse number of applications such as medical breath
analysis, atmospheric pollutants sensing, and indus-
trial effluents monitoring [1–3]. Particularly, with the
fast development of MIR lasers, the performance of
optical instruments based on spectroscopy method
has been greatly improved to provide rapid, sensitive,
and accurate measurements.
For the laser absorption spectroscopy, a tunable single-

frequency laser with narrow linewidth and modest power
is required. Distributed feedback (DFB) quantum cascade
lasers (QCLs) [1] are suitable light sources for these appli-
cations because of their very narrow linewidth [4], high
output power, and room-temperature continuous-wave
(CW) operation. However, a single DFB laser has a very

limited tuning range of a few cm−1 (~ 10 cm−1) via slow
temperature tuning, which limits its usefulness for
broadband absorption features and multi-species gas
detection [5]. DFB arrays have achieved an impressive
tunability over 220 cm−1. However, DFB arrays need
electron beam lithography to fabricate different grat-
ing periods, which is complex and expensive. More-
over, DFB arrays need beam combining of different
wavelengths for sensing applications [6, 7].
External cavity quantum cascade lasers (EC-QCLs)

are widely used as reliable, broadly tunable light
sources, which can provide a tuning range greater
than 300 cm−1 [8] with slow scan by stepper motor.
For traditional EC-QCL, the mode-hop free tuning
can be achieved by mode tracking system which was
proposed by Wysocki et al. [9]. The laser current and
the EC length are modulated with phase-matched
triangular voltage ramps during the tuning process.
However, this only allows mode-hop-free tuning of ~
1 cm−1 at any wavelength inside the full tuning range
of the EC-QCL [10]. A high wavelength tuning rate
EC-QCL is needed for reducing the measurements
time of chemical mixtures in the gas phase. Rapidly
swept EC-QCLs have been designed with intra-cavity
micro-eletromechanical system (MEMS) or acousto-
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optic modulator, which can sweep > 100 cm−1 on a
sub-ms timescale [11]. Unfortunately, these rapidly
swept EC-QCL systems have low spectral resolutions
around ~ 1 cm−1, which is not sufficient for the nar-
row absorption features.
Recently, a swept-wavelength EC-QCL source for mea-

surements of broad absorption features was developed
by M.C. Phillips et al. [12, 13]. The swept-wavelength
EC-QCL can be tuned more than 100 cm−1 at a sweep
rate of 200 Hz with an average output power of 11 mW
at the peak of the tuning curve at 50% duty cycle. How-
ever, pulsed operation would introduce line-broadening
due to the chirped current. In this paper, we use the
scanning galvanometer in the Littman-Metcalf cavity
geometry to realize a fast swept-wavelength EC-QCL
with a tuning range of 135 cm−1 from 2105 to
2240 cm−1 (4.46–4.75 μm). The threshold current was as
low as 250 mA in CW operation at room temperature.
Time-resolved measurement using the step-scan Fourier
transform infrared (FTIR) technique was performed for
the EC-QCL repeatedly swept at 100 Hz. Laser spectrum
analyzer was used to evaluate the spectral resolution.
With a sawtooth wave modulation, a spectral resolution
of < 0.2 cm−1 can be achieved within the tuning range.

Methods
The EC system is based on the Littman-Metcalf config-
uration, and consists of three main elements, the gain
element, in our case the Fabry–Perot (FP) QCL chip
with a collimating lens, a diffraction grating, and a
scanning galvanometer, as shown in Fig. 1. The strain-
compensated QCL active core comprises 30 periods
with In0.67Ga0.33As/In0.36Al0.64As as quantum wells and
barriers, respectively, similar to that described in [14].
The devices were processed in a buried heterostructure
configuration using metal-organic chemical vapor de-
position (MOCVD) for the selective regrowth of Fe-doped
InP. The FP–QCL gain chip with a ridge width of 12 μm

Fig. 1 Schematic of Littman-Metcalf external cavity configuration

Fig. 2 a The normalized emission spectra of the EC-QCL measured
at 25 °C in cw operation with the current of 330 mA. The adjacent
spectrum was measured with the galvanometer rotating step of 0.1°.
b Measured output power (red curve) and SMSR (black point) of the
EC-QCL at different scanning galvanometer angles
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and length of 3 mm was used to construct the EC-QCL.
High-reflectivity (HR) coating consisting of Al2O3/Ti/Au/
Ti/Al2O3 (200/10/100/10/120 nm) and anti-reflection
(AR) coating of Al2O3/Ge (448/35 nm) were evaporated
on the rear facet and the front facet of the gain chip, re-
spectively. The FP–QCL chip was mounted epilayer side
down on a SiC heat sink with indium solder, wire bonded,
then mounted on a holder containing a thermistor com-
bined with a thermoelectric cooler (TEC) to monitor and
adjust the heat sink temperature.
The Littman configuration we used consists of a

collimating lens with the focal length of 6 mm, a dif-
fraction grating with 210 grooves/mm, and a scanning

galvanometer (Thorlabs, GVS111). In the Littman config-
uration as shown in Fig. 1, first-order light is diffracted
into the scanning galvanometer then reflected back into
the FP–QCL chip by the diffraction grating and the emit-
ted single-mode laser light is extracted through zeroth-
order reflection from the diffraction grating.
The emitted optical power and spectrum from the

EC-QCL were measured with a calibrated thermopile
detector and a FTIR spectrometer, respectively. All
measurements were taken with the FP–QCL chip be-
ing held at 25 °C under cw operation.

Results and Discussion
Figure 2a shows the measured cw spectra at different
scanning galvanometer angles with the injection
current of 330 mA. The emission peak shifts from
2105 to 2240 cm−1 by rotating the galvanometer with
the step of 0.1°. Figure 2b shows the measured output
power and the side-mode-suppression-ratio (SMSR) at
different scanning galvanometer angles same as that in
Fig. 2a. A SMSR above 25 dB was realized in almost
the whole tuning range. The average output power
was about 8 mW and the output power profile was
consistent with the electroluminescence spectrum.
Figure 3 depicts the power-current-voltage (P-I-V)
curves measured for the EC-QCL in the central region
at 2180 cm−1. The threshold current of the EC-QCL
was 250 mA, corresponding to a threshold current
density (Jth) of 0.833 kA/cm2. The maximum cw out-
put power of 20.8 mW was obtained at 400 mA.

Fig. 3 The P-I-V characteristics of the EC-QCL in the central region
at 2180 cm−1

Fig. 4 The time-resolved emission peaks of the EC-QCL operated in cw mode at 330 mA and the scanning galvanometer modulation at 100 Hz
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EC-QCL Scan Characterization
We utilized a signal generator to generate a 100 Hz sinus-
oidal wave. By implementing the sinusoidal wave on the
scanning galvanometer, the EC-QCL wavelength can be
swept repeatedly in cw mode with the current of 330 mA.
The sinusoidal wave amplitude is 3 V which corresponds
to the total tuning angle of 3°. For a demonstration of the
EC-QCL scan characterization, time-resolved measure-
ment using the step-scan FTIR technique can be applied.
This technique was often used to study repeatedly oc-
curred processes [15]. We make the generated signal syn-
chronized with the FTIR, and the measurements were
performed with a spectral resolution of 0.2 cm−1 and
20 ns time resolution. The time-resolved emission peaks
were plotted in Fig. 4. The EC-QCL started at 2180 cm−1

then tuning toward lower wavenumbers. After 1/4 pe-
riods, the emission peak reached the minimum wavenum-
ber. The wavenumber tuned from 2105 to 2240 cm−1 in
the next half periods. For the Littman configuration:

λ ¼ d=m� sinαþ sinβð Þ ð1Þ

where λ is the EC-QCL wavelength, d is the grating
period, m is the diffraction order, and α and β are the
angles shown in Fig. 1. The first-order light is reflected
to the scanning galvanometer then reflected back into
the FP–QCL chip. When the scanning galvanometer ro-
tates an angle of θ, the above formula turns to:

dλ
dt

¼ d� cos βþ θð Þ � dθ
dt

ð2Þ

In our configuration, m = 1, β = 7.7°, d = 4.76 μm, and
the EC-QCL can operate in a fast-scan mode with the
scanning galvanometer swept at 100 Hz with the rate of
12.6 rad/s, providing a wavelength tuning rate of
59.3 μm s−1.
We used a laser spectrum analyzer (Bristol Model 771) to

evaluate the spectral resolution. Due to the minimum re-
sponse time of about 0.5 s for the laser spectrum analyzer,
we reduced the galvanometer frequency to 0.02 Hz which
can record the complete wavelength tuning cycle. As
shown in Fig. 5a, by changing the galvanometer angle, the
wavelength varied discontinuously and mode hop about
0.5 cm−1 could be clearly identified. The mode hop is pri-
marily associated with the FP modes of the QCL chip be-
cause of the non-ideal antireflection effect of the AR
coating. In order to reduce mode hop spacing, we add a
sawtooth wave modulation (0.02 Hz, 40 mA) to the DC
driving current on the QCL chip with the galvanometer at
a fixed angle. The wavelength tuning with the sawtooth
wave modulation was shown in Fig. 5b. In one period, the
wavelength is smoothly tuned to lower wavenumbers,
which can compensate for the 0.5 cm−1 mode hop.

However, it is noted that the wavelength tuning is not linear
in one period, which is attributed to the temperature fluctu-
ation of the QCL heat sink. The measured EC-QCL wave-
length with both galvanometer tuning and sawtooth wave
modulation was shown in Fig. 5c. Compared to Fig. 5a, the
mode hop spacing has decreased to less than 0.2 cm−1.

Fig. 5 a The measured EC-QCL wavelength with the galvanometer
voltage of 20 mV and the tuning frequency of 0.02 Hz. The mode hop
is about 0.5 cm−1. b The measured EC-QCL wavelength tuning with a
sawtooth wave modulation (0.02 Hz, 40 mA), which can compensate
for the 0.5 cm−1 mode hop. c The measured EC-QCL wavelength with
both galvanometer tuning and sawtooth wave modulation
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Conclusions
In summary, we have designed a fast swept-wavelength
EC-QCL and investigated its performance, including
single-mode selection, tuning range, and output power.
The time-resolved step scan FTIR technique and laser
spectrum analyzer were applied to measure the tuning
range and spectral resolution. The EC-QCL could re-
peatedly swept at 100 Hz over its full tuning range of
135 cm−1 (about 290 nm) with a scan resolution of <
0.2 cm−1, which can be achieved with a sawtooth wave
modulation. The CW threshold of the EC-QCL was as
low as 250 mA with a maximum power of 20.8 mW.
The low power consumption and fast swept-wavelength
characteristic of the device could make it a promising
light source for trace gas sensing applications.
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