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Abstract

We propose and theoretically investigate an efficient solar light absorber based on a multilayer structure consisting
of tungsten nanoparticle layers and SiO2 layers. According to our calculation, average absorbance over 94% is achieved
in the wavelength range between 400 and 2500 nm for the proposed absorber. The excellent performance of the absorber
can be attributed to the localized surface plasmon resonance as well as the Fabry-Perot resonance among the
metal-dielectric-metal layers. We compare the absorbing efficiency of tungsten nanosphere absorber with absorbers
consisting of the other metal nanoparticles and conclude that iron can be an alternative material for tungsten
in solar energy systems for its excellent absorbing performance and the similar optical properties as tungsten.
Besides, a flat multilayer absorber is designed for comparison, and it is also proved to have a good absorbing
performance for solar light.

OCIS codes: (350.6050) Solar energy, (300.1030) Absorption, (240.6680) Surface plasmons, (310.6628)
Subwavelength structures, nanostructures, (160.3918) Metamaterials

Background
Solar energy systems have drawn more and more atten-
tions in recent decades due to the excessive consumption
of traditional energy sources and seriously deteriorating
environment situation. In solar energy systems, solar
energy can be converted to electricity or thermal energy
for different usages with minor pollution to the environ-
ment. However, the present solar energy systems, like
thermophotovoltaic (TPV) systems, solar steam generation
systems, solar water heating systems, are inefficient in en-
ergy conversion, and efficiency approaching 20% in appro-
priate optical condition has been theoretically predicted in
TPV systems [1], which is still far away from being widely
produced. Many high-efficient solar absorbers are devel-
oped to improve the energy conversion efficiency in kinds
of solar energy systems. Surface plasmons polaritons
(SPP), localized surface plasmons (LSP), and magnetic
resonances are often utilized to realize near-perfect
absorption in those absorbers. As solar light has a wide
range of spectrum (from 200 to 3000 nm), it requires a
broad enough absorbing spectrum for absorbers to

effectively convert light. However, single resonance mode
excited in many absorbers usually cannot result in broad-
band light absorption. The common solution to solve this
problem is to design absorbers with multiple resonance
modes. For example, multilayer systems, like flat metal-
dielectric-metal (MDM) structures [2, 3], MDM pyramid
multilayer structures [4, 5], or MDM with kinds of grat-
ings structures [6], can often have broadband absorption
resulting from multi-resonances excited between metal-
dielectric layers as long as the number of layers is enough.
Other structures, like arrays of minor absorbing structures
[7, 8], or structures with gradient changing in their sizes
[8], can support different resonance modes and also result
in broadband absorption. Most of these designs require
quite difficult fabricating processes, and the absorbing
efficiency are very critical to the fabricated structure and
the surrounding environment, which strongly inhabits
their applications.
Besides, the materials of absorbers should be cheap

enough, which can provide the possibility of a wide pro-
duction. However, many reported absorbers use noble
metals in their structure. Near-perfect absorption can
often be achieved in these absorbers within the range of
visible light, but their absorbing performance out of this
region is terrible [9–13]. As there is more than 40% energy
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of solar light out of the visible light spectrum, these ab-
sorbers usually may be inefficient in solar energy systems.
Besides, the melting points of noble metals like gold and
silver are around 1000 °C, and they can be easily melt
when applied in a high-temperature solar energy system,
which seriously influences the stability and efficiency of a
solar energy system. Therefore, the common metallic ma-
terial used in solar energy system is tungsten. Compared
with other metals, tungsten absorbers often have relative
high melting point, have stable chemical properties, and
show excellent performance in absorbing broadband solar
light [14]. These advantages make tungsten an indispens-
able role in solar energy system.
In this paper, we propose a broadband solar light

absorber based on the design of nanoparticle-dielectric
multilayers and the application of tungsten and iron in
the structure. The paper is arranged as follows. First, we
will introduce the 3-D absorber and show the simulation
results. Then, we will illustrate the absorbing mechanism
of the absorber and compare this structure with the flat
MDM structure to get a deeper insight. Further, there
will be a discussion between iron nanoparticle absorber
and tungsten nanoparticle absorber for their perform-
ance when applied in this structure.

Methods
The basic structure of the metal nanoparticle absorber
(NPA) is depicted in Fig. 1a. The absorber is composed
of multiple metal nanoparticle-dielectric (MD) layers.
The metal nanoparticle layer consists of closely arranged
nanoparticles of square array in cubic lattice embedded
in SiO2 layer. The diameter of the nanoparticles is
20 nm, and there is no gap between the neighboring
nanoparticles. The dielectric layer in the most top of the
structure is used for protecting the metal particles from
being oxidized. A unit cell of single-layer NPA is plotted
in Fig. 1b. The top dielectric layer is for protecting the
metal from being oxidized and has the same thickness as
the lower dielectric layer. Thus, the metal particle is em-
bedded in the middle of the whole dielectric layer. Tung-
sten is chosen to be the metallic part of the structure
due to its excellent performance in TPV system [14],

and we chose silica to be the dielectric part of the ab-
sorber for its relative low refractive index. Developing
modern nanofabrication techniques, such as electron-
beam lithography [15], focused ion beam milling [16],
magnetron sputtering method [17], or self-assembly of
colloids [18], makes it possible to produce nanoparticle
layer structures proposed in this paper [19, 18, 20–22].
As for simulation, we use 3-D finite-difference time-

domain (FDTD) method. The corresponding software is
Lumerical FDTD. The refractive indexes of dielectric
(SiO2) and metal (tungsten) are both adopted from the
experiment data [23, 24]. As the metal nanoparticle
layers consist of infinite continuous nanoparticles, we
choose one metal nanoparticle cell as the simulation
model. We plot a unit cell of the periodical single-layer
NPA structure in Fig. 1b. A normally incident TM light
is incident along the negative y direction with the
polarization along the x direction. Therefore, the simula-
tion period P is the same as the diameter of the metal
nanoparticle (20 nm). The minimum mesh size is set as
0.1 nm. Periodical boundary condition is adopted for
single unit cell in Fig. 1b. Perfect match layers (PML)
are adopted at the bottom and top of the structure. The
absorbance is calculated as A = 1 − R − T, where R is the
reflection and T is the transmission. The thickness of
the metal substrate is set as 300 nm, which is much lar-
ger than its typical skin depth to avoid transmitting light.
Thus, there is nearly no transmittance in the overall fre-
quency range, and the absorbance of the absorber can
be calculated as A = 1 − R.

Results and Discussion
For one-layer NPA, the absorbing performance is depicted
in Fig. 2 varying with the dielectric layer thickness hh. In
Fig. 2, two distinguished regimes are observed, namely the
thin-dielectric-layer regime (hh < 100 nm) and thick-
dielectric-layer regime (hh > 100 nm). At the thin-
dielectric-layer regime, the well-absorbing band is broad-
ened with the increase of the thickness hh. However, at the
thick-dielectric-layer regime, there is an absorbing dip
appearing at a shorter wavelength range and the well-
absorbing area shrinks as the dielectric layer is getting

Fig. 1 a Basic structure of metal nanoparticle-dielectric absorber (NPA). All of the dielectric layers have a thickness of hh (100 nm). The diameter
dd of metal nanoparticles is 20 nm. b One unit cell of the single-MD-layer NPA structure. Period P = dd = 20 nm
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thicker. We choose hh = 100 nm in our following study due
to relative well-absorbing performance over the operating
band and also due to no obvious absorbing dip appearing
in the visible region.
When there is only one MD layer in the structure,

absorbance over 80% is achieved for the wavelength range
from 400 to over 1600 nm, which already exceeds many
solar absorbers reported. With more MD layers applied,
the absorbing performance of the absorber can be further
improved. We plot the absorbing performance of NPA with
different numbers of MD layers in Fig. 3. With more MD
pairs applied to the NPA structure, the absorption in longer
operating wavelength increases greatly. With four MD
layers applied, the absorbance of the corresponding
absorber can almost exceed 80% for the wavelength range
from 400 to 2500 nm in which most of the solar light
spectrum is included. With eight MD layers applied to the
NPA, an absorbance over 90% is obtained in most of the
wavelength range from 400 to 2500 nm. With 12 MD pairs
applied to the NPA, the absorption exceeds 90% in the
whole operating wavelength.
To further illustrate the relationship between the absorb-

ing performance of NPA absorber and the number of the
MD pairs in the NPA structure, we calculate the average
absorbance of NPA absorbers varying with different
numbers of MD pairs. The average absorption can be
calculated as

A ¼
Z λ1

λ2

A λð Þdλ= λ1−λ2ð Þ

where λ1 and λ2 is 2500 and 400 nm, respectively, at our
case. The relationship between the number of MD layers
and the average absorption is depicted in Fig. 4. With the
increment of MD pairs, the average absorption rises from
68.5% (single MD layer) to 95.4% (12 MD layers). When
the number of MD pairs is more than 8, the growth of the
average absorption seems to reach its instinctive limit and
will be relatively slow. According to the calculation, the
average absorbance of NPA with more than five MD layers
reaches up to 90% over the wavelength range of 400 to
2500 nm. This absorber exceeds many of previously
reported absorbers in both absorption efficiency and
perfect absorption bandwidth.
As we mentioned before, the NPA structure can realize

high absorption even with only one MD pair. To under-
stand the physical mechanisms responsible for the high
absorption of the single-layer NPA structure, we plot its
spatial distribution of electric field in Fig. 5. Figure 5a is
the electric-field magnitude distribution of the single-layer
NPA structure in plane y = 0. With incident light polarized
along x direction, the electric filed is enhanced and
confined around the nanoparticles. Such a field profile
suggests that the absorption can be ascribed to the local-
ized surface plasmon resonance (LSPR) [25]. To better

Fig. 2 a, b Absorbing performance for one-layer NPA varying with dielectric thickness hh

Fig. 3 a, b Absorbance of the NPA structure with multiple layers applied. N-layer NPA means that NPA with N MD pairs
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show that, we plot the cross-sectional electric-field magni-
tude distribution of the particle in the z = 115 nm plane
(marked in Fig. 1b) in Fig. 5e. Clearly, electric field
enhancement appears at the both sides of the metal parti-
cles along the polarization direction of incident light. Due
to the nanoparticles are closely arranged, the LSPR around
the particles coupling with neighboring LSPR together
result in high absorption of the NPA structure. The coup-
ling of neighboring LSPR consumes light and results in the
high absorption of the NPA structure.
Compared with the single-MD-pair NPA, the absorbing

performance is greatly improved in the longer wavelength
range for the NPA structure with multiple MD pairs. To
illustrate this phenomenon, we plot the spatial electric
distribution of the eight-MD-pair NPA structure at Fig. 6.
For light of different wavelengths, the field magnitude
distributions are different. For shorter-wavelength light
(Fig. 6a, b), it is mainly absorbed by the upper MD layers.
The electric filed magnitude and field confinement around
the nanoparticle in lower layers of the structure is weak.
While for longer wavelength (Fig. 6c, d), the electric field
confinement exists obviously in all of the MD layers and
LSPR appearing strongly around not only the upper par-
ticle layers, but also the lower particle layers. This means
that for the multiple-MD-pair NPA structure, the lower
MD layers do not participate well into absorbing shorter-
wavelength incident light. Instead, the longer-wavelength
incident light can be well absorbed and transformed into
LSPR in the lower MD layers. Thus, adding MD pairs to
the NPA structure will greatly improve the absorbing
performance of the NPA structure for longer-wavelength
light, which corresponded well to the absorbing curve in
Fig. 3a. Also, this explains the reason why the absorbing
curves for different MD pairs in the NPA structure in
Fig. 3b increase apparently in the longer wavelength range
but merge together in shorter wavelength with the
increment of MD pairs.

To get a deeper insight of the NPA structure, we
calculate the absorbing performance of a similar absor-
ber—FMA (flat MDM absorber, plotted in Fig. 7). The
absorbing spectra at different metal layer thicknesses hd
has been plotted in Fig. 8. The layer thickness of SiO2 is
set as 100 nm, which is the same as the NPA structure.
With thicker metal layers, the absorbance of the FMA
structure turns to decrease. The absorbance over 90% is
achieved for the wavelength range from 400 to 1500 nm
when hd = 10 nm. However, when the metal layer thick-
ness hd is set as 20 nm, which is the same as the metal
layer thickness of the NPA structure, the absorbing effi-
ciency of FMA drops obviously. This can be easily
understood, because when the metal layers are getting
thicker, the reflectance of the structure is more obvious
and the absorbance reduces as a result. The selective

Fig. 4 Average absorbance as a function of the number of MD layers

Fig. 5 Electric field magnitude distribution (log10|E/E0|) of
single-MD-layer NPA: Electric field magnitude distribution in y= 0 plane
at wavelength a 440 nm, b 750 nm, c 1150 nm, and d 1580 nm; e
electric field magnitude distribution (|E/E0|)in z = 115 nm plane at
wavelength 905 nm
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absorption of FMA is better than NPA. When the
wavelength is over 2500 nm, the absorption is below 20%.
Although there are lots of MDM absorbers proposed for
solar light absorbing [26, 27–32], the absorbing perform-
ance of our FMA exceed many other MDM absorbers.
The absorption efficiency of FMA is high, and the absorb-
ing bandwidth is quite broad. Another advantage of MDM
is the absorbing selectivity of FMA. When the wavelength
is over 2500 nm, the absorption is below 20%, which
makes it able to be applied in the selective solar energy
systems, like TPV systems. Besides, the thickness of the
metal layers in FMA is 10 nm, which is thicker than the
MDM absorber in refs. [31, 32] and makes it more easy to
be fabricated. These advantages are all due to the applica-
tion of tungsten in the FMA structure instead of noble
metals which are commonly used in MDM absorbers.

Fig. 6 Electric magnitude distribution (log10|E/E0|) of the eight-MD-pair NPA structure in the y = 0 plane at a 441 nm, b 638 nm, c 1580 nm, and
d 2500 nm. p1–p8 represent the eight particles in the one unit cell of the eight-MD-pair NPA structure

Fig. 7 Diagram of flat metal-dielectric multilayer absorber (FMA)
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For the MDM absorbers, their absorbing abilities for
light are often based on the Fabry-Perot resonance [2, 6,
33]. When adding more MD pairs to the structure, there
is an extra absorbing peak appearing at the absorbing
spectrum for FMA due to Fabry-Perot resonance. To
better show this, we plot three-layer FMA as an
example. Figure 9 plots the absorbing performance of
three-layer FMA varying with dielectric thickness hh.
For both Fig. 9a and Fig. 9b, there are three absorbing
peaks appearing in the spectrum, which results from
Fabry-Perot resonance [2, 6]. The resonance wavelength
of Fabry-Perot resonance increases with the cavity thick-
ness [2, 6]. Herein, the absorption band broadens to
longer wavelength range with the increment of dielectric
layer thickness hh, and the absorption band has a
redshift in Fig. 9.
This also happens to the NPA structure. For absorbing

spectrum in Fig. 2a, the absorbing peak appearing
around 1000 nm should be the result of Febry-Perot
resonance. When there are three MD pairs in NPA,
there will also be three absorbing peaks in the absorbing
spectrum (show in Fig. 10) as the absorbing spectrum of

three-layer FMA in Fig. 9. However, when eight MD
pairs are applied to NPA, the absorbing peaks merge
together; there are only several absorbing peaks that can
be observed in longer wavelength. When increasing the
thickness of the dielectric layer in Fig. 10, the absorbing
spectrum redshifts. Due to the similarities of the absorbing
spectrum of the three-layer FMA and NPA, we can infer
that the excellent absorbing performance of NPA should
also result from the Fabry-Perot resonance. Therefore,
there are both LSPR and Fabry-Perot resonance in NPA.
The excellent absorbing performance should be the result
of the existence of LSPR and Fabry-Perot resonance.
The metal we choose for this absorber is tungsten. In

our previous work [34], we have shown that iron can be an
excellent candidate to be applied in the solar light
absorbers. As depicted in Fig. 11, we compare the absorb-
ing performance of tungsten nanoparticle structure with
the performance of absorbers consisting of other metal
nanoparticles under the same structure. An absorbing
efficiency over 92% for the wavelength range from 400 to
2500 nm is achieved for iron absorber. The well-absorbing
bandwidth of iron absorber (about 2.1 μm) exceeds the
bandwidth of tungsten absorber (about 1.8 μm). The
absorbing efficiency of the golden absorber and silver
absorber merely reach 90% within narrow wavelength
ranges. Their absorbing performances are much worse
than the tungsten and iron absorbers under this structure.
This result corresponds well to our former work [34],
which also shows that iron absorber often has better
absorbing performance over noble metals due to the
well-matching condition between the impendence of
iron absorber and the impendence of free space.
Noble metals are well known for their excellent
absorbing performance of visible light in the field of
solar light absorption. However, they are usually not
used in TPV system as an absorber or emitter,
because they are unable to absorb well the light out
of the visible light range. Besides, their melting points
are relatively low (around 1000 °C), which seriously
hinders their applications in solar energy systems.

Fig. 9 Absorbing spectra of the three-layer FMA as a hd = 20 nm and b hd = 10 nm varying with dielectric thickness hh. Black circles
mark resonance peaks

Fig. 8 Absorbing spectra of the eight-MD-pair FMA varying with the
metal thickness hd. The dielectric layer thickness hh is set as 100 nm
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Like tungsten NPA structure, the absorbing spectrum
of iron NPA structure also has a redshift with the
increase of silica layer thickness hh (plotted in Fig. 12).
The absorbing efficiency is almost beyond 90% for the
entire operating waveband apart from an absorbing dip
of a 100-nm wavelength range appearing when the layer
thickness hh is over 100 nm. Compared with Fig. 7, the
overall absorbing performance of the iron NPA structure
exceeds that of the tungsten NPA structure. The average
absorption of iron nanoparticles (94.88%) and tungsten
nanoparticles (94.09%) exceed that of gold (64%) and
silver (28.4%) nanoparticles. The excellent absorbing
performance makes iron a promising alternative material
for tungsten in solar energy system. Besides, iron is more
cost-effective than tungsten. Its melting point is around
1500 °C and is higher than that of noble metal. For tung-
sten, the chemical stability is one of the crucial proper-
ties in solar systems. Alloy of iron and tungsten may
have the advantages of the two metals. We further com-
pare their reflective indexes in Fig. 13. Data of gold and

silver are adopted from reference [35]. It shows that the
optical properties of tungsten and iron are very similar
especially for the imaginary part of their reflective
indexes, which results in their similar absorbing
performances in the NPA structure.
For the NPA structure, the fabrication of such uniform

small particles may be difficult. Therefore, well robust-
ness is required for the proposed structure. We calcu-
lated the absorbing performance of structures consisting
of different shapes and sizes in Fig. 14a, b. For different
sizes of nanoparticles, the absorption of the structure
remains over 90% at almost of the operating wavelength.
When we change the spherical nanoparticles into ellips-
oid nanoparticles in the NPA structure, the absorption
decreases (shown in Fig. 4b). For E1 and E2 conditions
in which the electric field is along the major axis of the
ellipsoid particles, the absorption drops mainly in the
wavelength range over 1700 nm and the absorption in
the shorter wavelength where most of the solar energy is
distributed almost remains the same. The average
absorptions in these two cases are over 90%. When the
electric field is along the minor axis of the ellipsoid par-
ticles, the absorption changes dramatically. Therefore,
the direction of the major axis of the ellipsoid-shape
nanoparticle should be kept to agree with the direction
of the electric field while fabrication.

Fig. 10 The absorbing spectra varying with silica layer thickness hh in a the three-layer NPA structure and b the eight-layer NPA structure

Fig. 11 Absorbance of the eight-layer NPA structures with different
metals applied

Fig. 12 Absorbing spectra varying with layer thickness hh in the
eight-layer Fe-NPA structure
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Besides, the damping constant of tungsten nanoparti-
cle is often larger than the bulk tungsten due to surface
scattering and grain boundary effects. According to the
data in reference [36], we recalculate the absorption of
the structure using the increased damping constant of
tungsten. The result is plotted in Fig. 15. When the
damping constant of tungsten increases, the absorption
in the shorter wavelength (from 400 to 1700 nm)
remains almost unchanged, while the absorption in the
longer wavelength (from 1700 to 2500 nm) increases.
This can be attributed to that when the damping
constant of tungsten in the infrared region increases, the
imaginary part of its permittivity in the infrared region
will increase [36] and result in the increment of the
absorption. The change of the permittivity of tungsten is
more obvious in longer wavelength than shorter wave-
length. Therefore, the absorption calculated with the
increased damping constant in longer wavelength
changes a little while it in the shorter wavelength nearly
remains unchanged.
So far, we have discussed the NPA structure and FMA

structure and their absorbing performances and absorbing
mechanism and the metals that can be applied in them to
reach high absorption. However, the applications of these
absorbers may be different. In TPV system, the well select-
ive absorbing characteristics are often required to reduce
thermal emission from the solar absorber. So, multilayer

NPA structures whose absorbing performances are plotted
in Fig. 3b are not suitable to be used in TPV system due
to high thermal emission over 2500 nm. However, the
NPA structure with a few MD layers (absorbing spectrum
plotted in Fig. 3a) and FMA structure (absorbing
spectrum plotted in Fig. 9) can be used in the TPV system
due to low thermal emission over 2500 nm. For multilayer
NPA structures, they could be useful in other solar energy
systems in which well selective absorbing performances
are not required, like solar steam generation [37], waste
water treating systems, and water heating systems.

Conclusions
In summary, we have proposed a highly efficient broad-
band absorber consisting of tungsten nanoparticle layers
and SiO2 layers on the top of a metal substrate. With eight
MD layers applied, the absorber can have an absorbance
over 90% for most of the wavelength range from 400 to
2500 nm. The absorbing efficiency of this absorber exceeds
the absorbing efficiency of many other solar light
absorbers, which provide much possibility for the absorber
to be applied in solar energy systems like solar steam
generation, solar water heating, and waste water treating
systems. Also, we compare the NPA absorber with FMA
and found that the excellent absorbing performance of
NPA absorber results from LSPR and Fabry-Peort reson-
ance. We further compare the absorbing performance of

Fig. 13 Comparing of the a real part of refractive index and b the imaginary part of refractive index of commonly used metals

Fig. 14 a Absorbing spectrum of the NPA structure varying with nanoparticle size. b Absorbing spectrum of the NPA structure for nanoparticles
with different shapes. S sphere, E ellipsoid, a the major axis semidiameter of the ellipsoid, b is the minor axis semidiameter of the ellipsoid. For E1
and E2, the electric filed is along the major-axis direction. For E3, the electric field is along the minor-axis direction
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several common metal nanoparticle absorbers under the
same structure parameters. Results show that iron can be a
promising candidate material for tungsten in solar
absorber. All these simulation results help to the design
novel solar light absorbing cells in solar energy systems,
and the absorbers we proposed are promising to be applied
in the real applications.
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