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Abstract

The rational design and preparation of hierarchical nanoarchitectures are critical for enhanced photocatalytic
hydrogen evolution reaction (HER). Herein, well-integrated hollow ZnO@TiO2 heterojunctions were obtained
by a simple hydrothermal method. This unique hierarchical heterostructure not only caused multiple reflections which
enhances the light absorption but also improved the lifetime and transfer of photogenerated charge carriers due to
the potential difference generated on the ZnO–TiO2 interface. As a result, compared to bare ZnO and TiO2, the
ZnO@TiO2 composite photocatalyst exhibited higher hydrogen production rated up to 0.152 mmol h−1 g−1 under
simulated solar light. In addition, highly repeated photostability was also observed on the ZnO@TiO2 composite
photocatalyst even after a continuous test for 30 h. It is expected that this low-cost, nontoxic, and readily available
ZnO@TiO2 catalyst could exhibit promising potential in photocatalytic H2 to meet the future fuel needs.

Keywords: ZnO, TiO2, Hollow sphere, Hierarchical, Heterojunction, Hydrogen production

Background
Hydrogen (H2), one of the most important clean and
sustainable energy, has been regarded as a promising al-
ternative energy for meeting future fuel needs [1–5].
Since the discovery of photoelectrochemical (PEC)
water-splitting system by Fujishima and Honda in the
1970s [6], the production of H2 based on TiO2 semicon-
ductor photocatalysts using sunlight has attracted in-
creasing attention. However, the practical application of
single bare TiO2 in the industry is still a challenge due
to the high-rate recombination of photogenerated elec-
trons and holes at the surface of TiO2 results in a low
quantum efficiency. To date, many efforts have been
made to design TiO2-based composite photocatalysts to
solve the above issues, such as coupling with another
semiconductor, doping transition metal ions or nonmetal
atoms, and so on [7–9]. In particular, the formation of
semiconductor–semiconductor heterojunctions with
matching band potentials is an effective way to prevent

the charge recombination and increase the lifetime of
the charge carriers [10–12].
Among the various semiconductors, ZnO is also ex-

tensively studied because of its identical properties of
TiO2 with non-toxicity, cheapness, high efficiency, and
chemical stability [13, 14]. Since the conduction band
(CB) and valence band (VB) of ZnO lie above those of
TiO2, the photogenerated electrons in ZnO will be
transferred to TiO2 once a heterojunction was formed
between TiO2 and ZnO. This kind of ZnO@TiO2 com-
posite heterojunction will benefit for the separation of
photogenerated electron–hole pairs, thus leading more
electrons accumulated on the TiO2 which will react with
H2O to generate H2 [15–17].
In addition to the above we have discussed, geometric

shapes and morphologies of the photocatalysts also heavily
influence the hydrogen evolution reaction (HER) perform-
ance [18–20]. It is has been reported that the diffractions
on the hollow spheres and the multiple reflections due to
the shell structure would enhance the effectiveness of light
utilization [21]. For example, Li’s group prepared hydroge-
nated cage-like titania hollow spheres exhibited much
higher HER activities than solid structure [22]. Beyond
that, the spherical hollow structures have the advantages
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of large specific surface area, reduced transport lengths for
charge carriers, and good chemical and thermal stability,
which all contribute to the excellent photocatalytic ability
[23]. However, most of the research has focused on the
preparation of composite hollow spheres by doping transi-
tion element, such as Ce–ZnO [24], Ni–ZnO [25], Ag–
TiO2 [26], Au–TiO2 [27], and so on. To the best of our
knowledge, few studies reported on the synthesis of
closed, complete, and intact hollow spheres composed of
mixed metal oxides porous particles. Even so, most of
these composites are applied in photocatalytic degradation
of organic pollutants but not in the photocatalytic hydro-
gen production.
In this paper, we reported a facile method to

synthesize hierarchically porous ZnO@TiO2 composite
hollow microspheres and applied them in the photocata-
lytic H2. The hollow spheres enhanced the light absorp-
tion by multiple reflections, at the same time, the
lifetime and transfer rate of photogenerated charge car-
riers were also improved due to the potential difference
generated on the ZnO–TiO2 interface. The result
showed that the ZnO@TiO2 composite photocatalyst ex-
hibited enhanced H2 evolution rate, compared to the
bare ZnO and TiO2. In addition, the mechanism of the
photocatalytic H2 on the ZnO@TiO2 composite hollow
spheres was discussed in detail.

Methods
Synthesis of the Hierarchical ZnO@TiO2 Hollow Spheres
The preparation of ZnO@TiO2 composites was based
on a very facile one-step template-free hydrothermal
method at ambient conditions. In a typical procedure,
0.015 mol of Ti(SO4)2, 0.015 mol of Zn(NO3)2·6H2O,
0.015 mol of NH4F, and 0.06 mol of CO(NH2)2 were
added to a beaker with 50 mL deionized water. After
stirring for 60 min, the mixture solution was transferred
into a Teflon-lined stainless steel autoclave and heated
in an electric oven at 180 °C for 12 h. After that, the

white precipitate was thoroughly washed with ethanol
four times and then dried at 60 °C for 12 h to obtain
ZnO@TiO2 heterostructures. For comparison, bare TiO2

and ZnO were prepared under the same conditions.

Synthesis of Pt–ZnO@TiO2 Samples
In a typical synthesis process of Pt–ZnO@TiO2 samples,
the ZnO@TiO2 hollow spheres were put into a container
containing 10 vol% triethanolamine and H2PtCl6 solu-
tion. Then, the system was bubbled with nitrogen for
30 min to remove the air. Finally, the Pt was in situ
photodeposited on the ZnO@TiO2 hollow spheres under
a full arc light irradiation (λ > 300 nm) for 2 h. The Pt
content can be tuned by the concentration of H2PtCl6
and the reaction time, which was determined by induct-
ively coupled plasma (ICP, PE5300DV).

Characterization
The morphology of ZnO@TiO2 heterostructures was
characterized via field emission scanning electron micro-
scope (FESEM, Hitachi, Japan), transmission electron
microscopy (TEM, Tecnai F20), high-angle annular dark
field scanning TEM (STEM, Tecnai F20), and high-
resolution TEM (HRTEM, Tecnai F20). The energy-
dispersive X-ray spectroscopy (EDS) mapping images
were captured on a Tecnai G2 F20 S-TWIN atomic
resolution analytic microscope. The crystal phase prop-
erties of the samples were characterized using an X-ray
diffractometer with Cu–K radiation (XRD, M21X, MAC
Science Ltd., Japan). The BET specific surface areas were
measured on Belsorp-mini II analyzer (Japan).

Photoelectrochemical Measurements
Photocurrent studies were performed on a CHI 660D
electrochemical workstation, using a three-electrode con-
figuration where fluorine-doped tin oxide (FTO) elec-
trodes deposited with the samples as working electrode,
Pt as counter electrode, and a saturated calomel electrode

a b

Fig. 1 a A low-magnified SEM image of ZnO@TiO2 hollow spheres; the inset shows the statistical analysis of diameter distribution of the samples.
b A high-magnified SEM image of a single broken ZnO@TiO2 sphere
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(SCE) as reference. The electrolyte was 0.35 M/0.25 M
Na2S–Na2SO3 aqueous solution. For the fabrication of the
working electrode, 0.25 g of the sample was grinded with
0.06 g polyethylene glycol (PEG, molecular weight 20,000)
and 0.5 mL ethanol to make a slurry. Then, the slurry was
spread onto a 1 × 4 cm FTO glass by the doctor blade
technique and then allowed to dry in air. A 300 W xenon
arc lamp served as a simulated solar light irradiation
source (Perfectlight, PLS-SXE 300C, Beijing, China). The
incident light intensity was tuned to be 100 mW/cm2

measured by NOVA Oriel 70260 with a thermodetector.

Photocatalytic Hydrogen Production Tests
Photocatalytic hydrogen production experiments were per-
formed in a sealed quartz flask at ambient temperature

and under atmospheric pressure. A 300 W xenon arc lamp
(Perfect light, PLS-SXE 300C, Beijing, China) was used as
the light source to trigger the photocatalytic reaction. The
evolved H2 were collected and online-analyzed by a H2-
solar system (Beijing Trusttech Technology Co., Ltd.) with
a gas chromatogram equipped with a thermal conductivity
detector (TCD), 5A molecular sieve column, and nitrogen
as the carrier gas. All photocatalytic experiments over
100 mg photocatalyst were performed in an aqueous solu-
tion containing H2O (80 mL) and alcohol (20 mL). Prior to
irradiation, the system was deaerated by bubbling nitrogen
for 15 min. During the photocatalytic reaction, the reactor
was tightly sealed to avoid gas exchange.

Results and Discussion
The size and morphology of the as-prepared ZnO@TiO2

hollow spheres were displayed in Fig. 1. Figure 1a shows
the sample has a uniform spherical morphology with a
mean diameter about 1.45 μm according to the nanoparti-
cle size distribution (inset of Fig. 1a). Figure 1b reveals a
single broken sphere, indicating that the prepared sample
is a hollow structure composed of small particles. TEM
image was further used to confirm the structure of the
ZnO@TiO2 hollow spheres. The color change of the
ZnO@TiO2 spheres at the center and the outside realm
was dark and bright, respectively, confirming the ZnO@-
TiO2 spheres were hollow structure (Fig. 2a). A high-
magnified view in Fig. 2b also depicts the surface of the
hollow spheres was rough which were constructed by
nanoparticles subunits, as a result in the formation of the
hierarchical heterostructure of ZnO@TiO2 hollow
spheres. The elemental maps in Fig. 2(d–f ) were used to
confirm the elemental distribution in the ZnO@TiO2
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Fig. 2 a TEM, b magnified TEM, and c STEM images of ZnO@TiO2 hollow spheres; Corresponding EDS elemental mappings of c indicating the
uniform distribution of d Ti, e Zn, and f O, respectively
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Fig. 3 a HRTEM images of ZnO@TiO2 hollow spheres. b, c, and d are
amplified HRTEM images of designated square part in a, indicating
ZnO, TiO2, and ZnO@TiO2 heterojunctions, respectively
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hollow spheres. It can be seen that the Zn, Ti, and O were
uniformly distributed in ZnO@TiO2 hollow spheres.
HRTEM images in Fig. 3 verified the heterojunction

structure of ZnO@TiO2 hollow spheres. The selected
areas in Fig. 3a marked by white square were magnified in
Fig. 3b–d, corresponding to ZnO, TiO2, and ZnO@TiO2

heterojunction. The lattice spacing distances of 0.28 and
0.35 nm were corresponding to the (100) planes of wurtz-
ite ZnO and (101) planes of the anatase TiO2, respectively,
as shown in Fig. 3b, c. Figure 3d shows a clear transition

from wurtzite ZnO phase to anatase TiO2 phase, which
confirmed the heterojunction was formed at the interface
between ZnO and TiO2. Such heterojunction structure
can greatly promote the photoexcited electron transfer for
enhanced photocatalytic activity.
The pore structure properties of ZnO, TiO2, and

ZnO@TiO2 samples were further determined by the N2

adsorption–desorption isotherms and corresponding
Barrett–Joyner–Halenda (BJH) pore size distribution
plots (Fig. 4). All the samples showed a type IV isotherm
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Fig. 4 N2 adsorption–desorption isotherms and the inset show the corresponding pore size distribution curves
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Fig. 5 a Photocurrent responses and b photocatalytic H2 evolution of bare ZnO, bare TiO2, and ZnO@TiO2 heterojunctions. c Photocatalytic H2

evolution over Pt–ZnO@TiO2 heterojunctions composites with different weight ratios of Pt. d Photocatalytic stability of ZnO@TiO2 hollow spheres.
All the measurement was carried out under a simulated solar light irradiation source with intensity of 100 mW/cm2
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with a hysteresis loop at a high relative pressure (P/
P0 > 0.7), demonstrating the existence of mesoporous
structures according to International Union of Pure and
Applied Chemistry (IUPAC) classification. The inset of
Fig. 4 is BJH pore size distribution plots, which further
indicated that all the samples have the mesoporous
structures. Meanwhile, the calculated BET surface
areas of the ZnO@TiO2 microsphere was about
102 m2 g−1, which was much larger than that of ZnO
(23 m2 g−1) and TiO2 (35 m2 g−1). It can be con-
cluded the introduction of ZnO into TiO2 to form
the ZnO@TiO2 hollow spheres could increase the
surface areas greatly, although all the samples have
the mesoporous structures. The higher surface areas
of ZnO@TiO2 hollow spheres would provide more
sites for enhanced catalytic H2 performance.
The photocatalytic ability of the as-prepared samples

was evaluated by photocurrent and photocatalytic H2

tests. As shown in Fig. 5a, the ZnO@TiO2 hollow
spheres yielded the highest photocurrent density of
3.38 mA/cm2, which was more than 2.61, 2.17 times
higher than that of ZnO and TiO2, respectively. These
results mean the stronger ability of producing charge
carriers and improved separation efficiency of ZnO@-
TiO2 hollow spheres. As excepted, the hydrogen produc-
tion rate of ZnO@TiO2 hollow spheres reached to
0.152 mmol h−1 g−1, higher than the 0.039 mmol h−1 g−1

of ZnO and 0.085 mmol h−1 g−1 of TiO2 (Fig. 5b). Pt, as
a very high-efficiency noble metal cocatalyst, has been
widely used for H2 evolution reaction in the reported lit-
erature [8, 11]. A series of Pt–ZnO@TiO2 with different
Pt contents were prepared and compared in Fig. 5c. It
was shown that the loading of Pt onto ZnO@TiO2 hol-
low spheres could significantly enhance the H2 evolution
activity and the sample with 1.5 at % Pt exhibiting the
highest H2 evolution rate. Figure 5d shows that the

ZnO@TiO2 hollow spheres still retained its original
photocatalytic activity without noticeable degradation in
the five reaction cycles for 30 h, which demonstrates the
exceptional photocatalytic stability.
A photocatalytic mechanism was proposed for the im-

proved HER activity of the ZnO@TiO2 hollow spheres,
as shown in Fig. 6. Under simulated solar light irradi-
ation, the electrons of both ZnO and TiO2 were excited
from their valence bands (VB) to their conduction bands
(CB). Since the conduction band (CB) and valence band
(VB) of ZnO were more positive than those of TiO2, the
photogenerated electrons transferred from ZnO to TiO2

through the intimate interfacial contacts [16]. Then, the
more accumulated electrons on the TiO2 reacted with
H2O for generating H2 for the higher photocatalytic H2

rate (as shown on the right of Fig. 6). At the same time,
the photogenerated holes in the VB of TiO2 migrated to
ZnO, which were trapped by the sacrificial agent to keep
the thermodynamical balance. Additionally, the hierarch-
ical hollow spheres benefit for light scatter and multiple
reflections among ZnO@TiO2 composite photocatalyst,
which would enhance the effectiveness of light
utilization [10, 21, 22]. Thus, more free electrons and
holes would be generated due to the increased effective
photon path length [21, 22], leading to a higher HER
efficiency (as shown in the left of Fig. 6).

Conclusions
In summary, the hierarchical heterostructure of ZnO@-
TiO2 hollow spheres has been successfully prepared via
a simple hydrothermal method. Compared to bare ZnO
and TiO2, the ZnO@TiO2 composite photocatalyst
exhibited high hydrogen production rated up to
0.152 mmol h−1 g−1 under simulated solar light. It is be-
lieved that hierarchical heterostructure increased the
surface area which proving more active sites for effective

Fig. 6 Schematic illustration of the proposed HER mechanism of ZnO@TiO2 hollow spheres
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HER and simultaneously improved the lifetime and
transfer of photogenerated charge carriers due to the po-
tential difference generated on the ZnO–TiO2 interface.
Moreover, the ZnO@TiO2 composite photocatalyst ex-
hibited good durability even after being reused five
times. This work demonstrated a good prospect for
photocatalytic H2 evolution from water based on the ra-
tional use and preparation of high activity, inexpensive,
and chemical stability of ZnO and TiO2.
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