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Abstract

Alumina nanorods were prepared from chromium-containing alumina sludge, and the effects of doping elements,
such as Cr, Fe, and Mg, were researched. The results show that the crystal transformation of alumina is restricted by
the doped Cr and facilitated by the doped Fe and Mg, which is transformed from θ-Al2O3 to α-Al2O3 in the calcination
process. Meanwhile, the crystal transformation of alumina is strongly restrained by co-doped elements from
the chromium-containing alumina sludge. The doped elements change the course of phase structure transformation
and slightly transform the chemical bond of the alumina nanorods. The impure elements are doped in the
alumina crystal and restrain the crystalline growth of alumina nanorods according to the rules. In the sample
prepared from chromium-containing alumina sludge, more Cr and Mg but fewer Fe are doped, and most Cr
are existed as Cr(III). It is possible that the Fe-doping is confined by the competition of Cr and Mg. Moreover,
the lattice imperfection of alumina is caused by doped ions, such as Cr, Fe, and Mg, and the chemical state
of O and Al are affected. The findings by these experiments provide essential information for eliminating
pollution and promoting comprehensive utilization of the chromium-containing alumina sludge.
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Background
Low-dimensional nano alumina, such as alumina
nanofibers [1–3] and alumina nanorods [4], has
superior properties of high strength, high elastic
modulus, chemical stability, good thermal insulation
performance, and low thermal conductivity [5–9], so
it was widely applied in various fields, such as
reinforcement for ceramic matrix composites and
metal matrix composites and catalyst, catalyst carrier,
adsorbents, membrane reactor, coatings, and anode
materials [4, 10–15]. However, high cost of produc-
tion has limited its application. Some authors have
reported synthesis methods of low-dimensional nano
alumina successfully, mainly including solid-phase
method, vapor-phase method [16], and liquid-phase
method [17, 18]. Among them, the liquid-phase
method is applied widely for its mild reaction condi-
tion, homogeneous products, and low cost of produc-
tion. There were lots of reports about preparation of

nano alumina by sol–gel method [5, 19–21], microe-
mulsion method [22], hydrothermal method [23],
precipitation method [23], chemical vapor deposition
[16], and electrospinning [1, 3, 24, 25]. However,
precipitation method is fit for the laboratories and
industries because of its low energy consumption,
homogeneity of product, and controllable size and
shape.
The chromium-containing alumina sludge is a kind of

dangerous solid waste, which is produced in the
chromium products producing process by non-calcium
roasting method. Seven thousand kilograms of the
chromium-containing alumina sludge is generated from
every ton of chrome product. It is composed of 55 ~ 65%
of Al2O3, 7 ~ 13% of chrome, and few compound of
silicon, iron, magnesium, and sodium. The compo-
nents of the chromium-containing alumina sludge are
shown in Table 1, which are provided by manufac-
turer (CITIC Jinzhou Metal Co., Ltd., China).
As the main hazardous substance, chrome exists in the

form of Cr(III) or Cr(VI) in the chromium-containing alu-
mina sludge, and Cr(VI) is considered to be the dominant
pollutant due to its carcinogenicity [26]. At present, the

* Correspondence: jzsuntong@sina.com
1College of Chemistry, Chemical Engineering and Food Safety, Bohai
University, Jinzhou 121013, People’s Republic of China
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Zhang et al. Nanoscale Research Letters  (2017) 12:392 
DOI 10.1186/s11671-017-2160-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-017-2160-3&domain=pdf
mailto:jzsuntong@sina.com
http://creativecommons.org/licenses/by/4.0/


solution pollution of the chromium-containing alumina
sludge is mainly detoxicated and utilized. The former one
transforms Cr(VI) to low toxicity Cr(III), and stocks it as a
waste residue. Zhang Dalei [27] noted a pyrolysis method
to transform Cr(VI) to Cr(III) using straw. Duan Suhua
[28] pointed out that the chromium-containing slag could
be treated with industrial alcohol. However, the methods
mentioned above not only take up land, but also cause
great resource waste. What is more, the secondary pollu-
tion may occur unexpectedly. The latter method is to
separate and utilize the useful components of the
chromium-containing alumina sludge. Xue Wendong [29]
reported that the chromium-containing alumina sludge
could be used to prepare refractory. However, the above
method may be limited due to its low added value. Conse-
quently, some new methods should be put forward to
eliminate pollution and promote comprehensive utilization
of the chromium-containing alumina sludge, which can
not only solve environmental problems but also bring great
economic benefit.
In this paper, alumina nanorods are prepared from the

chromium-containing alumina sludge by precipitation-
calcination method. Meanwhile, in order to research the
influence of the single-doping ion on the alumina nano-
rods, the alumina nanorods with non- or single-doping
ion are prepared and characterized. The results will pro-
vide technical support for eliminating pollution and
promoting comprehensive utilization of the chromium-
containing alumina sludge.

Methods
Materials
The reagents (e.g., aluminum sulfate octadecahydrate,
chromium sulfate, ferric sulfate, magnesium sulfate, so-
dium hydroxide, sulfuric acid, and sodium dodecyl ben-
zene sulfonate) used in this study were analytically pure
chemicals. The chromium-containing alumina sludge
was provided by CITIC Jinzhou Metal Co., Ltd. (China).
All the solutions were prepared with de-ionized water.

Treatment of the Chromium-Containing Alumina Sludge
At first, the chromium-containing alumina sludge was
washed and filtered by de-ionized water according to
the solid–liquid ratio of 1:5 (g/mL). As a result, most
of Cr6+ compounds were separated from the chromium-
containing alumina sludge. Then, the filter cake was
dissolved with sulfuric acid according to the solid–liquid

ratio of 1:3 (g/mL), and then, the H2O2 was used to trans-
form the residual Cr6+ to Cr3+. At last, the chromium-
containing alumina sludge acid solution was obtained
successfully, and the components were analyzed by
chemical titration and visible light spectrophotometer
(VIS, 721N, Varian, America) shown in Table 2.

Synthesis of Alumina Nanorods
Two moles per liter of NaOH solution and dodecyl
benzene sulfonate solution were slowly added into
0.25 mol/L Al2(SO4)3 solution under magnetic stirring at
85 °C, and the pH value of the mixed solution was
adjusted to 9.0 with NaOH or H2SO4 solution. After
stirring for 5 h and aging for 20 h, the precipitates were
separated and washed several times with de-ionized
water and ethyl alcohol. Subsequently, the samples were
vacuum-dried at 40 °C for 15 h, and then the precursors
were prepared. Finally, the samples were calcined at
250 °C for 1 h, 400 °C for 1 h, 770 °C for 1 h, 900 °C for
1 h, and 1050 °C for 2 h continuously, and then the sam-
ples were collected for use. The undoped alumina were
prepared from pure Al2(SO4)3 solution, and the ion-
doped samples were prepared by the same method as
above. Meanwhile, the chlorates of Cr, Fe, and Mg were
added in the Al2(SO4)3 solution according to the con-
tents of doping element in the chromium-containing alu-
mina sludge (Table 2), and the Cr-doped, Fe-doped, and
Mg-doped alumina were prepared. Using the chromium-
containing alumina sludge acid solution as the raw mate-
rials, the alumina was named which was prepared from
the chromium-containing alumina sludge.

Characterization of Nano Alumina Rods
The crystalline phases of the samples were characterized
by X-ray powder diffraction (XRD) using D/MAX-RB X-
ray diffractometer (Rigaku, Japan) with Cu K-radiation in
the 2θ range of 10°–70° at a scan rate of 2°/min. Fourier
transform infrared spectra (FT-IR) of the samples were
characterized using Scimitar 2000 Near FT-IR Spectrom-
eter (Thermo electron, USA), and the spectra were
recorded in the range of 4000–400 cm−1. The thermal
stability of the precursor were examined by

Table 1 The components of the chromium-containing alumina sludge

Components Al2O3 Cr2O3 SiO2 Cr6+ Fe2O3 MgO Na2O SO4
2−

wt/% 55 ~ 65 1 ~ 5 <4 6 ~ 10 <0.5 <0.036 <0.5 <0.8

Table 2 The components of chromium-containing alumina
sludge acid solution

Components Al3+ Cr3+ Fe3+ Mg2+

Concentration (mol/L) 0.50 0.013 0.008 0.005
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thermogravimetric analyzer (TG-DSC, STA449F3,
NETZSCH, Germany) with a flow rate of 30 mL/min in
air atmosphere and a temperature of 15–1200 °C with a
heating rate of 10 °C/min. The morphologies, crystal
structure, and element distribution of the samples were
examined by field-emission transmission electron micros-
copy (FETEM, Jem-2100F, JEOL, Japan). The X-ray photo-
electron spectroscopy (XPS) spectra of the samples were
recorded on XPS (ESCAMABMKLL, VG, UK) equipped
with a hemispherical electron analyzer and an Al Kα X-
ray source.

Results and Discussion
XRD Characterization of the Alumina Nanorods
XRD patterns were recorded to confirm the crystal
structure of the samples, as shown in Fig. 1. For the
undoped alumina nanorods, the XRD results show the
existence of different alumina crystalline structures, in-
cluding corundum (α-Al2O3, syn) (JCPDS No. 46–1212)
and aluminum oxide (θ-Al2O3, JCPDS No. 35–0121), and
the diffraction peaks of θ-Al2O3 are weaker (Fig. 1 (a)). In
general, the alumina are transformed from transition state
θ-Al2O3 to steady state α-Al2O3 at 1000 ~ 1200 °C. Com-
pared to the undoped sample, Cr-doped alumina nano-
rods have relatively stronger peaks of θ-Al2O3 and
relatively weaker peaks of α-Al2O3 (Fig. 1 (b)). It means
that the crystal transition is restricted by the doped Cr in
the calcination process, so less θ-Al2O3 is transformed to
α-Al2O3 after calcined at 1050 °C. From Fig. 1 (c), it can
be seen that the peaks of α-Al2O3 are stronger and sharper
than those in (a) and (b), suggesting the bigger crystal size
and better crystallinity. Meanwhile, the peaks of θ-Al2O3

are even weaker, which indicates that the crystal transi-
tion is facilitated by the doped Fe. It may be because
more θ-Al2O3 is transformed to α-Al2O3 after calcin-
ation. Figure 1 (d) shows that the Mg-doped alumina
nanorods have relatively stronger and sharper peaks of
α-Al2O3 and relatively weaker peaks of θ-Al2O3. It is
suggested that the sample contains more α-Al2O3 and
less θ-Al2O3, which may be due to that the doped Mg
promotes crystal transition of alumina in the calcin-
ation process. For the alumina nanorods prepared
from chromium-containing alumina sludge, the
peaks of α-Al2O3 nearly disappear, while the peaks
of θ-Al2O3 become stronger but not sharp enough
(Fig. 1 (e)). It is indicated that the θ-Al2O3 has poor
crystallinity and smaller crystal size. This could be because
more impurity elements of the chromium-containing alu-
mina sludge are doped in the alumina, and the crystal
transition of alumina are restricted in the calcination
process. So, the θ-Al2O3 is rarely transformed to α-Al2O3.

FT-IR Spectra of the Alumina Nanorods
FT-IR spectra of alumina nanorods in the range of
4000–400 cm−1 are depicted in Fig. 2 [27]. The absorp-
tion peaks at 3500–3300 and 1635 cm−1 that appear in
all the spectra are attributed to the stretching vibration
of non-chemical bond association of OH groups and
H–O–H bending vibrations, respectively, indicating
that the pore water and adsorbed water exist in the
samples [30]. The peaks at 2360 cm−1 are attributed
to the presence of carbon dioxide. Figure 2 (2) shows
the fingerprint region of FT-IR spectra of the samples. As
shown in Fig. 2 (2a), for the undoped sample, the peaks at

(a)

(b)

(c)

(d)

(e)

Fig. 1 XRD patterns of alumina nanorods doped with different ions: a undoped alumina, b Cr-doped alumina, c Fe-doped alumina, d Mg-doped
alumina, and e the alumina prepared from the chromium-containing alumina sludge
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829, 589, and 449 cm−1 are attributed to AlO6 vibrations,
indicating the formation of α-Al2O3 [1]. Meanwhile, the
peaks at 762 cm−1 are attributed to the bending vibration
of Al–O–Al, and the ones at 663 and 488 cm−1 are attrib-
uted to the stretching vibrations and bending vibration of
Al–O, respectively, indicating the formation of θ-Al2O3.
Figure 2 (2b) shows that the peaks of α-Al2O3 are weaker
than those in Fig. 2(2a), indicating that the Cr-doped pre-
vents the formation of α-Al2O3 in the calcination process.
For the Fe- and Mg-doped alumina, the peaks of θ-Al2O3

become weaker, and the peaks of α-Al2O3 have very little
change (Fig. 2 (2c,d)). Comparing to Fig. 2(2a), the peaks
have redshifted or blueshifted slightly, illustrating that the
doped Fe and Mg benefit to the growth of α-Al2O3 and
transform the chemical bond of the alumina nanorods
slightly. Fig. 2 (2e) is the fingerprint region of FT-IR spec-
tra of the alumina nanorods prepared from the
chromium-containing alumina sludge. The peaks below
500 cm−1 disappear, indicating that there is no α-Al2O3 in
the samples. Moreover, the peaks at 900–500 cm−1 are
dispersed, which could be result of vibrations of M–O and
M–O–M (M is Al or the doped element of alumina from
the chromium-containing alumina sludge). The above
results are in accordance with the XRD results.

TG-DSC of Alumina Nanorods
Thermogravimetric analyzer (TG) and differential scan-
ning calorimetry (DSC) curves of the alumina nanorod
precursors are shown in Fig. 3. The XRD results indicate

that the alumina nanorod precursor is AlO(OH) (JCPDS
No. 49–0133). As shown in Fig. 3a, in the air, only three
stages can be seen in the undoped sample. Below 250 °
C, about 40% mass loss on the TG curve and a corre-
sponding endothermic peaks at 50 and 150 °C on the
DSC curve are associated with moisture evaporation and
adsorbed water desorption. The second stage is between
250 and 730 °C, with a total mass loss of about 35% and
two endothermic peaks are at 320 and 694 °C. At the
temperature of 320 °C, the endothermic peak is due to
the transformation of AlO(OH) to amorphous Al2O3.
Meanwhile, the weak endothermic peak at 694 °C is
attributed to the transformation of amorphous Al2O3 to
θ-Al2O3. In the third stage above 730 °C, there are a
small mass loss and a strong endothermic peak at
980 °C, which is mainly the result of the transformation
of θ-Al2O3 to α-Al2O3. Compared to the undoped sam-
ple, metal ion doping makes the endothermic peaks shift.
Figure 3b–e shows that the endothermic peaks are
shifted to higher temperature and became widened. It
may be because that the doped ions change the course
of phase structure transformation, so the transfor-
mation degree of θ-Al2O3 to α-Al2O3 is different for
each sample. The results agree with the XRD and
FT-IR.

TEM, SAED, and HRTEM Images of Alumina Nanorods
Figure 4 gives the TEM, selected area electron diffrac-
tion (SAED), and high-resolution transmission electron

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

Fig. 2 FT-IR spectra of nano alumina rods doped with different ions: a undoped alumina, b Cr-doped alumina, c Fe-doped alumina, d Mg-doped
alumina, and e the alumina prepared from the chromium-containing alumina sludge
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microscopy (HRTEM) results. As shown in Fig. 4 (a1–a3),
the undoped alumina are dispersive nanorods with a diam-
eter of 4–6 nm and length of 20–60 nm. Meanwhile, the
(215), (006), (21 1), and (20 4) planes are in accordance with
θ-Al2O3 (JCPDS No. 35–0121), and the (300), (214), (113),
and (104) planes are associated with α-Al2O3 (JCPDS No.
46–1212). Furthermore, the observed interplanar distance of

0.273 and 0.284 nm could be assigned to the (20 2 ) and
(004) planes of θ-Al2O3, and the lattice spacing of 0.255 and
0.348 nm could be corresponded to the (104) and (012)
planes of α-Al2O3. Comparing to the undoped sample, the
Cr-doped sample is nanorods with a diameter of 4–6 nm
and length of 50–120 nm (Fig. 4 (b1)). Figure 4 (b2)
shows that the (215), (21 1), (20 2), and (111) planes are

Fig. 3 TG and DSC of the nano alumina rod precursors doped with different ions: a undoped alumina, b Cr-doped alumina, c Fe-doped alumina,
d Mg-doped alumina, and e The alumina prepared from the chromium-containing alumina sludge
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(b1)

(c1)

(d1)

(e1)
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(b2)

(d2)

(e2)

(a3)

(b3)

(c3)

(e3)

Fig. 4 TEM, SAED, and HRTEM of alumina nanorods doped with different ions: a undoped alumina, b Cr-doped alumina, c Fe-doped alumina,
d Mg-doped alumina, and e the alumina prepared from the chromium-containing alumina sludge. (1) TEM; (2) SAED; (3) HRTEM
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in accordance with θ-Al2O3, and the (300), (214), (113),
and (104) planes are in accordance with α-Al2O3. As
shown in Fig. 4 (b3), the interplanar distance of 0.202 nm,
0.273 nm, 0.284 nm, and 0.454 nm are assigned to the (21
1 ), (20 2 ), (004), and (10 2 ) planes of θ-Al2O3, and the
interplanar distance of 0.209 and 0.238 nm are assigned
to the (113) and (110) planes of α-Al2O3. Figure 4
(c1) shows that the Fe-doped sample is the mixture
of nanorods with a diameter of 5–10 nm and length
of 30–100 nm and nano particles about 10 nm. Fig-
ure 4 (c2) shows that the (20 2) planes are in accord-
ance with θ-Al2O3, and the (300), (214), (024), (113),
(104), and (116) planes are in accordance with α-
Al2O3, it is in accordance with the XRD results.
Meanwhile, the observed interplanar distance of 0.284
and 0.454 nm are assigned to the (004) and (10 2) planes
of θ-Al2O3, and the interplanar distance of 0.238 and
0.255 nm are assigned to the (110) and (104) planes
of α-Al2O3 (Fig. 4 (c3)).
As shown in Fig. 4 (d1–d3), the Mg-doped sample is

well-dispersed nanorods with a diameter of 5–10 nm
and length of 20–50 nm, and nano particles about
10 nm exist simultaneously. The SAED results show that
the (215), (21 1 ), and (20 2 ) planes are in accordance
with θ-Al2O3, and the (300), (214), (113), and (104)
planes are in accordance with α-Al2O3. The HRTEM
results show that the observed interplanar distance of
0.226 and 0.191 nm are assigned to the (20 4) and (006)
planes of θ-Al2O3, and the interplanar distance of 0.255
and 0.238 nm are assigned to the (104) and (110) planes
of α-Al2O3. Figure 4 (e1–e3) shows that the sample
prepared from chromium-containing alumina sludge is
well-dispersed nanorods with a diameter of 4–6 nm and
length of 50–100 nm, and nano particles about 5–10 nm
exist simultaneously. The SAED and HRTEM results
show that (215), (111), (21 1), (31 3), and (20 2) planes
are in accordance with θ-Al2O3, and the observed inter-
planar distance of 0.226, 0.245, 0.284, and 0.454 nm are
assigned to the (20 4), (111), (004), and (10 2) planes of it.
However, there are no planes in accordance with α-Al2O3.
As a result, the undoped alumina nanorods are well-
dispersive than the others, and the particles have regular
shape. It may be that the impurity elements are doped in
the alumina crystal and restrained the crystalline growth
of alumina nanorods according to the rules. So, the shapes

and dispersibilities of the alumina nanorods are affected
by the doped elements.

EDS Characterization of Alumina Nanorods Precursor
Doped with Different Ions
The EDS results reveal that Cr, Fe, and Mg are doped in
the alumina nanorods precursor with molar amount of
2.06, 0.99, and 0.58%, respectively (Table 3). This doping
amount is close to the addition dosage of impurity elem-
ent (Table 2), indicating that most of impurity elements
are doped in the alumina nanorod precursor. Meanwhile,
for the sample prepared from chromium-containing alu-
mina sludge, the doped molar amount of Cr, Fe, and Mg
are 2.11, 0.14, and 0.96%, respectively. The results suggest
that most of Cr and Mg are doped in the sample, but
small amount of Fe are doped in it. It is possible that the
doping of Fe is confined by the competition of Cr and Mg.

XPS Characterization of Nanometer Alumina Fibers Doped
with Different Ions
Figure 5 shows the XPS spectra of O1s and Al 2p. As
shown in Fig. 5a, the peaks at 531.90, 531.85, 531.15,
531.20, and 532.00 eV are attributed to the undoped,
Cr-doped, Fe-doped, and Mg-doped alumina nanorods
and the sample prepared from the chromium-containing
alumina sludge, respectively. The peaks are assigned to O2−

of the Al2O3 [31]. Figure 5b shows the peaks at 74.00,
74.25, 74.75, 74.38, and 73.90 eV of Al 2p are attributed to
the above samples, respectively. The peaks are ascribed to
Al3+ of the Al2O3. Meanwhile, the good symmetries of
curve are proved by Gaussian fitting, indicating that less
other oxygen and aluminum are formed in the samples.
The O1s binding energy (BE) of undoped and Cr-doped
alumina nanorods and the sample prepared from the
chromium-containing alumina sludge are nearly and are
higher than those of Fe-doped and Mg-doped samples. The
order of the smallest O1s BE goes as follows: Fe-doped,
Mg-doped, Cr-doped, undoped alumina nanorods, and the
sample prepared from the chromium-containing alumina
sludge. However, the Al 2p BE is in contrast. XRD results
show that more transient state θ-Al2O3 are in the undoped
and Cr-doped alumina nanorods and the sample prepared
from the chromium-containing alumina sludge, and more
α-Al2O3 are in the Fe-doped and Mg-doped alumina

Table 3 The EDS results of aluminum nanorods precursors doped with different ions

The samples Al (At%) Cr (At%) Fe (At%) Mg (At%) Total (At%)

Cr-doped alumina nanorods 97.94 2.06 – – 100.00

Fe-doped alumina nanorods 99.01 – 0.99 – 100.00

Mg-doped alumina nanorods 99.42 – – 0.58 100.00

The alumina nanorods prepared from chromium-containing alumina sludge 96.79 2.11 0.14 0.96 100.00

Zhang et al. Nanoscale Research Letters  (2017) 12:392 Page 7 of 10



nanorods. Due to the coordination form [AlO4] for θ-
Al2O3 and [AlO6] for α-Al2O3, it is possible that the O1s
BE of [AlO6] is bigger and Al 2p BE is smaller than that of
[AlO4]. Moreover, the lattice imperfections of Al2O3 are
caused by Cr, Fe, and Mg ions enter into Al2O3 lattice. So,
the chemical states of O and Al are affected by the lattice
defect, and the binding energy is changed.
Figure 6 presents the XPS spectra of the doping ion.

As shown in Fig. 6a, the peaks at 589.80 and 578.52 eV
are assigned to Cr 2p1/2 and Cr 2p3/2 of Cr(VI), and the
peaks at 587.53 and 577.39 eV are assigned to Cr 2p1/2
and Cr 2p3/2 of Cr(III). It shows that the Cr are existed
in the Cr-doped alumina nanorods as Cr(VI) and Cr(III).
However, most Cr are existed as Cr(III) in the sample
prepared from the chromium-containing alumina sludge.
It indicates that the part of Cr(III) are oxidized in calcin-
ation process in the Cr-doped sample, but less Cr(III) are
oxidized in the samples prepared from the chromium-
containing alumina sludge. For the samples prepared from
the chromium-containing alumina sludge, because chem-
ical bond combination of Cr–O and the impurity metallic

element are formed, the electrode potential of Cr6+/Cr3+

is increased at high temperature, therefore few Cr(VI) in
the sample. As shown in Fig. 6b, the peaks at 724.45 and
711.30 eV are assigned to Fe 2p1/2 and Fe 2p3/2 of Fe2O3,
and 722.38 and 710.44 eV are assigned to Fe 2p1/2 and Fe
2p3/2 of Fe3O4. The results show that Fe are existed in the
Fe-doping sample as Fe(II) and Fe(III). It is suggested that
Fe element is entered into the lattice of alumina precursor
and take place at the lattice aluminum during the synthe-
sis. At the subsequent calcination process, a little Fe(III) is
reduced to Fe(II) by reducing substance in the air. How-
ever, there are no peaks of Fe in the sample prepared from
the chromium-containing alumina sludge, due to few Fe
in the sample (Table 3). As shown in Fig. 6c, the peaks at
50.20 to 50.34 eV are assigned to Mg 2p of MgO, suggest-
ing that Mg is existed in the Mg-doped sample as MgO.
However, the peak of Mg 2p is very weak in the sample
prepared from the chromium-containing alumina sludge.
It is possible that Mg content is seldom. The results agree
with the EDS. According to the results of XRD, FT-IR,
and XPS, it is illustrated that the lattice imperfection of

(a) (b)

Fig. 5 XPS spectra of a O1s and b Al 2p for alumina nanorods doped with different ions

(a) (b) (c)

Fig. 6 XPS spectra of a Cr3+ 2p, b Fe3+ 2p, and c Mg2+ 2p
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single-element doping samples is formed due to the im-
purities of the metallic element entering into the lattice
of alumina. However, because of the competition of
multiple elements, more Cr is entered into the lattice
of alumina prepared from the chromium-containing
alumina sludge, and few Fe and Mg elements are
entered.

Conclusions
In summary, the impurity elements were doped in alu-
mina nanorods, such as Cr, Fe, and Mg. The crystal trans-
formation of alumina is restricted by the doped Cr and
facilitated by the doped Fe and Mg, which is transformed
from θ-Al2O3 to α-Al2O3 in the calcination process. Fur-
thermore, the crystal transformation of alumina is strongly
restrained by co-doped elements from the chromium-
containing alumina sludge. The course of phase structure
transformation, chemical bond, microstructure, and the
chemical state of O and Al of the alumina nanorods are
affected by the doped elements. In the sample prepared
from chromium-containing alumina sludge, the Fe-doping
is confined by the competition of Cr and Mg. This study
suggests that alumina nanorods may be prepared from
chromium-containing alumina sludge to reduce costs and
eliminate pollution.
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