
NANO REVIEW Open Access

Involvement of Programmed Cell Death in
Neurotoxicity of Metallic Nanoparticles:
Recent Advances and Future Perspectives
Bin Song1,2, Ting Zhou1, Jia Liu2 and LongQuan Shao2*

Abstract

The widespread application of metallic nanoparticles (NPs) or NP-based products has increased the risk of exposure
to NPs in humans. The brain is an important organ that is more susceptible to exogenous stimuli. Moreover, any
impairment to the brain is irreversible. Recently, several in vivo studies have found that metallic NPs can be
absorbed into the animal body and then translocated into the brain, mainly through the blood–brain barrier and
olfactory pathway after systemic administration. Furthermore, metallic NPs can cross the placental barrier to
accumulate in the fetal brain, causing developmental neurotoxicity on exposure during pregnancy. Therefore,
metallic NPs become a big threat to the brain. However, the mechanisms underlying the neurotoxicity of metallic
NPs remain unclear. Programmed cell death (PCD), which is different from necrosis, is defined as active cell death
and is regulated by certain genes. PCD can be mainly classified into apoptosis, autophagy, necroptosis, and
pyroptosis. It is involved in brain development, neurodegenerative disorders, psychiatric disorders, and brain injury.
Given the pivotal role of PCD in neurological functions, we reviewed relevant articles and tried to summarize the
recent advances and future perspectives of PCD involvement in the neurotoxicity of metallic NPs, with the purpose
of comprehensively understanding the neurotoxic mechanisms of NPs.
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Review
Introduction
With the rapid development of nanotechnology, metallic
(metal or metal oxide) nanoparticles (NPs), with a diam-
eter ranging from 1 to 100 nm, are used in cosmetics
[1], food addictives [2], building industry [3], paints [4],
battery [5], and biomedical applications [6], owing to
their extraordinary physicochemical properties. Metallic
NP-based products facilitate our daily life; however, it
has several disadvantages. The widespread application of
NP-based products increases the risk of exposure to me-
tallic NPs for humans, especially for those who work in
industries involving the use of these materials. [7]. In
addition, several in vivo studies have demonstrated
that once animals are exposed to metallic NPs
through intravenous injection [8], intranasal instilla-
tion [9], oral administration [10], inhalation [11], and

intraperitoneal injection [12], NPs can be absorbed
into the body and then re-distributed into secondary
organs, such as the brain, liver, spleen, lungs, and
kidneys. The brain is an important organ susceptible
to harmful substances [13–15], and impairment to the
brain is irreversible. Accumulated metallic NPs, an ex-
ogenous stimuli, induce apoptosis, up-regulate inflamma-
tory responses, activate signaling pathways, disturb the
neurotransmitters, and impair organelles (such as mito-
chondria), and these changes contribute to the neurotox-
icity of NPs, consequently leading to brain dysfunction.
However, the mechanisms underlying the neurotoxicity of
metallic NPs remain unclear.
Programmed cell death (PCD), which is different from

necrosis, is defined as active cell death, which is regulated
by certain genes. The role of PCD is to balance the propor-
tion of dead cells and healthy cells and maintain homeo-
stasis. In general, PCD can be classified into apoptosis,
autophagy, necroptosis, and pyroptosis [16, 17]. PCD can
either be observed under physiological conditions or be
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induced by exogenous stimuli. Moreover, PCD is reported
to be closely related to brain development [18, 19], neuro-
degenerative disorders [20, 21], brain injury [22, 23], and
psychiatric disorders [24]. Based on the important role of
PCD in neurological functions, in this review, we sum-
marized the recent advances and put forward some
suggestions regarding the involvement of PCD in the
neurotoxicity of metallic NPs by analyzing relevant arti-
cles. We expect that investigating the correlation be-
tween PCD and metallic NPs can help us to understand
the mechanisms underlying the neurotoxicity of NPs
completely.

Accumulation of Metallic NPs in the Brain After Systemic
Administration
The brain is the main target of metallic NPs, and brain
damage is irreversible. Therefore, more attention should
be paid to the threat posed by metallic NPs on brain
health. Metallic NPs can be absorbed into the body and
then translocated into the brain, mainly through the
blood–brain barrier (BBB) and direct nose-to-brain (or
olfactory) pathway bypassing the BBB.
The results of several in vivo studies have revealed that

metallic NPs can be detected in animal brain after systemic
administration. Rats showed higher anxious index, which
indicated impaired neurobehavioral functions, and the
contents of TiO2 NPs in the brain, lungs, and liver were el-
evated, owing to TiO2 NP exposure via intraperitoneal in-
jection every 2 days for 20 days [12]. The concentrations
of TiO2 NPs in the brain, liver, spleen, kidneys, lungs, and
heart were elevated after the rats were exposed to NPs
through single or repeated intravenous injection [8]. When
the rats were exposed to silver NPs through chronic intra-
nasal instillation, the brain subunits including the cortex,
hippocampus, cerebellum, olfactory bulb, and medulla ex-
hibited higher contents of NPs [9]. The exposure to silver
NPs through single intravenous injection can also increase
the NP levels in the mouse brain [25, 26]. Meanwhile, an
oral administration was able to increase the content of sil-
ver NPs in the rat brains as well [10, 27–29].
In addition to TiO2 and silver NPs, exposure to gold

NPs through single intravenous injection increased the
concentration of NPs in the mouse brain [30]. Inhalation
administration for 15 days led to elevated gold NP levels
in the subunits of the brain including the olfactory bulb,
hippocampus, striatum, frontal cortex, entorhinal cortex,
septum, and cerebellum [11]. The gold NP content in the
rat brain was enhanced 24 h after the intravenous injec-
tion [31]. Zinc oxide (ZnO) NP exposure through re-
peated oral administration slightly increased the ZnO
NP levels in the rat brains [32]. The content of cop-
per (Cu) NPs in the olfactory bulb increased after the
mice were chronically exposed to Cu NPs through in-
tranasal instillation [33, 34].

Even worse, the metallic NPs can cross the placental
barrier and accumulate in fetal organs on exposure to
NPs during pregnancy. When pregnant mice were intra-
venously injected with silica and TiO2 NPs, both NPs
were detected in the fetal brain, fetal liver, and placenta
24 h after the injection. These changes might impair the
fetal development including neurodevelopment, which
indicates that developmental neurotoxicity can be in-
duced by silica and TiO2 NPs [35]. We must pay
much attention to the neurodevelopmental toxicity of
metallic NPs, as fetal brain is more susceptible to
harmful stimuli.
To sum up, investigating the bio-distribution of metallic

NPs might help us to screen the safest metallic nanoma-
terials and administration routes that can protect the
brain from being affected by NPs. Therefore, relevant
studies should be further performed in the future. In
addition, studies should be conducted to comprehensively
investigate the relationship between exposure to metallic
NPs during pregnancy and fetal brain development.

The Contribution of PCD to the Neurotoxicity of Metallic
NPs
As mentioned above, metallic NPs can be translocated
into the brain after systemic administration. This accu-
mulation in turn can lead to neurotoxicity. PCD as an
active cell death process mainly consists of apoptosis,
autophagy, necroptosis, and pyroptosis. Moreover, PCD
plays an important role in neurological functions. There-
fore, we will discuss the correlation between PCD and
the neurotoxicity of metallic NPs, with the purpose of
comprehensively understanding the neurotoxic mecha-
nisms of NPs.

Apoptosis—Established Role in the Neurotoxicity of Metallic
NPs
Apoptosis is the first and most commonly studied PCD
type. It can be simply defined as programmed “self-kill-
ing” [36]. Apoptosis plays an important role in cell reno-
vation and elimination of injured cells. Dysregulation of
cell apoptosis can induce cell death and impairment of
tissues, consequently leading to organ dysfunction [37].
Human health and diseases can be regulated by cell
apoptosis [37, 38]. Apoptosis is mediated by caspase-
dependent pathways (Fig. 1) [39, 40]. Generally, apop-
tosis is characterized by blebbing, DNA fragmentation,
and caspase activation [41–43].

In Vitro Studies Related to Apoptosis in Neurotox-
icity of Metallic NPs Long et al. first reported that
TiO2 NPs can induce apoptosis in immortalized mouse
microglia (BV2), rat dopaminergic neuronal cells (N27),
and primary embryonic rat stratum neurons [44].
Another research group revealed that the proportion of
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apoptotic cells in human astrocyte-like cell lines (U87)
increased on TiO2 NP exposure [45]. TiO2 NP exposure
inhibited cell proliferation, increased the proportion of
apoptotic cells, activated caspase-3 in rat (C6) and hu-
man (U373) glial cell lines, and was accompanied by
hyper-condensed nuclei [46]. TiO2 NPs can also attenu-
ate cell viability and increase the number of apoptotic
cells after the exposure of murine microglia cell lines

(N9) to NPs [47]. Besides, the mitochondrial membrane
potential (MMP) of PC12 cells was reduced by TiO2 NP
exposure, whereas the proportion of apoptotic cells was
enhanced. The expression of Bax and p53 was up-
regulated, while that of Bcl-2 was down-regulated at the
protein level. Meanwhile, TiO2 NP exposure promoted
the activity of caspase-3 [48]. These changes indicated
that apoptosis in PC12 cells was induced by TiO2 NPs.

Fig. 1 Caspase activation pathways [131]. Caspase activation by the extrinsic pathway (route 1) involves the binding of extracellular death ligands
(such as FasL or tumor necrosis factor-α (TNFα)) to transmembrane death receptors. Engagement of death receptors with their cognate ligands
provokes the recruitment of adaptor proteins, such as the Fas-associated death domain protein (FADD), which in turn recruit and aggregate
several molecules of caspase-8, thereby promoting its autoprocessing and activation. Active caspase-8 then proteolytically processes and activates
caspase-3 and caspase-7, provoking further caspase activation events that culminate in substrate proteolysis and cell death. In some situations, extrinsic
death signals can crosstalk with the intrinsic pathway through caspase-8-mediated proteolysis of the BH3-only protein BID (BH3-interacting domain
death agonist). Truncated BID (tBID) can promote mitochondrial cytochrome c release and assembly of the apoptosome (comprising ~7 molecules of
apoptotic protease-activating factor-1 (APAF1) and the same number of caspase-9 homodimers). In the intrinsic pathway (route 2), diverse stimuli that
provoke cell stress or damage typically activate one or more members of the BH3-only protein family. BH3-only proteins act as pathway-specific
sensors for various stimuli and are regulated in distinct ways. BH3-only protein activation above a crucial threshold overcomes the inhibitory effect of
the anti-apoptotic B cell lymphoma-2 (BCL-2) family members and promotes the assembly of BAK–BAX oligomers within mitochondrial outer
membranes. These oligomers permit the efflux of intermembrane space proteins, such as cytochrome c, into the cytosol. On release from
mitochondria, cytochrome c can seed apoptosome assembly. Active caspase-9 then propagates a proteolytic cascade of further caspase
activation events. The granzyme B-dependent route to caspase activation (route 3) involves the delivery of this protease into the target
cell through specialized granules that are released from cytotoxic T lymphocytes (CTL) or natural killer (NK) cells. CTL and NK granules
contain numerous granzymes as well as a poreforming protein, perforin, which oligomerizes in the membranes of target cells to permit
entry of the granzymes. Granzyme B, similar to the caspases, also cleaves its substrates after Asp residues and can process BID as well as
caspase-3 and caspase-7 to initiate apoptosis. BAD BCL-2 antagonist of cell death, BAK BCL-2-antagonist/killer-1, BAX BCL-2-associated X
protein, BID BH3-interacting domain death agonist, BIK BCL-2-interacting killer, BIM BCL-2-like-11, BMF BCL-2 modifying factor, HRK harakiri
(also known as death protein-5), PUMA BCL-2 binding component-3
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Cell viability was not reduced by TiO2 NPs; however, the
cell cycle was disturbed on exposure to TiO2 NPs. An
increased proportion of apoptotic cells and up-regulated
MMP were observed in human neuronal cell lines (SH-
SY5Y) [49].
After the rat primary cortical neurons were exposed to

silver NP, cell viability decreased, the protein levels of
caspase-3 increased, the proportion of apoptotic cells in-
creased, and a DNA ladder was observed. These findings
suggested that silver NP induced apoptosis, which led to
neurotoxicity [50]. Silver NP can reduce cell viability, in-
crease the number of apoptotic cells, enhance reactive
oxygen species (ROS) production, and activate caspase-3
in rat primary neurons. In vivo experiments further
confirmed that silver NP can be detected in the rat
brain, and after intranasal administration, they can in
turn up-regulate the protein levels of caspase-3, which
was consistent with the results observed in the in
vitro experiment. These findings suggested that silver
NP exposure can induce caspase-dependent apoptosis
contributing to neurotoxicity [51]. Another study re-
vealed that silver NPs reduced cell viability and in-
creased the number of apoptotic cells in PC12, which
further verified the role of caspases in apoptosis. Co-
treating PC12 cells with caspase-8 or caspase-9 inhib-
itors attenuated the apoptosis induced by NPs, which
suggested that both death receptor-regulated signaling
and mitochondrial-mediated pathway are involved in
silver NP-induced apoptosis in PC12 cells [52]. The
proportion of apoptotic cells in rat primary astrocytes,
determined by using DNA fragmentation assay [53]
and flow cytometry [54], was elevated in the silver
NP-treated group. The caspase activity was also en-
hanced in this group [54].
When the human neuroblastoma cell lines (SH-SY5Y)

were treated with ZnO NPs, cell viability was reduced,
swelling or loss of organelles was detected, the number
of apoptotic cells increased, and the activities of caspase-
3/7 were up-regulated [55]. A similar conclusion was
reached by another study, which revealed that the num-
ber of apoptotic cells in SH-SY5Y was enhanced by ZnO
NPs [56]. Mouse neural stem cells (NSCs) can be im-
paired by ZnO NPs. Cell viability was attenuated, ac-
companied by impaired morphology (such as membrane
blebbing and hyper-condensed chromatin) and increased
proportion of apoptotic cells, which indicated that apop-
tosis was induced by ZnO NPs [57]. After C6 cells were
exposed to ZnO NPs, the NPs were taken up by the C6
cells, which resulted in the reduction of cell viability.
Meanwhile, apoptotic-like morphological features such
as blebbing, nucleus shrinkage, and hyper-condensed
chromatin were observed. The number of apoptotic cells
increased as well [58]. ZnO NPs induced apoptosis in
U87 cells, which was characterized by condensed

chromatin, nuclear fragmentation, and the increase in
the apoptotic cell proportion [59].
The neurotoxicity induced by TiO2, silver, and ZnO

NPs was widely investigated. In addition, other metal-
lic nanomaterials were able to induce apoptosis in
neuronal cells.
Viability of PC12 was reduced, and the number of

apoptotic cells was elevated by copper NPs [60]. Iron
oxide NPs can also decrease the cell viability and induce
apoptosis in PC12 cells, characterized by the increased
proportion of apoptotic cells and up-regulated protein
levels of p53 and Bax, as well as down-regulated Bcl-2
protein expression [61].

In Vivo Studies Related to Apoptosis in the Neuro-
toxicity of Metallic NPs TiO2 NPs can be detected in
the mouse hippocampus after intragastric treatment for
60 days. The accumulated TiO2 NPs can in turn induce
apoptotic-like changes in cell morphology (such as con-
densed chromatin and shrinkage of the nuclear mem-
brane) and DNA ladder. Meanwhile, the expression of
caspase-3, caspase-9, Bax, and cytochrome c was up-
regulated accompanied by the down-regulated expres-
sion of Bcl-2 at gene and protein levels. These findings
suggested that an intrinsic apoptosis pathway in the
mouse hippocampus was induced by TiO2 NP exposure,
which resulted in impaired spatial recognition ability
[62]. TiO2 NPs can be detected in the rat brain after
intravenous injection, once a week for 4 weeks. This
accumulation increased the number of apoptotic cells,
induced DNA ladder, activated caspase-3, up-regulated
the expressions of p53, Bax, and cytochrome c, and
down-regulated Bcl-2 expression at gene and protein
levels. These results indicated that mitochondria-mediated
apoptosis in the rat brain was induced by TiO2 NPs [63].
After the mice were exposed to TiO2 NPs for 90 consecu-
tive days through intranasal instillation, NPs were detected
in the mouse brain. Meanwhile, the proportion of apop-
totic cells in the hippocampus increased, as indicated by
apoptotic morphology (shrinkage of the nucleus, con-
densed chromatin, and swollen mitochondria), and the ex-
pression of genes related to apoptosis, determined by
DNA microarray analysis, was altered [64]. Exposure to
TiO2 NPs during pregnancy via subcutaneous injection
can alter the expression of genes related to apoptosis,
which were determined by DNA microarray analysis in
the brain of mouse offsprings [65]. These changes indi-
cated that TiO2 NP exposure could induce developmental
neurotoxicity.
Silver NPs can increase the number of apoptotic cells in

the rat hippocampal subunits (CA1, CA2, CA3, and DG)
after oral administration for 28 days [66]. Exposure to sil-
ver NPs during pregnancy can also elevate the proportion
of apoptotic cells in the hippocampal subunits of rat
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offsprings [67]. Meanwhile, silver NPs can be taken up by
human embryonic neural precursor cells (HNPCs),
thereby inducing apoptosis in HNPCs [68]. These findings
indicated that apoptosis was also probably implicated in
the developmental neurotoxicity of silver NPs.
Rats exposed to CuO NPs through intraperitoneal injec-

tion once a day for 14 days performed poorly in the Mor-
ris water maze (MWM) test and long-term potentiation
(LTP) was affected, which indicated that the rat hippo-
campus was impaired by NPs. At the same time, both the
activity of caspase-3 and the levels of 4-hydroxynonenal
(HNE) in the rat hippocampus were up-regulated in the
NP-treated group when compared to that in the control
group, indicating an apoptotic process in the hippocampal
zone [69]. Apoptosis induced by gold NPs also resulted in
neurotoxicity. A study involving in vivo and in vitro exper-
iments demonstrated that gold NP exposure activated
caspase-3 and increased the number of apoptotic SH-
SY5Y cells. The in vivo experiment showed that gold NPs
can be detected in the mouse brain and can promote
caspase-3 activity after intravenous injection, which was
consistent with the results of the in vitro experiment [70].
Aluminum oxide NP exposure through intranasal instilla-
tion damaged the mouse neurobehavioral function, ac-
companied by reduced MMP, increased apoptotic cells,
and up-regulated caspase-3 gene expression [71] in the
mouse brain.

Regulation of Neuronal Apoptosis Induced by Metal-
lic NPs Although apoptosis was involved in the neuro-
toxicity of metallic NPs, the molecular mechanisms by
which the NPs regulated apoptosis are unknown. Studies
showed that oxidative stress (OS) status was related to
cell apoptosis [72–74]. Therefore, a few rescue studies
were conducted to verify the role of NP-induced OS in
nanoneurotoxicity. TiO2 NP exposure decreased cell via-
bility and increased ROS production in PC12 cells; it
also increased the proportion of apoptotic PC12 cells.
However, pretreating PC12 cells with N-acetylcysteine
(NAC) can reverse these changes. These findings sug-
gested that the apoptosis in PC12 was probably medi-
ated by TiO2 NP-induced ROS [75], as NAC had an
antioxidant property [76, 77]. Treatment with ZnO NPs
can lead to decreased cell viability, excessive ROS produc-
tion, and apoptotic morphology, such as nuclear shrinkage
in primary astrocytes. Meanwhile, the reduction in MMP
suggested that the intrinsic apoptotic pathway was impli-
cated in neurotoxicity. Further experiments found that the
proportion of apoptotic astrocytes increased. At the same
time, the expression of Bax, cleaved poly-ADP-ribose
polymerase (PARP), and cleaved caspase-3 was up-
regulated at the protein level. However, the level of Bcl-2
protein decreased on treatment with ZnO NPs. Pretreat-
ment of astrocytes with NAC or Jun N-terminal kinase

(JNK) inhibitor could reverse the harmful effects induced
by metallic NPs, which indicated that apoptosis was prob-
ably caused by NP-induced ROS through the JNK pathway
[78]. ZnO NPs can reduce PC12 viability and increase the
number of apoptotic PC12 cells, which was determined
using flow cytometry. However, pretreating PC12 cells
with N-(mercaptopropionyl)-glycine (N-MPG) can lead to
the inhibition of apoptotic process, which indicated that
apoptosis in PC12 might be mediated by ZnO NP-
induced OS [79]. N-MPG is another type of ROS scaven-
ger [80]. Copper oxide (CuO) NPs can decrease the mouse
hippocampal cell line (HT22) viability and increase the
number of apoptotic HT22; they also up-regulated Bax
gene levels and down-regulated Bcl-2 mRNA levels in
HT22. Meanwhile, the OS status in HT22 cells was dis-
rupted. However, pretreating HT22 cells with crocetin can
attenuate those harmful impacts. These findings indicated
that CuO NP-induced apoptosis in HT22 cells was prob-
ably mediated by NP-induced OS [81]. Crocetin possessed
antioxidant and neuroprotective capabilities and could
counteract OS [82–84]. These results indicated that apop-
tosis was most probably initiated by metallic NP-induced
OS. However, more rescue studies are needed to further
confirm it. In addition to OS mechanism, other potential
mechanisms should be investigated.
The findings from the above-mentioned in vitro and

in vivo studies demonstrated that metallic NP-induced
apoptosis was involved in the neurotoxicity of NPs.
Meanwhile, a few rescue studies revealed that apoptosis
in neurotoxicity was probably regulated by metallic NP-
induced OS. In addition, findings were mostly obtained
from in vitro studies. Furthermore, except TiO2 NPs,
ZnO NPs, and silver NPs, other metallic nanomaterials
were less studied. Besides, metallic NPs can cross the
placental barrier to affect fetal brain development, but
studies about the involvement of apoptosis in develop-
mental neurotoxicity of metallic NPs were scarce.

Autophagy—Role in the Neurotoxicity of Metallic NPs
Needs Further Verification
Recently, autophagy has become a hot topic and has
attracted much attention. It can be simply defined as
programmed “self-eating” [36]. Autophagy is different
from apoptosis, and is mediated by caspase-independent
pathways. It can be identified as a particular accommo-
dation of cells to starvation. The process of autophagy
includes cell degradation, in which the cargo in the cyto-
plasm is transported into the lysosome. Autophagy is a
dynamic recycling system and it can maintain cellular
renovation and homeostasis [85]. It can be classified into
microautophagy, macroautophagy, and chaperone-mediated
autophagy (CMA) (Fig. 2) [86, 87].
Many studies revealed that metallic NPs can induce

autophagy in non-neuronal cells including human
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keratinocytes (HaCaT) [88], normal lung cells [89],
MRC-5 fibroblasts [90], immune cells [91], human hepa-
tocellular carcinoma HepG2 cells [92], murine peritoneal
macrophage cells (RAW264.7) [93], and mouse embry-
onic fibroblasts [94]. Therefore, autophagy has been
regarded as one of the mechanisms underlying nanotoxi-
city [95]. Moreover, it has been reported that autophagy
was involved in neurotoxicity [96–98]. A few studies on
the role of autophagy in the neurotoxicity of metallic
NPs have been published. Kenzaoui et al. [99] found that
the exposure of human cerebral endothelial cells
(HCECs) to aminoPVA (poly(vinyl alcohol/vinylamine))-
coated ultrasmall superparamagnetic iron oxide (USPIO)
NPs, autophagic vacuoles were observed in HCECs and
LC3-II. In addition, the cathepsin D protein levels were
up-regulated, which suggested that autophagy in HCECs
was induced by NPs. Manshian et al. [100] treated mur-
ine C17.2 neural progenitor cells with silver NPs and
found that the LC3 fluorescent intensity was enhanced,
which indicated that autophagy in C17.2 was induced by
silver NPs. Since OS can induce autophagy [101–103],
which was implicated in the neurotoxicity of metallic
NPs [104–106], the role of autophagy in the neurotox-
icity of metallic NPs should be not ignored.

Necroptosis and Pyroptosis—Potential Role in the
Neurotoxicity of Metallic NPs
The role of necroptosis and pyroptosis in the toxicity of
metallic NPs has not been extensively studied. Necropto-
sis, which can also be called “programmed necrosis,” is
initiated by activating the death receptor with stimuli

(Fig. 3). Receptor-interacting protein kinases 1 and 3 are
frequently involved in necroptosis [107, 108]. Studies on
the relationship between necroptosis and nanotoxicity
are rare. However, recent studies have demonstrated that
cigarette can induce necroptosis in the mouse airway
[109], carbon tetrachloride can lead to liver fibrosis via
necroptosis [110], and glutamate can induce necroptosis
in HT-22 cells [111].
Pyroptosis, a new type of PCD, is typically regulated

by the caspase-1-dependent signaling pathway (Fig. 4).
Caspase-1 is not involved in apoptosis or autophagy
[112, 113]. It has been reported that silver NPs can in-
duce pyroptosome formation in human monocytes
(THP-1) and up-regulate the caspase-1 protein expres-
sion, which indicates that pyroptosis in THP-1 was in-
duced by NPs [114].
The role of necroptosis and pyroptosis in the neuro-

toxicity of metallic NPs is uncertain. However, several
reports have demonstrated that necroptosis and pyrop-
tosis can be induced by OS [115–118], and metallic NP-
induced OS contributed to neurotoxicity. Furthermore,
necroptosis was involved in neurotoxicity induced by
other harmful substances, such as iron [119], Streptococ-
cus pneumoniae [120], and TNF-α [121]. Therefore, we
hypothesized that metallic NP-induced OS can probably
initiate necroptosis and pyroptosis, which might contrib-
ute to the neurotoxicity of NPs.

Future Perspectives
Based on the results of the above-mentioned studies, we
put forward some suggestions for future research to

Fig. 2 Different types of autophagy [132]. Microautophagy refers to the sequestration of cytosolic components directly by lysosomes through
invaginations in their limiting membrane. The function of this process in higher eukaryotes is not known, whereas microautophagy-like processes in
fungi are involved in selective organelle degradation. In the case of macroautophagy, the cargoes are sequestered within a unique double-membrane
cytosolic vesicle, an autophagosome. Sequestration can be either nonspecific, involving the engulfment of bulk cytoplasm, or selective, targeting
specific cargoes such as organelles or invasive microbes. The autophagosome is formed by expansion of the phagophore, but the origin
of the membrane is unknown. Fusion of the autophagosome with an endosome (not shown) or a lysosome provides hydrolases. Lysis of
the autophagosome inner membrane and breakdown of the contents occurs in the autolysosome, and the resulting macromolecules are
released back into the cytosol through membrane permeases. Chaperone-mediated autophagy (CMA) involves direct translocation of unfolded
substrate proteins across the lysosome membrane through the action of a cytosolic and lysosomal chaperone hsc70, and the integral membrane
receptor lysosome-associated membrane protein type 2A (LAMP-2A)
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understand the role of PCD in the neurotoxicity of me-
tallic NPs completely.

(1)Since the role of apoptosis in the neurotoxicity of
metallic NPs has been widely studied, the signaling
pathways through which NPs regulate neuronal
apoptosis should be investigated comprehensively.

(2)As metallic NP exposure during pregnancy can
affect fetal brain development [122–124], much
attention should be paid to the role of apoptosis in
developmental neurotoxicity induced by NPs.

(3)More in vivo studies are needed to further confirm
the vital role of apoptosis in the neurotoxicity of
metallic NPs.

(4)In addition to TiO2 NPs and silver NPs that
were most widely studied, other metallic
nanomaterials including NPs of gold, copper,

copper oxide, aluminum oxide, and iron oxide
should be investigated to understand the pivotal
role of apoptosis in the neurotoxicity of NPs
completely.

(5)Several studies have already been performed to
investigate the role of autophagy in non-neuronal
cells [125–127], and autophagy was implicated in
brain/neuron damage [128–130]. Although a few
studies confirmed the involvement of autophagy in
the neurotoxicity of metallic NPs, its role in
neurotoxicity still needs further verification.

(6)Whether necroptosis or pyroptosis is involved in the
neurotoxicity of metallic NPs should be investigated
in the future.

(7)The correlation among apoptosis, autophagy,
necroptosis, and pyroptosis in the neurotoxicity of
metallic NPs should be studied.

Fig. 3 TNFR1-elicited signaling pathways [133]. a On tumor necrosis factor (TNF) binding, TNF receptor 1 (TNFR1) undergoes a conformational
change, allowing for the intracellular assembly of the so-called TNFR complex I, which includes TNF receptor-associated death domain (TRADD),
receptor-interacting protein 1 (RIP1; also known as RIPK1), cellular inhibitor of apoptosis proteins (cIAPs), TNF receptor-associated factor 2 (TRAF2)
and TRAF5. On cIAP-mediated Lys63-ubiquitylation, RIP1 can serve as a scaffold for the recruitment of transforming growth factor-β activated
kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) and TAB3, which initiate the canonical nuclear factor-κB (NF-κB) activation pathway. Riboflavin
kinase (RFK) physically bridges the TNFR1 death domain to p22phox (also known as CYBA), the common subunit of multiple NADPH oxidases, in-
cluding NADPH oxidase 1 (NOX1), which also contributes to TNFα-induced necroptosis by generating reactive oxygen species (ROS). Conversely,
on deubiquitylation by cylindromatosis (CYLD; and perhaps also by A20 (also known as TNFAIP3), cezanne (also known as OTUD7B) or ubiquitin-
specific peptidase 21 (USP21)), RIP1 exerts lethal functions, which can be executed by two distinct types of cell death. b The internalization of TNFR1 is
accompanied by a change in its binding partners that leads to the cytosolic assembly of TNFR complex II, which often (but not invariably) contains
TRADD, FAS-associated protein with a death domain (FADD), caspase-8, RIP1, and RIP3 (also known as RIPK3). Normally, caspase-8 triggers apoptosis by
activating the classical caspase cascade. It also cleaves, and hence inactivates, RIP1 and RIP3. c If caspase-8 is blocked by pharmacological or genetic in-
terventions, RIP1 and RIP3 become phosphorylated (perhaps by an unidentified kinase) and engage the effector mechanisms of
necroptosis. FAD flavin adenine nucleotide, FMN flavin mononucleotide
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Conclusions
The widespread application of metallic NP-based prod-
ucts raises concerns about the safety of NPs. The brain
is the most important organ that can be impaired by me-
tallic NPs. Based on the vital role of PCD in neurological
functions, we summarized articles related to the role of
PCD in the neurotoxicity of metallic NPs, and we found
that apoptosis was involved in the neurotoxicity of metallic
NPs. Although autophagy is involved in nanotoxicity, few
studies on the relationship between autophagy and neuro-
toxicity of metallic NPs have been reported. In addition,
studies about the role of necroptosis or pyroptosis in the
neurotoxicity of metallic NPs are scarce. Therefore, for un-
raveling the neurotoxic mechanisms underlying metallic
NPs, the role of PCD in nanoneurotoxicity should be in-
vestigated comprehensively in the future.
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