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Abstract

Plain polyvinyl alcohol (PVA) nanofibres and novel polyvinyl alcohol benzene tetracarboxylate nanofibres
incorporated with strontium, lanthanum and antimony ((PVA/Sr-TBC), (PVA/La-TBC) and (PVA/Sb-TBC)), respectively,
where TBC is benzene 1,2,4,5-tetracarboxylate adsorbents, were fabricated by electrospinning. The as-prepared
electrospun nanofibres were characterized by scanning electron microscope (SEM), Fourier transform infrared
(FTIR) and thermogravimetric analysis (TGA). Only plain PVA nanofibres followed the Freundlich isotherm with a
correlation coefficient of 0.9814, while novel nanofibres (PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC) followed the
Langmuir isotherm with correlation coefficients of 0.9999, 0.9994 and 0.9947, respectively. The sorption process of
all nanofibres followed a pseudo second-order kinetic model. Adsorption capacity of novel nanofibres was twofold
and more compared to that of plain PVA nanofibres. The thermodynamic studies: apparent enthalpy (ΔH°) and
entropy (ΔS°), showed that the adsorption of Pb(II) onto nanofibres was spontaneous and exothermic. The novel
nanofibres exhibited higher potential removal of Pb(II) ions than plain PVA nanofibres. Ubiquitous cations adsorption
test was also investigated and studied.
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Background
Lead is classified as one of the most poisonous elements
to human health [1]. It is found in our living environ-
ment due to improper disposal. It is reported that lead is
present in the air, water, soil, animal flesh and in vegeta-
bles [2]. Previously conducted studies showed that lead
can cause brain damage, kidney and liver disorders and
bone damages [3, 4]. After a time of accumulation in the
human body, it not only jeopardises health, but also it is
said to cause death even in low concentrations due to its
toxic nature [5]. It is mainly used in industries such as
metal plating and finishing, printing, photographic
materials, explosive manufacturing, ceramic and glass
manufacturing [6]. The removal of heavy metals from
aqueous solution has been investigated using many

nanomaterials, such as graphene [7] or graphene oxide
[8], carbon nanotubes [9], polymers [10, 11] and metal-
organic frameworks [12–14]; all these composites
showed great potential by their high metal removal effi-
ciency due to high surface areas. Still, many other poten-
tial adsorbents are being developed like urchin-like
rutile titania carbon nanocomposites [15], sandwich-like
MXene/magnetic iron oxide nanocomposites [16], and
cation adsorbent [17]. Many kinds of functional mate-
rials like polymers and nanoparticles can be incorpo-
rated for achieving properties corresponding to each
type of materials and integrated functionalities [18].
Some research teams have reported nanofibre hybrids,
novel mesoporous polyvinyl alcohol (PVA)/SiO2 com-
posite nanofibres [19] and Al(NO3)3/polyacrylonitrile
(PAN) hollow nanofibres [20] intended to increase the
removal efficiency of heavy metal ions from waste water.
Nanofibres are defined as long uninterrupted fibres

with a diameter of 100 nm and less [21]. As the diameter
of polymeric fibres decreases from micro to nano,
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several desirable features are exhibited, such as high sur-
face area, unusual strength, high surface reactivity, high
thermal and electric conductivity and superior mechan-
ical properties [22–25]. Electrospinning is one of the
highly favoured techniques to fabricate nanofibres due
to its capabilities to produce nanofibres with controllable
porous structure, versatility, ease to operate and calibre
to align structures and control fibre diameters which
cannot be accomplished using other conventional spin-
ning methods [26]. It uses electrostatic forces to align
electrical charges in a polymer solution and/or kinds of
naturally occurring proteins, such as collagen, gelatin
and silk fibroin, which have been used because of their
natural abundant resources, which on drying by means
of vaporization of the solvent produce nanofibres [27].
Electrospun nanofibres were proven to be useful for
many applications like filtration, nanocatalysis, tissue
scaffolds, protective clothing, optical electronics, bio-
medical, pharmaceutical and health care [28–31]. Lately,
it has been found out that interactions between
polymer-based gelators and nanoparticles could be
employed to assemble tunable and self-healing polymer
materials, where nanoparticles play an essential role in
tuning the mechanical properties [32].
In this study, we have fabricated new hybrids of PVA

nanofibres incorporated with Sr-TBC, La-TBC and Sb-
TBC by electrospinning. These new composites were
characterized and evaluated for their sorption ability to
remove lead ions (Pb(II)) in aqueous solution and com-
peting divalent ions. The results obtained are presented
herein.

Methods
Materials
The materials are as follows: polyvinyl alcohol
[(CH2CH(OH))n, PVA, fully hydrolysed; Sigma-Aldrich];
N,N-dimethylformamide [HCON(CH3)2, dimethylforma-
mide (DMF), 99.8 %; AnalaR]; antimony potassium tar-
trate [K2Sb2(C4H2O6)2.3H2O, 99 %; Sigma-Aldrich];
strontium(II) nitrate [Sr(NO3)2, 99 %; Sigma-Aldrich];
lanthanum(II) nitrate hexahydrate [La(NO3)3.6H2O,
99.9 %; Sigma-Aldrich]; 1,2,4,5-tetrabenzenecarboxylic
acid [C6H2(CO2H)4, 96 %; Sigma-Aldrich]; and methanol
[CH3OH, 99.9 %; Sigma-Aldrich].
All reagents were obtained from commercial sources

and were used without further purification.

Sample Preparation
Preparation of Sb-TBC
The Sb-TBC was synthesized by solvothermal method.
Eighty-millilitre DMF was transferred into a round bottom
flask. Subsequently, K2Sb2(C4H2O6)2·3H2O (0.012 mol)
and 1,2,4,5-tetrabenzenecarboxylic acid (0.012 mol) were
dissolved in DMF by mild stirring. The solution was

refluxed for 2 h at 120 °C while stirring. White crystals
were obtained and isolated by centrifuge and washed with
methanol to remove excess DMF, the obtained crystals
were oven dried at 40 °C for 30 min and used for further
experiments.

Preparation of La-TBC
The La-TBC was synthesized by solvothermal method.
Eighty-millilitre DMF was transferred into a round bot-
tom flask. Subsequently, (0.012 mol) La(NO3)3·6H2O
and (0.012 mol) 1,2,4,5-tetrabenzenecarboxylic acid were
dissolved in DMF by mild stirring. The solution was
refluxed for 2 h at 120 °C while stirring. White crystals
were obtained and isolated by centrifuge and washed
with methanol to remove excess DMF. The obtained
crystals were oven dried at 40 °C for 30 min and used
for further experiments.

Preparation of Sr-TBC
The Sr-TBC was synthesized by solvothermal method.
Eighty-millilitre DMF was transferred into a round bot-
tom flask. Subsequently, Sr(NO3)2 (0.012 mol) and
1,2,4,5-tetrabenzenecarboxylic acid (0.012 mol) were dis-
solved in DMF by mild stirring. The solution was
refluxed for 2 h at 120 °C while stirring. White crystals
were obtained and isolated by centrifuge and washed
with methanol to remove excess DMF. The obtained
crystals were oven dried at 40 °C for 30 min and used
for further experiments.

Preparation for Electrospinning
The PVA solution was prepared by dissolving 2.7 g PVA
into hot distilled water. The polymer solution was mixed
every time with a different complex. The experimental
setup used for conducting electrospinning is described
previously [11].

Lead Solution Preparation
Pb(II) stock solution (100 ppm) was prepared by dissolv-
ing 0.1 g Pb(NO3)2 in 1 L of ultrapure water. Dilutions
were made to 80, 60, 40 and 20 ppm, respectively.

Adsorption Procedure (Batch Adsorption)
Concentration Effect
0.1 g of nanocomposite polyvinyl alcohol incorporated
with strontium benzene tetracarboxylate (PVA/Sr-TBC)
nanofibre mat was weighed and placed into each of the
five test tubes. Twenty millilitres of metal ion solution
with standard concentration of 20, 40, 60, 80 and
100 ppm from Pb(NO3)2 solutions was transferred to
each beaker containing the weighed nanocomposite. It
was agitated on a shaker for 30 min; the remaining
nanofibres suspension was removed by centrifugation
and decanted. The remaining solutions were stored for
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Pb(II) analysis and ubiquitous cations using atomic ad-
sorption spectrometer. (Same procedure was repeated
for Sb-TBC and La-TBC nanofibres).

Time Dependence Studies
0.1 g of the nanocomposite PVA/Sr-TBC nanofibre mat
was weighed and transferred into each of the four test
tubes. Twenty millilitres of the metal ion solution with a
standard concentration of 60 ppm from Pb(NO3)2 solu-
tion was transferred to each beaker containing the
weighed nanocomposite. It was agitated on a shaker for
each time intervals of 5, 10, 30 and 60 min, respectively.
The nanofibre suspension was centrifuged and decanted.
The remaining solutions were stored for Pb(II) analysis
and other competing cations. (Same procedure was re-
peated for Sb-TBC and La-TBC nanofibres).

Temperature Effect
0.1 g of the nanocomposite PVA/Sr-TBC nanofibre mat
was weighed and placed in four test tubes. Twenty milli-
litres of the metal ion solution with a standard concen-
tration of 60 ppm from Pb(NO3)2 was transferred to a
beaker containing the weighed nanocomposite. It was
agitated for 30 min at temperatures of 25, 40, 60 and
80 °C, respectively, using water bath. The solution with
nanofibre suspension was centrifuged and decanted. The
remaining solutions were stored for Pb(II) analysis and
other competing cations. (Same procedure was repeated
for Sb-TBC and La-TBC nanofibres).

Ca(II) and Mg(II) Determination
Lead solutions 20 to 100 ppm before adsorption were
carried; the solutions were determined to be calcium
ions (Ca(II)) and magnesium ions (Mg(II)) on atomic
absorption spectroscopy (AAS). After adsorption was
carried out, the same lead solutions have determined
how much Ca(II) and Mg(II) ions remained in the
solutions.

Characterization
The chemical features of the as-prepared nanofibre com-
posites were examined by scanning electron microscope
(SEM), Fourier transform infrared (FTIR) and thermo-
gravimetric analysis (TGA). The surface morphology
measurements were recorded with a JOEL 7500F emis-
sion scanning electron microscope. TGA Perkin Elmer
TGA 4000 was used; analyses were performed from 30
to 900 °C at a heating rate of 10 °C/min under a nitro-
gen atmosphere. FTIR Perkin Elmer FT-IR/FT-NIR
spectrometer spectrum 400 was used. The measuring
range extended from 4000 to 520 cm−1. After adsorp-
tion, AAS Shimadzu ASC 7000 autosampler was used to
measure the remaining Pb(II) ions in the solution.

Data Analysis
The sorbed amount of lead ions onto the adsorbent was
determined using the following equation for batch dy-
namic studies:

qe ¼
V
m

CO−Ceð Þ ð1Þ

qe: Pb(II) concentration sorbed onto the nanocomposite
at equilibria point (mg of metal ion/g of adsorbent)
Co: Initial concentration of Pb(II) in solution (in ppm)
Ce: Equilibria point concentration of Pb(II) in solution
(in ppm)
V: Initial volume of Pb(II) solution used (in L)
m: Weight of the nanocomposite

Langmuir graphs were plotted by applying the follow-
ing equation:

m
x
¼ 1

abCe
þ 1

b
ð2Þ

x: Pb(II) sorbed per mass of nanocomposite (in mg/L)
a and b: The Langmuir constants obtained from the
slope and intercepts of the plots

The Langmuir isotherm was showed in terms of an
equation of separation factor Sf. It determines a type of
adsorption isotherm. When Sf is greater than 1, the iso-
therm is unfavourable; if Sf is 1, linear, if 0 < Sf < 1.0,
favourable; and Sf = 0, irreversible.

Sf ¼ 1
1þ aCo

ð3Þ

The degree of surface coverage of adsorbent covered
by lead ions was calculated using

θ ¼ 1−
Ce

Co
ð4Þ

The capability of nanofibres to reduce the amount of
Pb(II) in solution was evaluated by total cycles of equi-
librium adsorption needed according to the value of the
partition coefficient (Kd) in Eq. 5

Kd ¼ Cads

Caq
; ð5Þ

where

Caq: Concentration of Pb(II) in solution (in mg/L)
Cads: Concentration of Pb(II) in nanocomposite
(in mg/L)
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The Suzuki equation was used to determine the heat
of adsorption (Qads) as expressed in the below equation:

In θ ¼ InKOCO

T 0:5 þ Qads

RT
; ð6Þ

where

T: Temperature of the solution (in K)
K0: Constant
R: Gas constant (8.314 J/Kmol)

The linearized Arrhenius equation was used to the ob-
tained data to determine the activation energy (Ea) and
sticking probability S*

In 1− θð Þ ¼ S� þ Ea

RT
ð7Þ

Gibbs free energy (ΔGo) of the sorption process was
applied to evaluate the spontaneity.

ΔG� ¼ RT InKd ð8Þ
Further investigation was done to measure the en-

thalpy (ΔH°) and entropy (ΔS°) of the sorption process
by using Eq. 9.

ΔG� ¼ ΔH�− TΔS� ð9Þ
The number of hopping (n) was calculated by relating

it to the surface coverage (θ).

n ¼ 1
1−θð Þθ ð10Þ

Results and Discussion
The SEM micrographs of electrospun PVA nanofibres
composites are presented in Fig. 1a–h. Plain PVA nano-
fibres are shown in Fig. 1a, b; it is observed that
uniform, smooth and continuous bead free nanofibres
were fabricated. The nanofibre morphology exhibited no
apparent surface and structural defects. PVA/Sr-TBC
(Fig. 1c, d) and polyvinyl alcohol incorporated with
lanthanum benzene tetracarboxylate (PVA/La-TBC;
Fig. 1e, f ) nanofibre micrographs showed fibrous morph-
ology having patching areas that connected multiple
nanofibres forming semi-cross linkage. These patching
areas are aggregates, formed to indicate molecular inter-
action between PVA nanofibres and Sr-TBC and
La-TBC, respectively; from the observations, it is there-
fore concluded that mobilisation of PVA nanofibres with
Sr-TBC and La-TBC was successfully executed. In
Fig. 1g, h, PVA/Sb-TBC nanofibre micrographs showed
much entanglement and network structures; this could
be due to the presence of Sb-TBC embedded in the PVA
nanofibres.

Plain PVA nanofibres were used as control in order to
monitor the changes that occurred on the FTIR peaks of
the nanofibres incorporated with complexes. FTIR spec-
tra of the investigated composites are similar as shown
in Fig. 2a–c, showing that they are fabricated by the
same material, PVA. Figure 2a shows the PVA vs. PVA/
La-TBC composite nanofibres. On the spectra of electro-
spun PVA nanofibre mat, the major peaks observed were
as follows: bands at 3293.85 and 1660.20 cm−1 are
assigned to the stretching and bending vibrations of
(O–H), respectively; two vibration bands at 2936.50
and 2911.11 cm−1 are assigned to (C–H); a sharp
band at 1100.27 is attributed to the vibration of (C–C);
and a medium shoulder peak at 917.30 cm−1 is linked to
the vibration of (C–O). In the spectrum of PVA/La-TBC
nanofibres, two major changes were observed a medium
peak at 1581.11 cm−1 and a newly formed peak at
690.99 cm−1 as highlighted on the spectra. In Fig. 2b,
PVA/Sb-TBC nanofibre IR spectra also showed multiple
major changes, a sharp peak at 1644.73 cm−1 and two new
peaks: one at 1539.84 could not be clearly seen owing to
the apparent overlapping and other at 727 cm−1. In Fig. 2c,
PVA/Sr-TBC nanofibres newly formed multiple peaks
were observed 1572, 1539 and 767 cm−1. Therefore, it is
concluded that there were a given amount of complexes
embedded in the electrospun fibrous mat.
Thermal stability of the fabricated nanofibres adsor-

bents material was assessed. Figure 3a–d shows the
TGA and differential thermogravimetric analyses (DTA)
that were conducted on the fabricated nanofibres. In
Fig. 3a, plain PVA nanofibre plot showed three main
decomposition steps: the first decomposition occurred
between 30 and 75 °C which was mainly due to the de-
hydration of water molecules within the fibres that was
physisorbed [33]. The second decomposition occurred
between 149 and 371 °C of which this was the most in-
tense weight loss corresponding to the side chains of
PVA, the loss of H-bond between PVA molecules and
O-bond between C–O. The third decomposition 378–
489 °C corresponds to the disintegration of the main
chain of PVA [34]. TGA and DTA plots demonstrated
that PVA nanofibres are highly unstable at high temper-
atures especially from 508 °C as no residue remained
after the analysis. In Fig. 3b, d, the PVA/Sr-TBC and
PVA/Sb-TBC nanofibres were more thermally stable and
exhibited higher decomposition points than plain PVA
as the remaining residue was 36.96 and 36.87 %, respect-
ively, at the end of the run. Figure 3c was thermally un-
stable as plain PVA nanofibres as no residue remained
after the thermal assessment test.
To better understand the significant role of

temperature on Pb(II) ion sorption on the adsorbents,
temperature effect experiments were conducted at four
different temperatures (25, 40, 60 and 80 °C) as shown
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in Fig. 4. It was observed in all instances that the
sorption rate was very rapid from 0 to 25 °C, but as
temperature increased, sorption rate was slowed. Sorp-
tion slightly increased though negligible and cannot be
clearly seen on the plots; at temperatures 25, 40, 60 and
80 °C, percent adsorption was PVA = 19.0, 19.8, 20.1 and
22.7; PVA/Sb-TBC = 49.8, 50.1, 50.8 and 51.9; PVA/Sr-
TBC = 58.1, 58.4, 58.6 and 59.6; and PVA/La-TBC = 90.0,
92.2, 93.3 and 93.3, respectively. These results suggests

that temperature has no significant role on the sorption
of Pb(II) onto nanofibre composites.
The activation energy (Ea) and the sticking probability

(S*) were calculated from Eq. 7. Ea and S* values were
−2.158 and 0.7734 (PVA), −6.1532 and 0.4825 (PVA/Sb-
TBC), −7.51 and 0.4068 (PVA/Sr-TBC) and −24.63 and
0.0725 (PVA/La-TBC), respectively, as shown in Tables 1
and 2. Negative activation energy (−Ea) indicates the ab-
sence of energy barrier to cause the sorption to occur. The

Fig. 1 a, b SEM micrographs of PVA nanofibres. c, d Micrographs of PVA/Sr-TBC nanofibres. e, f Micrographs of PVA/La-TBC nanofibres. g, h
Micrographs of PVA/Sb-TBC nanofibres
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sticking probability S* measures the potential of an adsorb-
ate to remain on the adsorbent. It is often interpreted as
S* > 1 (no sorption), S* = 1 (mixture of physisorption and
chemisorption), S* = 0 (indefinite sticking—chemisorption),
0 < S* < 1 (favourable sticking—physisorption).
Hopping number (n) estimates the chance of Pb(II) ions

finding vacant sites on the surface of the nanofibre com-
posites during sorption was calculated as shown in Table 2.
The hopping number was 1 (PVA), 4 (PVA/Sb-TBC), 4
(PVA/Sr-TBC) and 11 (PVA/La-TBC). The lower the hop-
ping number, the faster the sorption process. The low
value of n obtained in this study suggests that the sorption
of Pb(II) on nanofibre composites was very fast.

Another important parameter to understand is the ef-
fect of time on Pb(II) ion sorption at time intervals (5,
10, 30 and 60 min). Figure 5 shows the time required for
maximum sorption to occur. It was observed in all

Fig. 2 a FTIR spectra of PVA nanofibres (red dotted line) vs. PVA/La-
TBC nanofibres (blue solid line). b PVA nanofibres (red dotted line) vs.
PVA/Sb-TBC nanofibres (blue solid line) and c PVA nanofibres (red
dotted line) vs. PVA/Sr-TBC nanofibres (blue solid line)

Fig. 3 Thermogravimetric analysis (TGA) and derivative
thermogravimetric analysis (DTA) of a PVA nanofibres, b PVA/Sr-TBC
nanofibres, c PVA/La-TBC nanofibres, and d PVA/Sb-TBC nanofibres
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instances that Pb(II) sorption was very fast especially at
the starting period. This was because of the readily ac-
cessible vacant sites at the initial stage of the sorption
process but as the sorption sites decreased in number
and became exhausted, the sorption rate was slowed
down. The maximum percentage sorption of Pb(II) ions
was as follows: PVA nanofibres increased from 16.1 % in
5 min to 20 % in 60 min; PVA/Sb-TBC nanofibres in-
creased from 50.7 % in 5 min to 52.7 in 60 min; PVA/Sr-
TBC nanofibres increased from 53.8 % in 5 min to 57.9
in 60 min; and PVA/La-TBC nanofibres increased from
84.2 % in 5 min to 92.4 in 60 min.
To evaluate the sorption capability of Pb(II) ions on

PVA nanocomposites at different Pb(II) concentrations

(20, 40, 60, 80 and 100 ppm), Fig. 6, the sorption rate
was noticeably very rapid at lower concentrations par-
ticularly on the 20- and 40-ppm solutions; this was due
to the presence of large number of vacant bounding sites
and free pore space on the nanofibre surface, but as con-
centration further increased, sorption capability slowed
down especially from the 60-ppm solution, indicating
the saturation of vacant sites and pores. From that point,
no further sorption was observed; this showed equilib-
rium was reached.
It is known that water contains ubiquitous cations such

as Ca(II) and Mg(II); these divalent ions have the same
positive charge as Pb(II), and this leads to serious adsorp-
tion competition towards heavy metal removal [35]. There-
fore, it is essential to evaluate the adsorption performance
of PVA and PVA/MOFs nanofibres for Pb(II) and compet-
ing cations. Adsorptions of these ions in the test solution
were studied in ultrapure water. The prepared lead(II) stock
solution with possible Ca(II) and Mg(II) ions was used for
adsorption of Pb(II) and ubiquitous ions in the study. Mea-
surements were carried out on the prepared solutions for
calcium and magnesium ion adsorption in the presence of
lead ions before lead adsorption studies and after adsorp-
tion of lead studies. Figure 7a, b shows the adsorption of

Fig. 4 Temperature effect on the sorption of Pb(II) ions onto PVA nanofibres (filled square), PVA/Sb-TBC nanofibres (filled diamond), PVA/Sr- TBC
nanofibres (filled triangle) and PVA/La-TBC nanofibres (X mark)

Table 1 Thermodynamic parameters of the nanocomposites

T (K) ΔGo

(KJ/mol)
ΔH°
(KJ/mol)

ΔS°
(J/mol)

Ea (KJ/mol)

Sorption of Pb(II) onto
PVA nanofibres

298 3.45 −2.68 2.9 −2.158

313 3.63

333 3.82

353 3.59

Sorption of Pb(II) onto
PVA/Sr-TBC nanofibres

298 −8.40 −760.54 −5.29 −7.51

313 −8.83

333 −9.58

353 −11.37

Sorption of Pb(II) onto
PVA/La-TBC nanofibres

298 −5.45 −7348.3 −43.50 −24.63

313 −6.41

333 −7.29

353 −7.86

Sorption of Pb(II) onto
PVA/Sb-TBC nanofibres

298 −5.45 −308.84 0.9488 −6.1532

313 −6.41

333 −7.29

353 −7.86

Table 2 Thermodynamic parameters of the nanocomposites

Composite Heat of adsorption,
Qads (KJ/mol K)

Sticking
probability
(S*)

Hopping
number, n

Adsorption
potential,
A (KJ/mol)

PVA
nanofibres

−5.3145 0.7734 1 0.7566

PVA/Sb-TBC
nanofibres

−10.41 0.4825 4 −2.0727

PVA/Sr-TBC
nanofibres

−10.91 0.4068 4 −1.834

PVA/La-TBC
nanofibres

−16.32 0.0725 11 −7.5595
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these divalent metal ions in the Pb(II) ion solution. The
percentage adsorption of magnesium and calcium ions
adsorbed by the PVA/MOF nanofibres is low. This shows
that there was not a high degree of competition from these
ions in the water source used in the study. Mg(II) ions ex-
hibited higher adsorption due to its more prominent elec-
tronegativity (1.31, Pauling scale) and smaller atomic radius
(145 pm) than Ca(II) which has lesser electronegativity
(1.00, Pauling scale) and bigger atomic radius (194 pm).
Higher uptake was exhibited in PVA/MOFs than plain PVA
nanofibres. This is due to abundant carboxylate groups
compared to hydroxyl groups in plain PVA nanofibres, as
depicted in Schemes 1 and 2. PVA/MOF nanofibres exhib-
ited greater liberation of Pb(II) and competing ions than
plain PVA nanofibres; this confirmed the advantage of in-
corporated nanofibres than the plain nanofibres.
Schemes 1 and 2 depict the PVA and PVA/MOF nanofi-

bre formation, where PVA acts as the Lewis acid (electron
acceptor) in water medium (Lewis base) electron donor.

Oxygen in water molecule donated its unbound electron to
cleave hydrogen from hydroxyl groups (O–H) on PVA mol-
ecules. In Scheme 2, after MOFs are added, the same
process is repeated where negatively charged oxygen on
PVA and positively charged metal bound to organic frame-
work are electrostatically attracted and share oxygen-free
unbound electrons to form a bond.
Sorption distribution (Kd) was used to evaluate the

performance of nanofibres as potential adsorbents Pb(II)
from solution is presented in Table 3. The values of Kd

(3.5315 (PVA), 1.1993 (PVA/Sb-TBC), 0.6634 (PVA/Sr-
TBC) and 0.2264 (PVA/La-TBC)) suggest that nanofi-
bres are efficient adsorbents; however, more cycles of
equilibrium sorption process are needed to reduce the
levels of Pb(II) in the solution.
Separation factor (Sf ) was applied to determine the na-

ture of the sorption process, whether Pb(II) sorption
unto nanofibres was favourable or not. The Sf values
were 0.7028 (PVA), 0.3981 (PVA/Sb-TBC), 0.3577 (PVA/

Fig. 5 Time dependence studies on the sorption of Pb(II) ions onto PVA nanofibres (filled square), PVA/Sb-TBC nanofibres (filled diamond), PVA/Sr-
TBC nanofibres (filled triangle) and PVA/La-TBC nanofibres (X mark)

Fig. 6 Concentration effect on the sorption of Pb(II) ions onto PVA nanofibres (filled square), PVA/Sb-TBC nanofibres (filled diamond), PVA/Sr-TBC
nanofibres (filled triangle) and PVA/La-TBC nanofibres (X mark)
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Fig. 7 a Uptake of trace amount of Ca(II) ions in lead ion solution. b Uptake of trace amount of Mg(II) ions in lead ion solution

Scheme 1 Proposed PVA nanofibre formation mechanism and functional groups present in the nanofibres
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Sr-TBC) and 0.3508 (PVA/La-TBC) as presented in
Table 3. All Sf values were below 1 and more than 0; this
indicates that the sorption of Pb(II) ions was favourable.
Surface coverage (θ) is given in Table 3 as 0.2206 =

22.06 % (PVA), 0.5064 = 50.64 (PVA/Sb-TBC), 0.5874 =
58.74 (PVA/Sr-TBC) and 0.9227 = 92.27 % (PVA/La-
TBC). These values indicated that high percentage of
the active sites of nanofibre surface were covered by
Pb(II), which means that the highest degree of sorption
occurred in PVA/La-TBC; thus, it has higher surface
coverage and adsorption capacity as shown in Table 3,
followed by PVA/Sr-TBC, PVA/Sb-TBC and plain PVA
nanofibres.
Percentage adsorption of the produced novel nanofi-

bres was 92.27 (PVA/La-TBC), 58.85 (PVA/Sr-TBC) and
50.66 (PVA/Sb-TBC).
Heat of adsorption (Qads) for the sorption of Pb(II)

ions was calculated and obtained the values of −5.3145

(PVA), −10.41 (PVA/Sb-TBC), −10.91 (PVA/Sr-TBC)
and −16.32 (PVA/La-TBC) as presented in Table 2.
Negative values indicated that the sorption was exother-
mic. Pb(II) sorbed onto the electrospun nanofibres
favoured low temperatures. Thus, increased tempera-
tures did not improve the sorption processes.
The Gibbs free energy (ΔGo) was calculated from

Eq. 8 as presented in Table 1. ΔGo aids to determine the
spontaneity of the sorption process. The calculated ΔGo

values for PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC
nanofibres were negative indicating that the sorption
was spontaneous; no external energy was required to ini-
tiate the sorption process. Only plain PVA nanofibre
ΔGo values were positive.
The apparent enthalpy (ΔH°) and entropy (ΔS°) of the

sorption calculated from Eq. 9 values are shown in Table 1.
The values of enthalpy change (ΔH°) and entropy (ΔS°),
respectively, were −2.68 and 2.9 (PVA), −308.84 and
0.9488 (PVA/Sb-TBC), −760.54 and −5.29 (PVA/Sr-TBC),
and −7348.3 and −43.50 (PVA/La-TBC). Negative values

Scheme 2 Proposed PVA/MOF nanofibre formation mechanism and functional groups present in the nanofibres

Table 3 Equilibrium and kinetic parameters

Composite Surface
coverage (θ)

Separation
factor (Sf)

Sorption
coefficient (Kd)

Percentage
adsorption
(mol/g)

PVA nanofibres 0.2206 0.7028 3.5315 25.50

PVA/Sb-TBC
nanofibres

0.5064 0.3981 1.1993 50.66

PVA/Sr-TBC
nanofibres

0.5874 0.3577 0.6634 58.85

PVA/La-TBC
nanofibres

0.9227 0.3508 0.2264 92.27

Table 4 Isotherm parameters of the Langmuir and Freundlich
correlation coefficients (R2)

Correlation coefficients (R2)

Langmuir Freundlich

PVA nanofibres 0.9734 0.9814

PVA/Sb-TBC nanofibres 0.9999 0.9997

PVA/Sr-TBC nanofibres 0.9994 0.9976

PVA/La-TBC nanofibres 0.9947 0.9249
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for ΔH° suggested that the sorption favoured lower tem-
peratures. The entropy change ΔS° gave positive values for
PVA and PVA/Sb-TBC nanofibres; this means that Pb(II)
ions were not restricted in the electrospun nanofibres, and
physisorption mechanism was dominant. Chemisorption
was more dominant in the sorption of PVA/La-TBC and
PVA/Sr-TBC nanofibres as the obtained ΔS° values were
negative.
Additional file 1: Figures S1 and S2 (Supporting infor-

mation) is the plots of the Langmuir and Freundlich iso-
therms and their corresponding correlation coefficients
(R2) are given in Table 4. Sorption data of PVA/Sb-TBC,

PVA/Sr-TBC and PVA/La-TBC nanofibre (R2) magnitudes
best fitted the Langmuir isotherm. Plain PVA nanofibres
sorption data followed the Freundlich isotherm.
Additional file 1: Figure S3 (Supporting information)

presents the plots of the pseudo second order model.
Best-fitted kinetic model is selected based upon the
magnitude of the obtained correlation coefficients (R2).
The magnitudes of the R2 for the pseudo second-order
model were greater than those of other kinetic models
as shown in Table 5. Therefore, it was concluded that
the sorption data suited best the pseudo second-order
kinetic mechanism.
Common conventional adsorbents used for heavy metal

removal is activated carbon which is prepared from a var-
iety of carbon-containing materials; activated carbon pre-
pared from coir-pith gave a maximum uptake capacity of
62.5 mg/g [36], that prepared from olive pulp has
33.6 mg/g [37] and that treated with saw dust has
111 mg/g [38]. We herein report higher performance
novel PVA/Sb-TBC, PVA/Sr-TBC and PVA/La-TBC
nanofibres with maximum uptake capacity of 91, 124 and
194 mg/g, respectively, as shown in Fig. 8a plots. Figure 8b

Table 5 Kinetics parameters for Pb(II) sorption correlation
coefficients (R2)

Correlation coefficients (R2)

Pseudo second order

PVA nanofibres 0.9495

PVA/La-TBC nanofibres 0.9999

PVA/Sb-TBC nanofibres 0.9910

PVA/Sr-TBC nanofibres 0.9999

Fig. 8 a Uptake capacity of PVA and novel incorporated nanofibres. b Maximum uptake capacity of nanofibres against some activated carbons
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provides a better understanding on how so PVA/MOFs
exhibited higher uptake capacity; the figure also shows the
correlation between the degree of surface coverage and
uptake capacity. It was observed that as the degree of sur-
face coverage increased so also the uptake capacity.
Higher uptake capacity exhibited by MOF-enriched nano-
fibres than some commonly used activated carbon and
plain PVA nanofibres was because more surface area was
facilitated for adsorption in MOFs/PVA nanofibres. Hus-
sain et al. [39] reported that blended or functionalized
nanofibres were found to have smaller diameters with nar-
rower diameter distributions than pure unfunctionized
nanofibres. Diameters of enriched PVA nanofibres de-
creased as MOF content were added. This was due to the
increase in conductivity of the solution as MOFs were in-
troduced. Decreased diameters of PVA/MOF nanofibres
led to higher uptake capacity. Fabricated enriched nanofi-
bres have proven to be good candidates for this applica-
tion, which demonstrated to be more effective lead ions
adsorbents, exceeding some of the commonly used acti-
vated carbon. This research proposes a convenient ap-
proach for the application of incorporated nanofibres in
the field of practical water treatment and the advantages
of using polymeric nanofibre adsorbents. Results from this
work will add to the knowledge base on the fabrication,
characterization and the use of incorporated PVA nanofi-
bres for the adsorption studies.

Conclusions
The present investigation showed that novel PVA/La-
TBC, PVA/Sr-TBC and PVA/La-TBC nanofibres were
successfully fabricated by electrospinning. TGA-DTA
plots and FTIR spectra confirmed PVA nanofibres and
complexes incorporation. The produced nanofibres were
applied as potential adsorbents for heavy metal [Pb(II)]
treatment from contaminated water systems. The chemi-
sorption predominated adsorbents (PVA/La-TBC and
PVA/Sr-TBC nanofibres) removed the Pb(II) ions much
better than the physisorption dominant adsorbents (plain
PVA and PVA/Sb-TBC nanofibres). PVA/Sb-TBC, PVA/
Sr-TBC and PVA/La-TBC nanofibre sorption data fitted
best with the Langmuir isotherm, indicating the homoge-
neous nature of the monolayer sorption of Pb(II) on the
modified nanofibres. Sorption of Pb(II) onto the nanofi-
bres was rapid and spontaneous. This research proposes a
convenient approach for the application of modified nano-
fibres in the field of practical water treatment.

Additional File

Additional file 1: Figure S1. The Langmuir isotherm plots, M/X against
1/Ce. (a) PVA nanofibres, (b) PVA/Sb-TBC nanofibres, (c) PVA/La-TBC
nanofibres and (d) PVA/Sr-TBC nanofibres. Figure S2. The Freundlich
isotherm plots, InX/M against InCe. (a) PVA nanofibres, (b) PVA/Sb-TBC

nanofibres, (c) PVA/La-TBC nanofibres and (d) PVA/Sr-TBC nanofibres.
Figure S3. Plots of t/qt vs. t for adsorption of Pb2+ onto (a) PVA
nanofibres, (b) PVA/Sb-TBC nanofibres, (c) PVA/La-TBC nanofibres and (d)
PVA/Sr-TBC nanofibres. (DOCX 74 kb)
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