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Abstract

Crossbar resistive switching devices down to 40 × 40 nm2 in size comprising 3-nm-thick HfO2 layers are forming-free
and exhibit up to 105 switching cycles. Four-nanometer-thick devices display the ability of gradual switching in both
directions, thus emulating long-term potentiation/depression properties akin to biological synapses. Both forming-free
and gradual switching properties are modeled in terms of oxygen vacancy generation in an ultrathin HfO2 layer. By
applying the voltage pulses to the opposite electrodes of nanodevices with the shape emulating spikes in
biological neurons, spike-timing-dependent plasticity functionality is demonstrated. Thus, the fabricated
memristors in crossbar geometry are promising candidates for hardware implementation of hybrid CMOS-neuron/
memristor-synapse neural networks.
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Background
The processing of information following the classical
von Neumann digital computing paradigms is known to
be less efficient compared to their biological counter-
parts, when dealing with ill-posed problems and noisy
data, such as image and voice recognition, pattern classi-
fication, navigation, etc. Though current computing
technologies have reached the speed and computational
power that allows them to simulate parts of animal
brains and behavior, the energy required by these sys-
tems grows exponentially with the increasing hierarchy
of animal intelligence. The reason is that the biological
brain is configured differently and particularly features
an extremely high level of connectivity between neurons,
full integration of logic and memory functionality in the
same components, and packaging in a compact 3D
network. Such architecture results in the highly parallel
operation, energy efficiency, adaptiveness, and self-learning
of these networks [1]. The obvious advantages of a living
brain have been motivating the development of artificial
neural networks, which attempt to mimic the architecture
of biological systems. Previously, the mainstream approach
was focused on the software implementation of such
networks utilizing classical von Neumann computers with
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separate memory and logic units. However, such approach
restricts the efficiency of computation once it comes to
difficult tasks such as pattern recognition and navigation.
Therefore, in order to create an efficient artificial neural
network, one needs to find the solution for a hardware
implementation. Until recently, the “bottleneck” of the
latter approach has been the lack of a compact device
emulating the functionality of biological synapses.
Meanwhile, over the last decade, a broad set of reversible

electrical resistance-switching phenomena in thin-film
devices called memristors have attracted renewed attention
as a functional basis for the alternative non-volatile
memory technologies [1, 2]. Memristors offer several ad-
vantages, such as the scalability down to a few nanometers
in size [3] and ultralow energy consumption [4], as well as
the possibility of integration in high-dense matrices in the
so-called crossbar geometry [3–6]. Further, such memristor
matrices can be integrated with сomplementary metal-
oxide-semiconductor (CMOS) technology, which paves the
way for the design of reconfigurable logic devices [6].
By careful optimization of the applied electrical pulses,

one can stabilize several intermediate resistance states in a
memristor and eventually achieve an almost continuous
spectrum of resistance states [7]. It has been previously
demonstrated that memristors can display the functional
properties of biological synapses, such as long-term
le is distributed under the terms of the Creative Commons Attribution 4.0
rg/licenses/by/4.0/), which permits unrestricted use, distribution, and
e appropriate credit to the original author(s) and the source, provide a link to
changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-016-1360-6&domain=pdf
http://orcid.org/0000-0001-7661-8462
mailto:matveyev.ya@mipt.ru
http://creativecommons.org/licenses/by/4.0/


Matveyev et al. Nanoscale Research Letters  (2016) 11:147 Page 2 of 6
potentiation and depression [8, 9], pair-pulse fluctuation
[10], and spike-timing-dependent plasticity (STDP) [11]. It
is therefore concluded that memristors can be viewed as
“electronic synapses,” which provide an opportunity to
build hybrid artificial neuromorphic computing systems,
where memristor-based analog and CMOS-based digital
logic parts are integrated in one device, thus combining
the benefits from both technologies [12].
Among the variety of the previously investigated

material systems, HfO2-based resistive switching devices
are of special interest since this material has been inte-
grated into the modern CMOS technology. Consequently,
HfO2-based devices have been extensively studied in the
context of the non-volatile memory applications [13–17],
including several works demonstrating their functionality
in crossbar geometry [18, 19]. Moreover, in several works,
the synaptic properties on the stand-alone HfO2-based
devices have been demonstrated [20]. The peculiar
property of HfO2-based memristors is that while they
exhibit gradual transition from low to high resistance
states [9, 21], the reverse transition is usually abrupt and
requires a compliance current to be set.
In this work, we report on TiN/HfO2/Pt devices scaled

down to the lateral size 40 × 40 nm2 and integrated in
crossbar geometry, which demonstrates the ability of
gradual resistance switching in both directions. We
explain the forming-free and gradual switching process
by interface-limited trap-assisted tunneling mechanism
previously adopted for HfO2-based devices. We emulate
the synaptic functionalities such as long-term potentiation
and depression. Furthermore, by applying the voltage
pulses with the shape of real biological spikes, our devices
demonstrate the spike-timing-dependent plasticity func-
tionality. The emulated synaptic properties indicate that
these devices can be used in hybrid neuromorphic compu-
tational systems.

Methods
The devices were formed on 2-in. Si(001) substrates with
a 200-nm-thick SiO2 layer grown by plasma-enhanced
chemical vapor deposition technique. In order to assess
functional properties of individual devices with different
lateral sizes in a crossbar, a 1 × 12 crossbar geometry
was applied (Fig. 1). For this, a maskless optical
100 µm
Fig. 1 Layout of a memristor crossbar: gray—bottom electrode,
blue—top electrode, red—memristor areas
lithography (Heidelberg Instruments μPG101) with the
resolution ~1 μm was combined with an e-beam lithog-
raphy (Crestec CABL 9000C) with the minimal line
width in resist ~10 nm.
The bottom electrode comprising 40-nm-thick Pt layer

was deposited by e-beam evaporation on top of magne-
tron sputtered Ti(5 nm)/Cu(75 nm)/Ti(5 nm) layers and
further patterned to the shape of a 800 × 50 μm2 beam
with two 100 × 100 μm2 contact pads. To avoid a pecu-
liar plasma-chemical and wet etching process for Pt, the
bottom electrode was formed by a lift-off process. Fol-
lowing the formation of the bottom electrode, the sam-
ple was covered with 100-nm-thick SiO2, containing 12
windows with lateral sizes from 1.25 × 1.25 μm2 down to
40 × 40 nm2, produced by the e-beam lithography. At
the next step, a functional HfO2 layer with different
thickness in the range from 3 to 5 nm was grown by
atomic layer deposition (ALD) in Sunale R-100 Picosun
OY reactor at T = 240 °C utilizing Hf[N(CH3)(C2H5)]4
and H2O as the precursor for Hf and O, respectively.
Finally, TiN top electrode 100 nm in thickness capped
with a 100-nm-thick Al was deposited by magnetron
sputtering and patterned by maskless laser lithography.
The detailed description of the developed fabrication
procedure is given in [22]. The schematic cross section
of the formed devices is shown in Fig. 2.

Results and Discussion
The electrical measurements were performed at room
temperature using Cascade Summit 1100 probe station
coupled with Agilent semiconductor device analyzer
B1500A containing two source-measure units and two
pulse generator units connected via a selector. During
measurements, the common bottom electrode was
grounded and the bias was applied to the top electrode.
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Fig. 2 Schematic cross section of the fabricated memristor devices
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Fig. 4 Endurance test on a 40 × 40 nm2 3-nm-thick HfO2 device yielding
105 switching cycles
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In order to initiate the reversible resistive switching
effect, as grown devices were subjected to the electrical
forming by positive bias sweep with the current compli-
ance of Icc = 1 mA. Lower compliance current level
during the forming process did not result in the higher
resistance or smaller operation current. This is believed
to be the consequence of limited reaction time of
source-measurement units. After the forming procedure,
the devices exhibit reversible switching in direct current
(DC) I-V regime without any current compliance settings
(Fig. 3). The endurance of the smallest (40 × 40 nm2)
memristors in one-pulse switching mode (trapezoidal
form τFWHM = 2 μs long pulse with 1 μs long tails) is ~7 ×
104 cycles (see Fig. 4). The cumulative probability of ROn

and ROff values for 100 cycles of 35 randomly selected
structures for 3-nm-thick devices is presented in Fig. 5,
demonstrating an acceptable level of uniformity (off-state
of all devices are separated from on-states by a window).
The typical ranges of the “SET” (“RESET”) voltages and
resistance values for the devices with different oxide layer
thickness are collected in the Table 1. One can see that
most of the device properties are in the same range and
do not depend on thickness. The only exception is the
forming voltage, which obviously decreases for thinner
structures. Moreover, for 3-nm-thick devices, the forming
voltage decreases to the levels, where it partially “overlaps”
the SET voltage. This is the criterion for the forming-free
devices, which is beneficial in terms of their use in cross-
bar topologies.
Such behavior can be explained in the following way.

As it has been shown previously [23], the electroforming
is an upsurge process with the exponential dependence
of the forming time on the applied voltage. Therefore,
there is no specific critical “forming” voltage and the
electric field sufficient for the necessary oxygen vacancy
generation in HfO2 [24] is already achieved during
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Fig. 3 Typical I-V curve taken from 40 × 40 nm2 memristive crossbar
device with a 3-nm-thick HfO2 layer
biasing of the device in a normal operation mode. The
probability of an oxygen vacancy generation during
the time interval dt depends on the local electric field
force Feq acting on the oxygen ion and is given by
the formula [24]:

P Feq;T
� � ¼ dt

t0
exp − Ea−γFeq

� �
=kT

� �

where Ea is the migration barrier height, T is the local
temperature, 1/t0 is the characteristic vibration fre-
quency of the oxygen ion, and γ is the fitting parameter
representing local enhancement factor due to the elec-
tric field [25]. Neglecting variations of field components
due to a filament growth and assuming that the model is
efficiently one-dimensional, Feq is inversely proportional
to the oxide layer thickness: Feq ~ V/L. As a result, for as
grown 3-nm-thick oxide layer, the efficient vacancy
generation begins at voltages, which are comparable
with consequent SET process voltage. Moreover, such
ultrathin functional HfO2 layer also affects the tunneling
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Fig. 5 Cumulative distribution of the resistance in low (On) and high
(Off) states for 100 cycles of 33 randomly selected structures from a
3-nm-thick HfO2 sample



Table 1 Typical values of the forming/switching voltage and SET/RESET resistance for memristor devices with different HfO2

layer thickness

dHfO2, nm Forming voltage, V USet, V UReset, V RHRS, Ω RLRS, Ω

3 1 ÷ 2.3 0.7 ÷ 1.2 −1 ÷ −1.3 200 ÷ 6000 30 ÷ 200

4 1.3 ÷ 2.8 0.7 ÷ 1 −1 ÷ −1.3 200 ÷ 5000 35 ÷ 200

5 2.4 ÷ 3.8 0.7 ÷ 1 −0.95 ÷ −1.3 400 ÷ 5000 50 ÷ 400
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probability across it. In fact, the regions where cathode-
to-trap and trap-to-anode tunneling effectively occurs
span through almost half of the layer cross section,
which is confirmed by the calculation of the tunnel-
ing rates employing WKB approximation (Fig. 6a; the
trap energy of the empty and filled O vacancies
Eempty = 1.83 eV and Efull = 1.97 eV, respectively, below
HfO2 conduction band). Consequently, every generated
O vacancy trap contributes to the conductivity, so the
resistance across HfO2 layer should be proportional to 1/
Nvac. The numerical modeling of the stochastic dynamics
shows that for 3-nm-thick oxide layer, the process can
generate enough oxygen vacancies to reduce structure
resistance already at the bias U ~ 0.7 V (Fig. 6b; the pa-
rameters of simulation are 1/t0 = 1013 Hz and γ = 7.5, and
the maximal number of oxygen vacancies is NVo = 40 ×
40 × 3/0.25 = 1.84 ⋅ 104, Ea = 1 eV).
If the latter mechanism is true, the resistance state

changes in our memristor devices should qualitative
follow the stochastic dynamics of the trap generation
shown in Fig. 6b. In order to verify this, we performed
the measurements of the resistance response to the
sequence of identical pulses (“pulse train” test, pulse
width τFWHM = 1.5 μs, the resistance after each program-
ming pulse measured at U = 0.1 V). The measured rela-
tionship of resistance vs. number of pulses R = f(N) for
SET and RESET process and for different pulse ampli-
tudes are displayed in Fig. 7a, b, respectively. It is seen
from the plots that generally, the resistance monoton-
ously changes following the voltage pulses. The obtained
results allow us to conclude that the formed devices
a) b

Fig. 6 a Tunneling rates for 3 nm HfOx, obtained by WKB (Wentzel-Kramer
generation defined for 3-nm HfOx
represent true functional memristive system controlled
by charge [26], since the charge passed through the
device is directly proportional to the number of pulses.
Moreover, such behavior emulates the “long-term
potentiation” and “long-term depression” functionalities.
This property in biological synapses defines the synaptic
plasticity—the ability of chemical synapses to change
their strength, which is believed to be the major cellular
mechanism underlying learning and memory [27].
It is worth noticing that the resistance changes

monotonously only at a large scale, and there are
pulse-to-pulse fluctuations, especially in the high resist-
ance region. The latter property can be explained by the
stochastic nature of the vacancy generation/annihilation
process. Such behavior was also observed in biological
synapses [28]. We believe that such characteristics do not
pose significant problems for the implementations of
machine learning algorithms due to their iterative nature.
Sequential repetitions of learning iterations will eventually
drive synaptic weights into required values. A particular
impact on the learning performance will depend on a
specific algorithm. It is likely that in some cases, such
fluctuations, if kept within certain bounds, can provide
regularization of the learning process or can be used to
implement global optimization algorithm akin to simu-
lated annealing.
Another learning mechanism of biological synapses is

spike-timing-dependent plasticity (STDP) [29], which
implies that the change of synaptic weight is a strong
function of the timing between the pre- and post-neuron
spikes. It is widely accepted that STDP is responsible for
)

s-Brillouin) approximation. b Numerical modeling of stochastic trap
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Fig. 7 The resistance of 40 × 40 nm2 4-nm-thick HfO2 device vs. biasing pulse number: a SET and b RESET transition
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the Hebbian learning [30]. In order to emulate STDP
functionality in the fabricated memristors, we use the
previously proposed [31] and experimentally implemented
[32] methodology. Briefly, the electrodes of the device are
connected to two separate arbitrary waveform generators
serving as pre- and post-synaptic neurons. The output volt-
age pulses emulate the shape of real neuron spikes [33]: the
negative trapezoidal pulse (τFWHM = 2 μs with 1 μs edges)
pulse with U = −0.6 ÷ −0.8 V amplitude (adjusted for each
particular structure and generally different for pre- and
post-synaptic neurons), followed by a long (τ = 1 ms) posi-
tive decaying triangular tail with the maximal amplitude
U = 0.6 V.
The relative change of the conductance ΔG as a

function of the spikes’ delay time Δt obtained from
4-nm-thick HfO2 40 × 40 nm2 device is shown in
Fig. 8. Both branches of asymmetric curves can be
fitted with an exponential law as expected for this
type of spike signal shape, thus representing STDP
Fig. 8 Asymmetric STDP function emulated in crossbar 40 × 40 nm2,
4-nm-thick HfO2 memristors
functionality. It is worthy to note that the observed
STDP function of our crossbar memristive devices is
similar to that displayed by biological synapses [29].
The emulated long-term potentiation/depression as

well as STDP functionalities indicate the suitability of
nanoscale TiN/HfO2/Pt memristor devices for the role
of electronic synapses and thus they can be used for
hardware implementation of hybrid CMOS/memristor
neural networks (CMHNN). It should be noted, how-
ever, that the energy consumption in the reported mem-
ristor devices, which is currently ~1 ÷ 10 nJ per SET and
RESET pulse resulting from the current level ~1 mA is
far too large for the design of dense neural networks.
The problem can be solved by employing precise current
limiting using transistors in CMHNN during the switching
of memristors in a crossbar matrix.

Conclusions
In this work, we describe the electrical and synaptic
properties of TiN/HfO2/Pt memristors with the lateral
size down to 40 × 40 nm2 in crossbar geometry. The
developed fabrication procedure was used to grow simple
matrices of memristors with 3- to 5-nm-thick HfO2

functional layers exhibiting reversible resistive switching
effect. Three-nanometer-thick devices are forming-free,
with endurance up to 7 × 104 cycles and ROn/ROff ~ 3 ÷ 20.
Fabricated devices integrate current pulses exhibiting
long-term potentiation and depression properties similar
to that of biological synapses. Furthermore, by applying
the voltage pulses emulating real biological spikes, the
spike-timing-dependent plasticity functionality in 40 ×
40 nm2 devices is demonstrated. Fabricated TiN/HfO2/Pt
devices in crossbar geometry are promising candidates for
hardware implementation of hybrid CMOS-neuron/mem-
ristor-synapse neural networks.
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