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Abstract

The realization and detection of Majorana fermions in condensed matter systems are of considerable importance and
interest. We propose a scheme to detect the Majorana fermions by Fano resonance in hybrid nanostructures made of
semiconductor quantum dots and quantumwire in proximity to superconductor. Through detailed theoretical studies
of the transport properties of our hybrid nanostructures based on the non-equilibrium Green’s function technique and
the equation of motion approach, it is found that the Fano resonance in the current response due to the interference
among different transmission paths may give clear signature of the existence of Majorana modes. Moreover, we have
found a peculiar relationship between the Fano factor q and the Majorana bound state coupling strength/the length
of nanowire, which can be used for a design of an electronic nanoruler. Our method of detection of Majorana
fermions based on Fano resonance is related to the global conductance profile, thus is robust to perturbations.
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Background
Majorana fermions (MFs) are particles which are their
own antiparticles and obey non-Abelian statistics [1].
Majorana bound states (MBSs) may show inherently non-
local nature and lead to a nonlocal electron transfer
process. In recent years, MFs have attracted consid-
erable attention due to their fundamental interest and
potential applications in topological quantum computa-
tion. MFs can emerge as quasi-particle excitations in
condensed matter physics [2,3]. A series of proposals
have been proposed to generate the MFs, including vor-
tex core based on fractional quantum Hall states [4-6],
chiral p-wave superconductor [7,8] and superfluid [9],
ultracold fermionic atoms with spin-orbit interactions
[10], surfaces of three-dimensional topological insulators
with proximity-induced superconductivity [11], and heli-
cal edge modes of two-dimensional topological insulators
in proximity to both a superconductor and a ferromag-
net [12]. One of the promising proposals is the MBSs
appearing as zero-energy end states in a spin-orbit cou-
pled one-dimensional (1D) nanowire with Zeeman spin
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splitting, which is in proximity to an s-wave superconduc-
tor [13-16].
Various designs have been suggested to detect and

verify the existence of MBSs [17-36], for example, the
thermolectric measurement [19], the conductance spec-
troscopy measurements [20,21], shot noise measurements
[25], and nonlinear optomechanical detection [33]. In par-
ticular, the very recent observation of a zero-bias peak
in the differential conductance through a semiconduc-
tor nanowire in contact with a superconducting electrode
indicated the possible existence of a midgap Majorana
state [21]. This zero-bias peak was also observed in sub-
sequent experiments [26,27]. Some groups demonstrated
that MBSs can be detected by coupling them to quantum
dots in closed circuit. For example, the MBSs influence
the conductance through the QD by inducing the sharp
decrease of the conductance by a factor of 1/2, as reported
by Liu and Baranger [28]. Crossed Andreev reflection
(CAR) has been investigated in the double quantum dot
structures, which was assisted by MBSs [29]. Seridonio
et al. discussed the influence of Fano interference on the
Majorana hallmark [34,35].
In spite of various theoretical and experimental studies

of the generation and probe of MFs based on nanos-
tructures, a solid clear evidence is still lacking, partially
because of the similar signatures due to other effects, such
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as the Kondo effect [37]. In our present paper, we propose
a scheme to detect the Majorana modes in hybrid nanos-
tructures of parallel quantum dots connected by a semi-
conductor nanowire in proximity to a superconductor.
Unlike the previous works [29-31,38-40], we focus on the
Fano effect [41-49] in the QD nanowire/superconductor
QD (QD-NW-QD) junction.
The tunability of several parameters of our nanos-

tructures provides us more opportunities to explore the
physics related to MFs and Fano effects. In particular, we
have revealed a connection between the Fano factor and
the length of nanowires, which may be used to design an
electronic nanoruler. Our method of detecting Majorana
modes by the Fano effect is based on the global profile of
current response, thus is robust to external perturbations.

Methods
Themodel and theoretical formalism
As schematically shown in Figure 1, the hybrid system
consists of two quantum dots with spinless electronic
states coupled by a semiconductor nanowire with strong
Rashba spin-orbit interaction, a modest magnetic field B,
and in proximity to an s-wave superconductor. The MBSs
as electron-hole quasiparticle excitations can appear at
the two ends of such a nanowire. When the Zeeman split-
ting energy Vz = gμBB, the proximity-induced order
parameter�, and the chemical potentialμ satisfy the con-
dition Vz >

√
�2 + μ2, the nanowire is driven into the

topological superconducting phase, and a pair of zero-
energy MBSs would emerge at each end of the nanowire
[15]. Then, the two quantum dots which are tunnel-
coupled to the ends of the nanowire are now effectively

coupled to the MBSs. The total Hamiltonian of the QD-
NW-QD system can be written as:

H = Hsystem + Hleads + HT . (1)

Here, the first term Hsystem describes the tunneling-
coupled MBSs and quantum dots:

Hsystem =
∑
j=1,2

εjd†j dj +
i
2
εMη1η2 + t1(d1 − d†1)η1

+ it2(d2 + d†2)η2, (2)

where d†j (dj) is the electron creation (annihilation) oper-
ator of the jth quantum dot, η1 and η2 are the Majo-
rana operators, and the parameter εM ∝ e−2l/ξ0 cos(kF l)
describes the coupling energy between the twoMBSs [50],
with kF the Fermi wave vector, ξ0 the superconducting
coherence length, l the nanowire length, and t1(t2) rep-
resents the coupling strength between the first (second)
QD and the MBS η1(η2). For the sake of calculation con-
venience, one can transform the Majorana operator to the
regular fermion representation, using the relations η1 =
f + f † and η2 = i(f †− f ). In this regular fermion represen-
tation, the system Hamiltonian is accordingly rewritten
as:

Hsystem =
∑
j=1,2

εjd†j dj + εM(f †f − 1
2
)

+
[
t1(d1 − d†1)f + t2(d2 + d†2)f + H .c.

]
.

The Hamiltonian for the two electrodes is:

Hleads =
∑

α=L,R

∑
k

εαkc†αkcαk , (3)

Figure 1 Schematic diagram of the QD-NW-QD system. The MBSs locate at the two ends of the nanowire with modest Zeeman splitting and
strong spin-orbit coupling, which is in proximity to an s-wave superconductor.
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where cαk(c†αk) is the annihilation (creation) operator for
the electron in the α lead. The term HT accounts for the
tunneling between the dots and the leads:

HT =
∑

α=L,R

∑
j=1,2

Vjαd†j cαk + H .c., (4)

with Vjα the coupling strength between the jth dot and
the α electrode. We investigate the transport properties
of the QD-NW-QD system in the presence of a bias volt-
age Vb between the two leads with μL = εF + eVb and
μR = εF (εF is the Fermi level which is assumed to be
zero). With the help of the equation of motion method,
Green’s function of the system can be calculated in the
Nambu representation [28,38]:

Gr (ω) = 1
ω − Hsystem − 	r

leads
, (5)

where 	r
leads = − i

2
∑

α

(

α
e + 
α

h
)
is the self-energy due

to the leads. And 
α
e (
α

h ) are 6×6 matrices describing the
coupling of particle(hole) to α lead:


α
e,mn = 
α1δ1mδ1n + 
α2δ5mδ5n + √


α1
α2(δ1mδ5n

+δ5mδ1n)


α
h,mn = 
α1δ2mδ2n + 
α2δ6mδ6n + √


α1
α2(δ2mδ6n

+δ6mδ2n),

where 
αj ≡ 2π |Vjα|2ρα is the dot-lead coupling and ρα is
the density of states of the α lead. Once Green’s function is
obtained, the current from the left lead can be calculated:

IL = e
h

∫
dω

[
TLR
ee (ω)

(
f Le − f Re

) + TLL
eh (ω)

(
f Le − f Lh

)
+TLR

eh (ω)
(
f Le − f Rh

)]
. (6)

In this formula, f α
e and f α

h are the Fermi distribution
functions of the electron and hole in α lead andGa = Gr†.
TLR
ee (ω) = Tr[Gr
R

e Ga
L
e ] is the transmission coefficient

which is contributed by the electron teleportation pro-
cess from the left lead to the right lead, while TLL

eh (ω) =
Tr[Gr
L

hG
a
L

e ] is the transmission coefficient in the left
lead arising from the local Andreev reflection (AR), and
TLR
eh (ω) = Tr[Gr
R

hG
a
L

e ] is the transmission coefficient
due to the contribution of CAR. Some additional details
of the theoretical formulism are included in Appendix 1.

Results and discussion
Tunable Fano effect
With the formulation developed in the above section,
analytical/numerical calculation has been performed to
investigate the zero-temperature transport properties of
the QD-NW-QD system. For simplicity, in this paper, we
mainly consider the symmetric configurations, i.e., ε1 =
ε2 = ε0, 
α1 = 
α2 = 
(α = L,R), t1 = t2 = t. t is set as
the unit of energy.

Case I without interaction betweenMFs
First, the case of a long nanowire with εM = 0 is con-
sidered. In this situation, the conductance from AR (con-
sisted of local AR and CAR) is completely suppressed,
which can be proved by some algebra. The electron tele-
portation conductance takes the form:

G = e2

h
4
2[ 2t2 − ω(ε0 + ω)]2

4
2[ 2t2 − ω(ε0 + ω)]2 +ω2(�2 − ω2)2

∣∣∣
ω=eVb

,

(7)

where � =
√

ε20 + 4t2. Figure 2 shows the conductance
for various electron energy levels in quantum dots. One
can see that all the conductance curves exhibit three peaks
at the positions of the effective molecular states (with
energies ω = ±

√
ε20 + 4t2 and ω = 0) of the QD-NW-QD

system, which provide three special transmission paths
for the transport. For details about the molecular states,
see Appendix 2. In Figure 2, the conductance lineshape
varies with the energy level of the quantum dots exotically,
which may be tuned by gate voltage in experiment. This
phenomenon is quite different with the case of directly
parallel coupled double quantum dot system without the
Majorana fermions [51,52]. The conductance curve of the
directly parallel coupled double quantum dot shifts triv-
ially with the energy level of QDs (see Appendix 3). The
conductance of our system exhibits typical Breit-Wigner
and Fano resonances. In Figure 2a, the two antisymmetric
peaks locate at the positions of eVb = ±�. However, the
antisymmetric peaks locate at the positions of eVb = −�,
eVb = 0 in Figure 2b,c,d. One may obtain the Fano factors
(q1 for Fano resonance at eVb = −� in Figure 2a,b,c,d and
q2 for Fano resonance at eVb = 0 in Figure 2c,d) by fitting
to the Fano function. The absolute value of the Fano fac-
tor q1 increases monotonically with increasing the energy
level of QDs.
Additional insight into the physics underlying these

results can be obtained by examining the density of states
(DOSs) of the effective molecular states. The algebra of
the DOS is not particularly enlightening so only numer-
ical results are presented here. One can find the analytic
details in Appendix 2. Figure 3 displays how the DOSs
of the effective molecular states change with the electron
energy level of the quantum dots. For the state at ω = 0,
it is only composed of Majorana modes and the other two
states consist of Diracmodes.When ε0 = 0, the twoMBSs
are spatially isolated on each of the two dots. In Figure 3a
with ε0 = 0, the DOS of the molecular state at ω = 0
which consists of two Majorana states is wider than the
DOSs of the other two states at ω = ±�. The interfer-
ence between the wide Majorana molecular state channel
and the other narrowmolecular state channels leads to the
Fano resonance. Figure 3 shows that the widths of DOSs
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Figure 2 Conductance curve of the QD-NW-QD system with different electron energy levels in the quantum dots. The dashed lines are the fitting
Fano lineshapes. (a) ε0 = 0, (b) ε0 = 1, (c) ε0 = 3, and (d) ε0 = 5. The coupling of the MBSs is εM = 0 and the dot-lead coupling 
 = 2.0.

of the molecular states at ω = −� and ω = 0 decrease
with the increase of the QD energy level ε0. And the width
of DOS of the molecular state at ω = � increases with
the increase of the QD energy level ε0. When ε0 = t√

2 ,
the two molecular states at ω = � and ω = 0 have the
equal width (This situation is not shown in Figure 3). If
the energy level of QDs is tuned above t√

2 , the molecular
state at ω = � would be the widest transport path. So the

conductance curve will display two antisymmetric peaks
locating at eVb = −�, eVb = 0 in Figure 2c,d. In the
region of eVb ∼ −�, one can simplify the formula of
conductance, i.e.,

G ≈ A1
(ω+B1

C1
+ q1)2

(ω+B1
C1

)2 + 1

∣∣∣
ω=eVb

, (8)

Figure 3 The density of states for three molecular states. (a) ε0 = 0, (b) ε0 = 1, (c) ε0 = 3, and (d) ε0 = 5. Other parameters are the same with
those of Figure 2.
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where:

A1 = 
2(ε0 − 2�)2


2(ε0 − 2�)2 + �4 ,

B1 = � + 1
2


2(ε0 − 2�)(ε0 − �)2


2(ε0 − 2�)2 + �4 ,

C1 = 


2
(ε0 − �)2�2


2(ε0 − 2�)2 + �4 , q1 = �2


(ε0 − 2�)
.

From the above equations, it is clear that the conduc-
tance has standard Fano lineshape, which describes well
the conductance near the resonance. The analytical Fano
factor agrees well with that obtained by numerical fitting,
and the absolute value of the Fano factor q1 increases with
the increase of electron energy level in quantum dots. In
the case of Vb → 0, the conductance formula can be
simplified as:

G ≈ A2
(ω+B2

C2
+ q2)2

(ω+B2
C2

)2 + 1

∣∣∣
ω=eVb

, (9)

where:

A2 = 4
2ε20
4
2ε20 + �4 , B2 = −8
2t2ε0

4
2ε20 + �4 ,

C2 = 4
t2�2

4
2ε20 + �4 , q2 = −�2

2
ε0
.

Equations (9) and (10) are valid in the range of ε0 � t.
In this regime, q1 ∼ 2q2. Numerical results in Figure 2c,d

also show the same relation. One may note that the anti-
symmetric lineshape of the zero bias peak (i.e., the anti-
symmetric peak at Vb = 0) could be used to detect the
existence of the Majorana modes.

Case II with interaction betweenMFs
If the nanowire is not long enough, the two MBSs living
in the two ends of the wire couple to each other. Figure 4
depicts the conductance spectra with nonzero coupling
between the two MBSs. Here, the energy levels of the two
QDs are tuned align with the Fermi energy (i.e., ε0 = 0).
Also, the conductance coming from electron teleportation
survives, and the other two processes are suppressed. The
conductance takes the form:

G = e2

h

2[ 4t2 − 2εMω − ω2]2


2[ 4t2 − 2εMω − ω2]2 +ω2(4t2 − εMω − ω2)2

∣∣∣
ω=eVb

.

(10)

The conductance curve exhibits three peaks, which are
three molecular states locating at eVb = 0 and eVb =
±κ−εM

2 , where κ =
√

ε2M + 16t2. Detailed description
about molecular states can be found in Appendix 4. In
Figure 4, one can see with the increase of the εM, the
peaks at eVb = 0 and eVb = κ−εM

2 go close. The conduc-
tance displays clearly Fano resonance, which comes from
the interference between three molecular states. And the
effective antisymmetric factor q can be obtained by fit-
ting to Fano function. The absolute value of the factor q
increases with increasing the two MBS coupling strength
εM, which sometimes means shortening the length of the

Figure 4 Conductance curve of the QD-NW-QD system with different MBS coupling strength. The dashed lines are the fitting Fano lineshapes. (a)
εM = 0, (b) εM = 1, (c) εM = 3, and (d) εM = 5. Other parameters: ε0 = 0 and 
 = 2.0.
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nanowire. To explain this result, one can use the simplified
formula of conductance in the region of eVb → −κ−εM

2 ,
i.e.,

G ≈ A3
(ω+B3

C3
+ q3)2

(ω+B3
C3

)2 + 1

∣∣∣
ω=eVb

,

which is valid in the case of εM � t with:

A3 = 16
2

(εM + κ)2 + 16
2 ,

B3 = 2t2

κ

16
2

(εM + κ)2 + 16
2 + εM + κ

2
,

C3 = −8
t2(εM + κ)

κ((εM + κ)2 + 16
2)
, q3 = −εM + κ

4

.

The absolute value of the Fano factor increases with the
increase of MBS coupling strength εM. Figure 5 displays
the DOSs of effective molecular states corresponding to
the three transmission paths. One sees that the density
of state at ω = 0 (which is composed of two Majorana
states) is invariant with the change of εM. It is because
the two Majorana modes are localized on each of the two
quantum dots and do not vary with the change of εM. The
DOSs of the other two molecular states change monoton-
ically with the increase of the εM. The broadening of one
molecular state is always accompanied with the shrinking
of another molecular state. With the increase of εM, the
state at ω = κ−εM

2 nearly has the same width with the
state at ω = 0. So only one distinct Fano lineshape can
be observed in the conductance spectrum, and the Fano
factor can be obtained from the conductance curve. This

peculiar relationship between the Fano factor and the two
MBS coupling strength can be used to measure the length
of the nanowire.
The coupling strength of the MBSs is determined by

[50]:

εM ≈ �
2kF

e−
2L
ξ

m∗ξ
cos(kFL), (11)

where kF is the Fermi wave vector and ξ is the supercon-
ducting coherence length:

kF ≈ 2
αR

√√√√√
(μeff + m∗α2

R
�2

)2 + V 2
z − �2 − μ2

eff + μeff,

ξ ≈ �
2

m∗αR

√
(μeff + m∗α2

R
�2 )2 + V 2

z − �2 − μ2
eff

�
.

Here, we consider a realistic InSb nanowire with m∗ =
0.015me, αR = 0.2eV Å, a ≈ 5.3 Å, and g = 50 [15,53].
Tuning the induced superconducting gap � = 0.375 meV,
the Zeeman field B = 0.178 T, and the chemical poten-
tial μeff = 0.006 meV. The Fermi wave vector of the
superconducting nanowire is kF ≈ 0.0078 nm−1, and the
superconducting coherence length is ξ ≈ 97 nm. The
coupling strength of the the MBSs as a function of the
nanowire length is shown in Figure 6a. In general, there
may be other parameters, t1and t2, that depend on L.
When the L is not very small (in our concerned regime (L
larger than 250 nm), see Figures 6a and 7), the MF is well

Figure 5 The density of states of three molecular states. (a) εM = 0, (b) εM = 1, (c) εM = 3, and (d) εM = 5. Other parameters are the same as in
Figure 4.
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Figure 6 The MBS coupling strength εM and conductance curves of the realistic coupled QD-NW-QD systems. (a) The MBS coupling strength εM
versus the length of the InSb nanowire with the parameters: the induced superconducting gap � = 0.375 meV, the Zeeman field B = 0.178 T, and
the chemical potential μeff = 0.006 meV. The inset shows the length range of 550 to 900 nm. (b-d) Conductance curves of the realistic coupled QD-
NW-QD systems with different MBS coupling strength corresponding to different lengths of the InSb nanowire. The dashed lines are the fitting Fano
lineshapes. The energy levels of the two quantum dots are in line with the Fermi level ε1 = ε2 = 0, t = 2μeV and
L1 = 
L2 = 
R1 = 
R2 = 10 μeV.

localized near the edge of the nanowire, then there is no
distinct dependence of ti on L.
Figures 6b,c,d shows the conductance curves with dif-

ferent lengths of the superconducting nanowire. As we
have shown, different coupling strengths of the MBSs lead
to different Fano factors. Figure 7 exhibits the relation-
ship between the length of nanowire and the Fano factor
q. If the length of the nanowire is within a certain region

Figure 7 Dependence of the Fano factor q and MBS coupling
strength on the length of the InSb nanowire. The inset depicts the
Fano factor as a function of εM . The parameters are the same as those
in Figure 6.

(the region is from 250 to 600 nm in our present case
in Figure 6a), the length of the nanowire and the Fano
factor q have simple and unique relation. In the case of
εM � t, which means the nanowire is not too long, the
Fano factor q and the MBS coupling strength εM have lin-
ear relationship with the slope controlled by 
, dot-lead
coupling strength. Then, the transport signal can be used
to measure the length at nanometer scale. This method
have particular advantage. Fano lineshape is a global pro-
file, which is based on many data in a collective way. Thus,
the overall lineshape is insensitive to the fluctuation of
each data and it is robust to noise.

Discussion
We have mainly considered the symmetric configura-
tions with the same energy levels of the two quantum
dots. Another interesting situation is the special anti-
symmetric configuration with ε1 = −ε2 = ε0. In the
experiment, the energy levels of the quantum dots can be
tuned by applying appropriate gate voltage. Interestingly,
the spacial asymmetric system shows different behaviors
due to the presence of particle-hole symmetry [54,55].
As one can see from Figure 8, the conductance curve
exhibits three peaks, and there always exists one symmet-
ric peak at eVb = 0. This symmetric peak is the result of
coherent interference from the three effective molecular
states, which may be viewed as the superposition of two
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Figure 8 The conductance curve of the QD-NW-QD system with particle-hole symmetry, i.e., ε1 = −ε2 = ε0. (a) ε0 = 0.5 and (b) ε0 = 3. The
coupling of the MBSs is εM = 0 and the dot-lead coupling 
 = 2.0.

asymmetric Fano peaks. It is the particle-hole symmetry
that leads to the recovery of the symmetric lineshape of
the central peak.We note that the detection ofMF by Fano
effect with one MF coupled to a QD/adatom in an inter-
ferometer was proposed in Ref. [34,35], while two MFs
couple to QDs and are involved directly in the transport
in our system, which leads to new transport features (for
example, the gate voltage tunable conductance lineshape,
in particular, the particle-hole symmetry related recovery
of symmetric lineshape due to the superposition of two
asymmetric Fano peaks) due to different structures and
symmetries.
Our model contains much interesting physics. Several

systems/models investigated in the literature are related
to our model. One may set 
L2 = 
R2 = t2 = 0,
and the case is reduced to that considered by Liu and
Baranger [28]. If we set 
L2 = 
R2 = 0, then the model
is reduced to the case investigated by Li and Bai [56]
where the second quantum dot is decoupled from the
leads. As seen in Figure 9a,b, the conductance curves show
the famous symmetric zero-bias peak that is reduced by
a factor of 1/2. In Figure 9b, the other QD adds more
modes involved in the transport, which results in two
more peaks. The coupling to the additional states leads to
the shift of molecular states or the peaks in the conduc-
tance curve. These results are consistent with the model
discussed by Li and Bai [56]. If we set 
L2 = 
R1 = 0,
the transport property of N-QD-NW-QD-N junction can
be realized [38] (see Figure 9c). It is seen that the local AR
and CAR can be partially suppressed by tuning the param-
eters of the system. The contribution of local AR and CAR

processes to the conductance has also been addressed in
Ref. [31]. However, the local AR and CAR can be sup-
pressed exactly in ourmodel when ε1 = ε2 (see Figure 9d).
Here, one can use the molecular basis to demonstrate
the complete suppression of AR. In the molecular basis,
Green’s function is block diagonal:

Gr/a =
(
Gr/a
A 0
0 Gr/a

B

)
.

And the self-energies are also block diagonal, i.e.,


α
e =

(

α
e,A 0
0 0

)
,
α

h =
(
0 0
0 
α

h,B

)
,

where Gr/a
A/B, 
e,A, and 
h,B are 3 × 3 matrices. So

Tr
[
Gr
α

e G
a


β

h

]
= Tr

[(
Gr
A
α

e,A 0
0 0

)(
0 0
0 Ga

B

β

h,B

)]
= 0.

We further perform the calculation based on the model
of two quantum dots connected by Kitaev chain (in the
topological nontrivial phase with MF on each end of the
chain) and parallel connected to two leads. We find com-
plete suppression of the local AR and CAR for ε1 = ε2,
which is consistent with the conclusion based on the
Hamiltonian (1)-(2). Based on Green’s function technique,
the conductance of the directly parallel coupled double
quantum dot system is calculated (see Figure 10), one can
see details discussion in Appendix 3.
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Figure 9 The comparison with other cases. (a) The conductance curve of the case εM = 0, 
L2 = 
R2 = t2 = 0. (b) The conductance curve of the
case 
L2 = 
R2 = 0. The bias voltage Vb between the two leads is set as μL = εF + eVb

2 and μR = εF − eVb
2 . t2 = 1.0, εM = 2.0. Other parameters:


L1 = 
R1 = 0.5, ε1 = ε2 = 0. (c, d) The conductance for each process: GET is the conductance from electron teleportation process, GLA is the
conductance from local AR process, and GCA is the conductance from CAR process. (c) 
L2 = 
R1 = 0 and (d) 
L2 = 
R1 = 0.5. Other parameters:

L1 = 
R2 = 0.5, εM = 2.0, ε1 = ε2 = 2.0. The coupling strength between the quantum dot and the MBS t is set as the unit of energy.

Conclusions
The transport properties through the parallel coupled
QD-NW-QD system have been studied, in which a par-
ticular attention is paid to the mechanism of the Fano
resonance in conductance spectrum of systems with sym-
metric configuration.
In the case of long nanowire without interac-

tion between MFs (εM=0), the conductance exhibits

Figure 10 Conductance curves of directly parallel coupled double
quantum dot system with various electron levels in quantum dots.
The energy levels of the two quantum dots are tuned synchronously
ε1 = ε2 = ε0. The dot-lead coupling 
L1 = 
L2 = 
R1 = 
R2 = 2.0.
The coupling strength of the two dots t is set as the unit of energy.

Breit-Wigner and Fano resonances with positions and
Fano factors controlled by the energy level of the QDs.
When εM is not equal to zero for short nanowires, there
is a nanowire length-dependent Fano resonance. In par-
ticular, a clear relationship between the Fano factor and
MBS coupling strength εM has been revealed, which can
be used to measure the length at nanometer scale. Our
method of detection of MFs based on Fano resonances
in hybrid nanostructures has the advantages of tunability
and robust to external perturbation and noise.

Appendices
Appendix 1
More details of the theoretical formalism
The total Hamiltonian of the QD-NW-QD system is:

H = Hsystem + Hleads + HT , (12)

where:

Hsystem = ε1d†1d1 + ε2d†2d2 + i
2
εMη1η2 + t1(d1 − d†1)η1

+it2(d†2 + d2)η2,

Hleads =
∑
αk

εαkc†αkcαk ,

HT =
∑
αj

Vjαd†j cαk + H .c.

Using the relation η1 = f + f †, η2 = i(f † − f ), we
transform the Majorana operators to Dirac operators.
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Then,

Hsystem = ε1d†1d1 + ε2d†2d2 + εM(f †f − 1
2
) (13)

+t1(d1 − d†1)(f + f †) − t2(d†2 + d2)(f † − f ).

In the Nambu representation which is spanned by � =
(d1, d†1, f , f †, d2, d

†
2)

T , the Hamiltonian can be written as:

Hsystem = 1
2
�†HBdG� , (14)

where:

HBdG =

⎛
⎜⎜⎜⎜⎜⎜⎝

ε1 0 −t1 −t1 0 0
0 −ε1 t1 t1 0 0

−t1 t1 εM 0 t2 t2
−t1 t1 0 −εM −t2 −t2
0 0 t2 −t2 ε2 0
0 0 t2 −t2 0 −ε2

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The current flowing from the left lead to the central
region can be defined from the rate of change of the elec-
tron number NL = ∑

k c
†
LkcLk in the left lead. Following

Meir andWingreen [57], the current can be formulated in
Nambu space:

IL = −e〈ṄL〉 = −i
e
�

〈[HT ,NL]〉
= e

�

∑
n,k

[ (V ∗
1Lδ1n + V ∗

2Lδ5n)G
<
n,Lk (t, t) − (V1Lδ1n

+V2Lδ5n)G<
Lk,n (t, t) ] ,

where:

G<
n,Lk(t, t

′
) = i〈c†Lk

(
t′
)
�n (t)〉, G<

Lk,n(t, t
′
) = i〈�†

n
(
t′
)
cLk (t)〉.

The equations of motion for G<
n,Lk and G<

Lk,n along with
the Langreth analytic continuation yield the following
equations:

G<
n,Lk (t, t) =

∫
dt1

∑
m

(V1Lδ1m + V2Lδ5m)

× [
Gr
nm (t, t1) g<

Lke(t1, t)
+G<

nm (t, t1) gaLke(t1, t)
]
, (15)

G<
Lk,n (t, t) =

∫
dt1

∑
m

(V ∗
1Lδ1m + V ∗

2Lδ5m)

× [
grLke (t, t1)G<

mn(t1, t)
+g<

Lke (t, t1)Ga
mn(t1, t) ] , (16)

in which gr/aLke and g</>

Lke are the unperturbed
retarded/advanced and lesser/greater Green’s functions
for electron of the left lead, respectively. Substituting

Equations (15) and (16) into the current formula, one can
obtain:

IL (t) = e
h

∫
dt1Tr[Gr (t, t1) 	<

Le(t1, t) + G< (t, t1)	a
Le(t1, t)

− 	r
Le (t, t1)G<(t1, t) − 	<

Le (t, t1)Ga(t1, t)] ,
(17)

where the trace is over the Nambu space. Gr/< is the
retarded and/or lesser Green’s function, which can be
derived from the analytical continuation of the contour-
ordered Green’s function G

(
t, t′

) = −i〈T� (t) �†
(
t′
)〉.

Performing Fourier transformation, the current reads:

IL = e
h

∫
dωTr

[
Gr (ω)	<

Le(ω) + G< (ω)	a
Le(ω)

−	r
Le (ω)G<(ω) − 	<

Le (ω)Ga(ω)
]
. (18)

The retarded Green’s function of the system is formally
given by the Dyson equation:

Gr(ω) = (ω − HBdG − 	r)−1, (19)

where the retarded self-energy 	r is due to the coupling
to the leads, i.e., 	r = ∑

α(	r
αe + 	r

αh). In the wide-
band limit, they are given, respectively, by 	r

αe = − i
2


α
e ,

	r
αh = − i

2

α
h . Here, 
α

e (
α
h ) are 6×6 matrices describing

the coupling of particle (hole) to α lead:


α
e,mn = 
α1δ1mδ1n + 
α2δ5mδ5n + √


α1
α2(δ1mδ5n

+δ5mδ1n)


α
h,mn = 
α1δ2mδ2n + 
α2δ6mδ6n + √


α1
α2(δ2mδ6n

+δ6mδ2n),

where 
αj = 2π
∣∣Vjα

∣∣2 ρα is the dot-lead coupling and ρα

is the density of states of the α lead. We use the relation:

Gr − Ga = G> − G< (20)

together with the Keldysh equation:

G</> = Gr	</>Ga, (21)

where the advanced Green’s function Ga = (Gr)†, the
lesser/greater self-energy 	</> = ∑

α(	
</>
αe + 	

</>

αh ),
and 	

</>

αe/h = i
α
e/h(f

α
e/h − 1

2 ± 1
2 ). Here, f α

e and f α
h are the

Fermi distribution functions of the electron and hole in α

lead, respectively, i.e.,

f α
e (ω) = (1 + e

ω−μα
kBT )−1, f α

h (ω) = (1 + e
ω+μα
kBT )−1.
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Substituting Equations (20) and (21) into Equation (17),
we obtain:

IL = e
h

∫
dωTr

[
Gr	>Ga	<

Le − Gr	<Ga	>
Le
]

= e
h

∫
dω{Tr [Gr
L

hG
a
L

e
] (
f Le − f Lh

) + Tr
[
Gr
R

e G
a
L

e
]

(
f Le − f Re

) + Tr
[
Gr
R

hG
a
L

e
] (
f Le − f Rh

) }
.

(22)

After solving the Dyson and Keldysh equations, one is
ready to obtain the current from Equation (22).

Appendix 2
Themolecular states and the density of states of case I
without interaction betweenMFs
We consider the symmetric configuration ε1 = ε2 = ε0,
t1 = t2 = t, and εM = 0. By diagonalizing the system
Hamiltonian in the Nambu representation, the solutions
to the Bogoliubov-de Gennes equations HBdGψi = Eiψi
are obtained as:

ψ1 = 1√
2
( 2t

�
2t
�

ε0
�

ε0
�

0 0
)
,E1 = 0,

ψ2 = i√
2
(
0 0 ε0

�
− ε0

�
− 2t

�
2t
�

)
,E2 = 0,

ψ3 =
(

ε0+�√
8�

ε0−�√
8�

−4t√
8� 0 −ε0−�√

8�
ε0−�√

8�

)
,E3 = �,

ψ4 =
(

ε0−�√
8�

ε0+�√
8� 0 −4t√

8�
ε0−�√

8�
−ε0−�√

8�

)
,E4 = −�,

ψ5 =
(

ε0+�√
8�

ε0−�√
8� 0 −4t√

8�
ε0+�√

8�
�−ε0√

8�

)
,E5 = �,

ψ6 =
(

ε0−�√
8�

ε0+�√
8�

−4t√
8� 0 �−ε0√

8�
ε0+�√

8�

)
,E6 = −�,

where� =
√

ε20 + 4t2. For the two zero-energy states, one

can find γ1 = ψ1 = 1√
2

(
2t
�
d1 + 2t

�
d†1 + ε0

�
f + ε0

�
f †
)
and

γ2 = ψ2 = i√
2

(
ε0
�
f † − ε0

�
f + 2t

�
d2 − 2t

�
d†2
)
which satisfy

γ1,2 = γ
†
1,2. They are Majorana bound states. If ε0 = 0,

the twoMBSs are spatially isolated since each zero-energy
mode is completely localized on one of the dots.
The Majorana operators can be transformed into Dirac

operators,

c̃†1 = 1√
2

(γ1 − iγ2) , c̃1 = 1√
2

(γ1 + iγ2) .

Then, one can make the following transformation of the
Dirac operators:

c̃1 = t
�
d1 + t

�
d†1 + ε0

�
f † + t

�
d2 − t

�
d†2,

c̃†1 = t
�
d1 + t

�
d†1 + ε0

�
f − t

�
d2 + t

�
d†2,

c̃2 = ε0 − �√
8�

d1 + ε0 + �√
8�

d†1 −
√
2t

�
f † + ε0 − �√

8�
d2

−ε0 + �√
8�

d†2,

c̃†2 = ε0 + �√
8�

d1 + ε0 − �√
8�

d†1 −
√
2t

�
f − ε0 + �√

8�
d2

+ε0 − �√
8�

d†2,

c̃3 = ε0 + �√
8�

d1 + ε0 − �√
8�

d†1 −
√
2t

�
f † + ε0 + �√

8�
d2

+� − ε0√
8�

d†2,

c̃†3 = ε0 − �√
8�

d1 + ε0 + �√
8�

d†1 −
√
2t

�
f + � − ε0√

8�
d2

+ε0 + �√
8�

d†2.

Thus, the Hamiltonian of the middle system becomes
diagonal with the form

Hsystem = ε̃1c̃†1c̃1 + ε̃2c̃†2c̃2 + ε̃3c̃†3c̃3,

with ε̃1 = 0, ε̃2 = −�, ε̃3 = �. In the above molec-
ular state representation with symmetric coupling of the
middle system to the leads, i.e., V1α = V ∗

1α = V2α =
V ∗
2α = Vα , the tunneling Hamiltonian between the leads

and the molecular states is written as:

H̃T =
∑
αk

Vα

(
2t
�
c̃†1 + ε0 − �√

2�
c̃†2 + ε0 + �√

2�
c̃†3

)
cαk + H .c.

Notice that only three molecular states coupled to the
leads because of the symmetry of the system. The broad-
ening of the molecular states due to their coupling to leads
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can be given by the DOS of each state. With the help of
the equation of motion approach, one can obtain:

Gr
11 (ω) = 1

ω − ε̃1 + i
1
,

Gr
22 (ω) = 1

ω − ε̃2 + i
2
,

Gr
33 (ω) = 1

ω − ε̃3 + i
3
,

where the widths of the three molecular states read:


1 = 2t2

�2 (
L + 
R),


2 = (ε0 − �)2

4�2 (
L + 
R),


3 = (ε0 + �)2

4�2 (
L + 
R),

and 
α = 2π |Vα|2 ρα . The local density of states is
defined as the imaginary part of the retarded Green’s
function as:

ρ1 = − 1
π
ImGr

11 (ω) = 1
π


1

(ω − ε̃1)
2 + (
1)

2 ,

ρ2 = − 1
π
ImGr

22 (ω) = 1
π


2

(ω − ε̃2)
2 + (
2)

2 ,

ρ3 = − 1
π
ImGr

33 (ω) = 1
π


3

(ω − ε̃3)
2 + (
3)

2 .

Based on the equation of motion method, the analytical
form of differential conductance reads:

G = dI
dVb

= e2

h
4
2[ 2t2 − ω(ε0 + ω)]2

4
2[ 2t2 − ω(ε0 + ω)]2 +ω2(�2 − ω2)2

∣∣∣
ω=eVb

.

Appendix 3
The conductance of the directly parallel coupled double
quantum dots
Here, the electron energy levels of the two quantum dots
are set aligned with each other by the gate voltage. In the
symmetric configuration, one sees the symmetric Breit-
Wigner line shapes and the conductance curve shifts
trivially with the energy level of the quantum dots. The
coupling strength of the two dots t is set as the unit of
energy.

Appendix 4
Themolecular states and the density of states of case II with
interaction betweenMFs
In this case, we assume ε1 = ε2 = 0, and t1 =
t2 = t. By diagonalizing the system Hamiltonian in the

Nambu representation, the solutions to the Bogoliubov-de
Gennes equations HBdGψi = Eiψi are:

ψ1 = 1√
2
(
1 1 0 0 0 0

)
,E1 = 0,

ψ2 = i√
2
(
0 0 0 0 −1 1

)
,E2 = 0,

ψ3 = 1
2
√
2

(
κ + εM

κ

) 1
2 (−1 1 εM−κ

2t 0 1 1
)
,

E3 = −εM − κ

2
,

ψ4 = 1
2
√
2

(
κ + εM

κ

) 1
2 (

1 −1 0 εM−κ
2t 1 1

)
,

E4 = εM − κ

2
,

ψ5 = 1
2
√
2

(
κ − εM

κ

) 1
2 (−1 1 εM+κ

2t 0 1 1
)
,

E5 = εM + κ

2
,

ψ6 = 1
2
√
2

(
κ − εM

κ

) 1
2 (

1 −1 0 εM+κ
2t 1 1

)
,

E6 = −εM + κ

2
,

where κ =
√

ε2M + 16t2. One can find γ1 = ψ1 =
1√
2

(
d1 + d†1

)
and γ2 = ψ2 = i√

2

(
d†2 − d2

)
satisfy

γ1,2 = γ
†
1,2. They are Majorana bound states which are

always spatially isolated. The Majorana operators can be
transformed into Dirac operators:

c̃†1 = 1√
2

(γ1 − iγ2) , c̃1 = 1√
2

(γ1 + iγ2) .

Then, one can make the following transformation of the
Dirac operators:

c̃1 = 1
2

(
d1 + d†1 + d2 − d†2

)
,

c̃†1 = 1
2

(
d1 + d†1 − d2 + d†2

)
,

c̃2 = 1
2
√
2

(
κ + εM

κ

) 1
2
[
d1 − d†1 + εM − κ

2t
f † + d2 + d†2

]
,

c̃†2 = 1
2
√
2

(
κ + εM

κ

) 1
2
[
−d1 + d†1 + εM − κ

2t
f + d2 + d†2

]
,

c̃3 = 1
2
√
2

(
κ − εM

κ

) 1
2
[
d1 − d†1 + εM + κ

2t
f † + d2 + d†2

]
,

c̃†3 = 1
2
√
2

(
κ − εM

κ

) 1
2
[
−d1 + d†1 + εM + κ

2t
f + d2 + d†2

]
.

Thus, the Hamiltonian of the middle system becomes
diagonal with the form:

Hsystem = ε̃1c̃†1c̃1 + ε̃2c̃†2c̃2 + ε̃3c̃†3c̃3,
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with ε̃1 = 0, ε̃2 = κ−εM
2 , and ε̃3 = − κ+εM

2 . In the above
molecular state representation with symmetric coupling
of the middle system to the leads, i.e., V1α = V ∗

1α = V2α =
V ∗
2α = Vα , the tunneling Hamiltonian between the leads

and the molecular states is written as:

H̃T =
∑
αk

Vα

[
c̃†1 +

(
κ + εM
2κ

) 1
2
c̃†2 +

(
κ − εM
2κ

) 1
2
c̃†3

]
cαk

+H .c.

Notice that because of the symmetry of the system, only
threemolecular states couple to the leads. The broadening
of the molecular states due to their coupling to leads can
be given by the DOS of each state. With the help of the
equation of motion approach, one can obtain:

Gr
11 (ω) = 1

ω − ε̃1 + i
1
,

Gr
22 (ω) = 1

ω − ε̃2 + i
2
,

Gr
33 (ω) = 1

ω − ε̃3 + i
3
,

where the widths of the three molecular states read:


1 = 1
2
(
L + 
R),


2 = κ + εM
4κ

(
L + 
R),


3 = κ − εM
4κ

(
L + 
R).

The local density of states is defined as the imaginary
part of the retarded Green’s function as:

ρ1 = − 1
π
ImGr

11 (ω) = 1
π


1

(ω − ε̃1)
2 + (
1)

2

ρ2 = − 1
π
ImGr

22 (ω) = 1
π


2

(ω − ε̃2)
2 + (
2)

2

ρ3 = − 1
π
ImGr

33 (ω) = 1
π


3

(ω − ε̃3)
2 + (
3)

2 .

Based on the equation of motion method, the analytical
form of differential conductance reads:

G = dI
dVb

= e2

h

2[ 4t2 − 2εMω − ω2]2


2[ 4t2 − 2εMω − ω2]2 +ω2(4t2 − εMω − ω2)2

∣∣∣
ω=eVb

.
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