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Abstract

Background: The brain-derived neurotrophic factor (BDNF) concentration is highest in the hippocampus compared
with that in other brain structures and affects episodic memory, a cognitive function that is impaired in older
adults. According to the neurotrophic hypothesis, BDNF released during physical activity enhances brain plasticity and
consequently brain health. However, even if the physical activity level is involved in the secretion of neurotrophin, this
protein is also under the control of a specific gene. The aim of the present study was to examine the effect of the
interaction between physical activity and BDNF Val66Met (rs6265), a genetic polymorphism, on episodic memory.

Methods: Two hundred and five volunteers aged 55 and older with a Mini Mental State Examination score≥ 24
participated in this study. Four groups of participants were established according to their physical activity level and
polymorphism BDNF profile (Active Val homozygous, Inactive Val homozygous, Active Met carriers, Inactive Met carriers).
Episodic memory was evaluated based on the delayed recall of the Logical Memory test of the MEM III battery.

Results: As expected, the physical activity level interacted with BDNF polymorphism to affect episodic memory
performance (p < .05). The active Val homozygous participants significantly outperformed the active Met carriers and
inactive Val homozygous participants.

Conclusion: This study clearly demonstrates an interaction between physical activity and BDNF Val66Met polymorphism
that affects episodic memory in the elderly and confirms that physical activity contributes to the neurotrophic mechanism
implicated in cognitive health. The interaction shows that only participants with Val/Val polymorphism benefited from
physical activity.
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Background
Old age is often accompanied by functional and structural
changes in the central nervous system. In normal aging,
the decrease in the hippocampal volume is generally asso-
ciated with episodic memory declines [1]. However, the
cognitive performances of older adults significantly differ
[2]. As age increases, brain resources decrease, and the
influence of genetics on cognition becomes increasingly
apparent. Genetic variations can explain differences in
an individual’s general cognitive ability [3, 4], and the
heritability of cognition increases with age [5], from
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approximately 30 % in childhood to as much as 80 % in
adulthood [6].
In humans, a single nucleotide polymorphism (SNP) of

the brain-derived neurotrophic factor (BDNF) gene, named
BDNF Val66Met gene polymorphism or rs6265 SNP,
causes a valine (Val) to methionine (Met) substitution at
codon 66, which reduces the secretion and distribution of
BDNF in the brain [7] to affect episodic memory function-
ing [8–10] and reduce hippocampal volume [10–12]. The
Met allele exerts its effect by impacting intracellular traf-
ficking and the activity-dependent secretion of BDNF. It is
associated with reduced neurogenesis and weak cognitive
performances. However, other studies have shown that the
relationship between the Met allele and cognitive
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performances is not clearly established [13–15]. A meta-
analysis has demonstrated that SNP rs6265 is not associ-
ated with hippocampal volume in healthy individuals [16].
Moreover, Erickson et al. [17] showed that Val/Val carriers
aged 65 outperformed Met carriers of the same age on an
executive functioning task, whereas contradictory results
were observed at an average age of 75. Similarly, recent evi-
dence suggests that the functions of the fronto-striatal cir-
cuits are more efficient in elderly BDNF Met-allele carriers
than in individuals who are homozygous for Val [17–21].
Cognitive processes assessed using event-related potentials
(ERPs) seem to vary according to the isoform of the gene
[21, 22]. Taken together, these results suggest that the
BDNF Val66Met polymorphism differently affects various
cognitive processes. Currently, the beneficial effect of Val/
Val homozygosity on brain structure and brain functioning
compared with Met carriers is controversial.
BDNF – a member of the nerve growth factor family –

plays an important role in neurogenesis and is implicated
in several molecular processes in the central nervous sys-
tem [23]. In the brain, the expression level of BDNF is
highest in the hippocampus, a key region of neural plasti-
city and adult neurogenesis [24, 25], and this factor is
well-known to play an important role in learning and
long-term memory [26].
Studies have demonstrated that regular physical activ-

ity (PA) is associated with gray matter volume increases
in the hippocampus [27] and better memory perform-
ance [28]. Study showed that PA increases hippocampal
volume, which is implicated in episodic memory [29].
According to these authors, the relationship between ex-
ercise and brain health could be explained by the neuro-
trophic hypothesis, which involves the release of BDNF
during exercise [30–32].
In fact, animal studies have shown that the level of

BDNF increases in response to exercise [33, 34], and a
high level of BDNF subsequently promotes neurogenesis,
synapse plasticity, neuronal cell survival and arborization
[23, 35]. In humans, the level of BDNF was found to in-
crease after acute exercise [36, 37] or after a 16-week
multimodal exercise program in older adults [38]. Thus,
an increased concentration of serum BDNF is consid-
ered one of the primary molecular pathways by which
exercise may improve cognition. PA is shown to increase
hippocampal volume and improve episodic memory per-
formance and affects the BDNF level, whereas BDNF
Val66Met impacts BDNF availability, neuronal survival
and morphology and alters neuronal functioning [7, 39].
Therefore, we herein investigated the effect of the inter-
action between BDNF Val66Met polymorphism and PA
on episodic memory performance because both these
factors are related to BDNF production.
Only four studies highlighted an interaction between

BDNF Val66Met polymorphism and PA on cognitive
performance in older adults, and the results were mixed.
A first study of community elders aged 65 years and
older showed that the cognitive performances of inactive
participants are associated with a decrease in the general
cognitive performance as a function of the number of
Met alleles in the polymorphism [40]. In a second study
of participants aged 60 years and older with mild cogni-
tive impairment, only the BDNF-Met genotype group
subjected to a PA program showed a significant increase
in the peripheral BDNF level but no differences in gen-
eral cognition [41]. A third study, in which the partici-
pants were 30 to 54 years of age, showed that a high
level of PA compensated for the weak performances in
working memory of Met carriers but did not signifi-
cantly affect the Val homozygous individuals [42]. Be-
cause these middle-aged participants exhibit less genetic
heritability than older individuals [4], extrapolating these
findings to older people is difficult. The fourth study
showed that only Val homozygous participants benefited
from PA, as evidenced by larger hippocampal grey mat-
ter and temporal lobe volumes, whereas higher levels of
PA were associated with smaller temporal lobe volumes
in Met carriers [43]. In these four studies, the BDNF
genotype appears to modulate the effects of physical ex-
ercise on level of BDNF, cognition and/or brain volume,
but the direction of the interaction remains unclear.
Testing several alternative hypotheses would be appro-
priate in order to clarify the direction of this interaction,
which was the purpose of the present study.
According to a first hypothesis, if the Met allele negatively

affects intercellular trafficking and activity-dependent secre-
tion and PA increases the hippocampal BDNF level, the
episodic memory of Met carriers should benefit more from
PA than that of Val/Val homozygous individuals. In other
words, active Met carriers should perform better in episodic
memory tasks than inactive Met carriers, whereas PA
should not affect individuals who are homozygous for Val.
According to a second hypothesis and in line with Brown’s
work [43], PA should optimize the different molecular
pathways implicated in cognition and magnify the effect of
the Val allele. In other words, only the BDNF-Val homozy-
gous individuals should benefit from the positive effects of
PA on episodic memory. The main objective of this study
was to validate one of these two hypotheses.

Methods
Study
Data were collected from the “PRAUSE” survey con-
ducted in Poitou-Charentes, France, from 2011 to 2013.
Four hundred and sixty-six retired volunteers aged
55 years and older (mean age = 75.72; SD = 9.84) were
included in the survey. Nonnative French speakers were
excluded from participation. The survey was adminis-
tered at home and in three sessions, with durations of
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1.5 to 2 h each. A battery of cognitive tests and ques-
tionnaires were administered during these three sessions,
and buccal swabs were taken during session 1. The 466
subjects did not all participate in the three sessions.

Participants
Only 205 participants (mean age = 72.72; SD = 9.16) of
the 466 volunteers included in the study completed all
tests and questionnaires required to verify the hypoth-
eses mentioned in the introduction (see Fig. 1).
All participants provided written informed consent to

participate to this survey, which was approved by two
national ethics comities: (1) the survey received the
“general interest and statistical quality” label from the
“Conseil National de l’Information Statistique” (CNIS)
[French National Council of Statistical Information]
(Visa n°2012X907RG); (2) the survey also received
authorization n°1593815 from the “Commission Natio-
nale de l'Informatique et des Libertés” (CNIL) [French
Fig. 1 Flow chart describing the selection process of participants. Note: MM
neurotrophic factor gene polymorphism; MEMIII = Logical Memory test of t
National Commission on Informatics and Liberty]
(deliberation n°2012-375).

Cognitive assessments
Mini mental state examination
General cognition was evaluated based on the Mini
Mental State Examination during the first session, and
cognitive impairment (exclusion criterion) was defined
as a score below 24 [44].

Logical memory test II
The Delayed Score of the Logical Memory II subtest of
the Wechsler Memory Scale, revised version (WMS-III)
[45, 46], was used to assess episodic memory perform-
ance. Only story B was read to the participants. Partici-
pants listened to the story twice. Immediately after each
reading, they were asked to verbally recall as many items
as possible about the story. The participants were asked
to respond to other questionnaires for twenty minutes,
SE =Mini Mental State Examination; BDNF Val66Met = Brain derived
he MEM III battery; PA = Level of physical activity
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and they were then asked to recall all remembered items
of the story without any additional listening. The per-
formance in this task was defined as the total number of
correctly recalled items about the story during the de-
layed recall test. This delayed recall score (max. = 25) is
considered an index of episodic memory. We used this
test because it is a validated evaluation of episodic mem-
ory used worldwide, which offers standardized measures
easily comparable with other studies.

Genotyping
DNA was extracted from buccal cells using the QIAamp
DNA Blood Mini Kit (QIAGEN Group) according to the
protocol supplied by the manufacturer. SNPs were geno-
typed using polymerase chain reaction and restriction
fragment length polymorphism (PCR-RFLP) analysis. The
BDNF polymorphism Val66Met (rs6265) was amplified by
PCR using the forward primer 5′-GCCTACCCAGGT
GTGCGG-3′ and the reverse fluorescent primer 5′-FAM-
GAGGAGGCTCCAAAGGCAC-3′. The PCR products
were digested with the restriction enzyme Hsp92II
(Promega Corporation) and resolved by capillary elec-
trophoresis in an ABI PRISM 3130 Genetic Analyzer
(Life technologies).
Genetic data were analyzed using a dominance model

such that Met carriers were combined into a single
group because the Val/Met and Met/Met genotypes have
been associated with decreased cognitive performance
compared with Val-Val genotype [8–10].

Physical activity
The NASA/JSC physical activity scale
During the first session, all participants were asked to
rate their regular weekly physical practice on a score
from 0 to 7 with the NASA/JSC Physical Activity Scale
[47] to identify their level of PA. We used these data to
determine the participants’ PA levels in case they left the
study after the first session. This questionnaire deter-
mines the level of PA less accurately than the subse-
quent questionnaire that was completed in session 2. It
was used to include a maximum of participants and to
solve the problem of missing data. The participants con-
cerned by this classification method were considered ac-
tive if their NASA/JSC physical activity score was strictly
higher than 3. To increase the likelihood of observing a
significant effect of PA on cognitive performance, we se-
lected only the active participants with a body mass
index less than 35 (10 participants); being overweight is
generally related to impaired cognitive function [48].
Participants were classified as inactive if their NASA/
JSC physical activity score was strictly lower than 3 (127
participants were in this category). Thirty-nine partici-
pants scored at level 3 were considered not classifiable
because knowing if they practice above or below the
recommendations of the World Health Organization
(WHO), described hereafter, was impossible.
The Historical Leisure Activity Questionnaire (HLAQ)
During the second session, the level of current PA was eval-
uated with the Historical Leisure Activity Questionnaire
(HLAQ) [49]. This validated questionnaire was used to as-
sess the history of PA weighted by their relative intensity.
Participants were asked to report the frequency, type, inten-
sity, and hours of PA performed during the present year.
Using the Compendium of Physical Activities Tracking
Guide 2011 [50], we obtained a specific metabolic equiva-
lent (MET) for each PA. According to the HLAQ data and
the compendium, we calculated the average energy ex-
penditure (Mets-h/week) for each participant. According
to WHO recommendations, we classified the participants
above 7.5 METs-h/week in the active group and those
below 7.5 METs-h/week in the inactive group.
Groups constitution
We established 4 groups of participants according to
their level of PA (above and below 7.5 METs-h/week,
from WHO recommendations) and polymorphism
BDNF profile (Met Carriers vs. Val Homozygous) (see
Table 1).
The geriatric depression scale (GDS)
The geriatric depression scale (GDS) was used to assess the
depression level of participants [51, 52] because several
studies showed an interaction between BDNF polymorph-
ism and PA that affected the depression level [53, 54].
The education level
The education level was measured based on the number
of years of formal education, from the first year of elem-
entary school to the third year of a Ph.D. degree (1–20
years). The education level is well known to contribute
to the cognitive reserve [55, 56] and strongly influences
cognitive performance in older adults.
The socioeconomic level
The socioeconomic level was assessed from current
monthly participants’ income. The scale consisted of 12
classes of monthly income: less than 500 €/month; 500–
749 €/month; 750–999 €/month; 1000–1499 €/month;
1500–1999 €/month; 2000–2499 €/month; 2500–2999
€/month; 3000–3499 €/month; 3500–4499 €/month;
4500–5999 €/month; 6000–7499 €/month; more than 7500
€/month. In order to calculate the mean monthly income
for each group, we took into account the highest value of
the class selected by each individual. A maximal monthly
income of 8000 € was assigned for the highest class.



Table 1 Characteristics of the participants

Active Inactive Total or Average Effects of PA
and BDNF

GROUPS Val/Val Met carriers Val/Val Met carriers

Participants (N) 55 48 63 39 205

Age (SD) 69.69 (7.70) 70.07 (7.70) 77.27 (9.42) 72.93 (9.55) 72.72 (9.16) PA*

Gender (M/F) 24/31 31/17 17/46 16/23 88/117 PA*, BDNF*

MMSE (SD) 28.35 (1.42) 28.10 (1.56) 27.57 (1.84) 28.36 (1.56) 28.05 (1.64) NS

Depression score (SD) 6.83 (5.15) 5.85 (4.96) 9.61 (5.37) 8.71 (5.97) 7.81 (5.51) NS

Education Level (SD) 10.87 (3.24) 10.85 (3.69) 9.69 (3.61) 10.97 (3.94) 10.57 (3.65) NS

Socioeconomic level (SD) 2439.31 (941.49) 2954.60 (1644.08) 1985.84 (1214.15) 2334.74 (1065.70) 2405.7 (1283.9) PA*, BDNF*

Hour/week of PA (SD) 10.23 (8.10) 9.31 (6.72) 0.35 (0.61) 0.23 (0.49) 5.68 (7.32) PA*

Mets-h/week of PA (SD) 52.88 (45.09) 50 (48.35) 1.39 (2.32) 0.83 (1.73) 29.66 (42.93) PA*

PA* significant main effect of PA, BDNF* significant main effect of BDNF polymorphism, NS no effect of PA and BDNF
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Statistical analysis
To examine the interaction between BDNF polymorph-
ism and PA that affects episodic memory performance,
we first tested the normality of our data distribution
using the Lilliefors test. Episodic memory performances
were normally distributed (p < .01). Thus, we conducted
an analysis of variance (ANOVA) on the delayed score
of the logical memory test with PA level (active vs. in-
active) and BDNF polymorphism (Met carriers vs. Val
homozygous) as between-subjects factors. For signifi-
cant results, mean comparisons were performed using
Bonferroni corrections for multiple comparisons. We
then conducted an analysis of covariance (ANCOVA)
with age, gender and socioeconomic level as covariates.
These three variables have been added as covariates
because they are significantly associated to PA and
BDNF polymorphism in our sample of participants (see
Table 1). The two groups of inactive participants were
significantly older and socioeconomically weaker than
the two groups of active participants. The number of
inactive men was significantly lower than the number
of inactive women and the number of Met carrier
women was significantly lower than the number of Val
homozygous women. The Met carriers had a higher so-
cioeconomic level than Val homozygous.

Results
Our population was divided into 3 allele frequency groups:
10 Met homozygous carriers, 77 Val/Met carriers and 118
Val homozygous carriers, close to the Caucasian breakdown
[7]. The allelic frequency was estimated based on the Hardy
Weinberg Equilibrium using the khi2 test. The distribution
of genotypes in the sample did not differ from the Hardy–
Weinberg Equilibrium (p = 0.57). The ANOVA showed that
PA or BDNF polymorphism did not affect episodic memory
performance, whereas a significant interaction between PA
and BDNF polymorphism did significantly affect episodic
memory performance: F(1, 201) = 7.06, p = .01, ηp2 = 0.034
(see Fig. 2). Post-hoc analyses (Bonferroni test) showed
that the Inactive and Active Val homozygous carriers sig-
nificantly differed (p < .01), whereas the difference be-
tween Inactive and Active Met carriers did not reach
significance. The results of the ANCOVA revealed that
the BDNF polymorphism × PA interaction remained sig-
nificant for the episodic memory performance: F(1, 198) =
6.05, p = .015, ηp2 = 0.03. Post-hoc analyses also confirmed
the significant difference between Inactive and Active Val
homozygous carriers (p < .01).

Discussion
The present study examined the effect of the interaction
between PA and BDNF Val66Met polymorphism on epi-
sodic memory in the elderly. The identification of the
genetic background that influences one’s cognition abil-
ities is a challenging task. Physical exercise can mediate
the increase of brain BDNF concentrations as an illustra-
tion of the gene-environment relationship. Thus, this re-
search aimed to explain the combined influence of
genetic polymorphism and one environmental factor
(PA). Two opposite hypotheses that considered this
interaction were formulated. According to the first hy-
pothesis, PA might boost episodic memory performance
in Met carriers because PA increases the level of hippo-
campal BDNF, which is thought to be deficient in this
population, whereas PA should not affect BDNF-Val
homozygous carriers. According to the second hypoth-
esis, PA should magnify the effect of the Val allele, result-
ing in positive effect of PA on episodic memory
performance for BDNF-Val homozygous participants only.
As expected, we observed a significant interaction between
PA and BDNF polymorphism on the delayed score of the
logical memory test. First, this interaction shows that BDNF
polymorphism modulates the relationship between PA and
episodic memory performance, strongly suggesting that PA



Fig. 2 Interaction between BDNF Polymorphism (Met carriers vs. Val/Val) and Physical Activity (active vs inactive) on Episodic Memory Performance.
Errors bars represent standard deviation. *p < .01
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and BDNF share a common mechanism that influences
episodic memory in older adults. More precisely, the direc-
tion of this interaction shows that regular PA is associated
with better episodic memory only for Val homozygous par-
ticipants. This result converges with the findings of Brown
et al. [43], who showed that only active, Val-homozygous
participants benefited from PA and exhibited a larger hip-
pocampal grey matter volume. Clearly, the results of the
present study favor the second hypothesis. Specifically,
exercise-induced BDNF secretion is more efficient in Val
homozygous than in Met carriers.
Since the publication of Egan et al. [7], the investiga-

tion of genetic associations between BDNF and cogni-
tion has produced mixed results, and these discrepancies
can be attributed to the ethnic group, age of the partici-
pants or choice of controlled variables. Among the con-
trolled variables influencing cognition, life habits, such
as PA or the mental health and education level of the
participants, are rarely controlled, but these factors are
known to influence the cognitive performance of older
people. The strength of the present study is that it
highlighted the interaction between polymorphism and
PA, a life habit recognized to benefit brain health. We
showed that PA interacts with the BDNF Val66Met to
affect the episodic memory performance. Thus, control-
ling the PA level is important when examining the pu-
tative impact of BDNF Val66Met on cognition in the
elderly.
From a phylogenetic perspective, examining the link

between the BDNF gene and PA would be interesting.
According to a phylogenetic hypothesis [57], the neces-
sity to be physically active is probably programmed into
our genes and has remained relatively stable for the past
10 000 years [58]. We know that our Homo sapiens an-
cestors had to be highly active for their survival and that
the Val homozygote BDNF, which is the wild-type geno-
type, secretes proteins more effectively. The advantage
of the Val homozygous genotype for brain BNDF secre-
tion, hippocampal volume and episodic memory per-
formance could be magnified in active humans. The
physical ability to find food and to use it as a source of
energy for the brain could act in a cooperative associ-
ation with mechanisms underlying cognitive functions
[59] and increase the adapted survival strategies. We can
hypothesize that long ago, these two features, PA and
BDNF Val/Val, linked in order to be efficient.
If the wild-type, Val/Val, seems to optimize the effects

of BDNF secretion for people practicing regular PA, the
subsistence of the Met allele (homozygous and heterozy-
gous) in the population must be linked to both the evo-
lution of the species and its life habits. Our results may
also be interpreted in light of the possibility that seden-
tary lifestyle is a phylogenetically new phenomenon, with
negative consequences on health, brain and behavior,
whereas the human genome, a product of a very long
evolutionary process, was built for active organisms
fighting for their survival. In other words, the different
genetic variations of some genes, like BDNF Val66Met,
remain in the population because the survival of seden-
tary people is being facilitated by the development of
human technology.
Moreover, some studies have demonstrated that Met

allele carriers are more protected during aging than the
Val/Val group, especially with respect to cognitive func-
tions that involve the prefrontal cortex (PFC), such as
executive functions [19, 20, 60]. Specifically, Erickson
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et al. [42] showed that this advantage was magnified by
PA for Met carriers. These results appear to contradict
our results and other results obtained in several studies
assessing the relationship between cognition and BDNF
Val66Met [14, 15]. However, Getzmann et al. [22] con-
sider that the effect of BDNF polymorphism may differ
depending on the brain areas supporting the different
cognitive functions. Future studies should more precisely
examine the cognitive functions that are negatively af-
fected by specific iso-forms of the BDNF Val66Met poly-
morphism using more selective cognitive evaluations;
i.e., a large battery of two or three cognitive tests per
cognitive function that declines with age, mainly the
speed of information processing, episodic memory and
executive functions. Currently, PA has been shown to
enhance cognitive vitality and facilitate cognitive tasks
that rely on the hippocampus and the prefrontal cortex.
Thus, future research should explore whether the effect
of PA on various domains of cognitive performance de-
pends on the BDNF Val66Met polymorphism.
Moreover, these findings could be attributed to an alter-

native explanation. According to Egan et al. [7], Pezawas
et al. [61] and Hariri et al. [62], Met carriers are subject to
a stronger diminution of resources with age than Val
homozygous individuals. Even if they practice PA, which
increases the level of BDNF [37], reaching the threshold of
protein that counterbalances the effects of aging is more
difficult for BDNF Met carriers. Consequently, the epi-
sodic memory performances of Met carriers do not
change, irrespective of PA. By contrast, PA may help Val
homozygous individuals to attain the optimal threshold of
BDNF concentration and outperform their inactive Val
homozygous counterparts.
Four main limitations can be noted. First, this study

was cross-sectional, and the measure of physical activity
was based on the participants’ self-reports. Therefore,
reporting may have been subject of bias due to the sub-
jective perception of participants about their PA level.
However, the HLAQ questionnaire and the NASA/JSC
Physical Activity Scale are widely recognized and well-
validated instruments. Second, this cross-sectional study
design limits the ability to interpret these results as a
causal relationship between physical activity and cogni-
tion; conversely, better cognitive functioning may result
in individuals being more physically active. Third, the
brain BDNF levels were not assessed through lumbar
puncture because this methodology was not compatible
with the PRAUSE protocol, and therefore the interaction
between PA and BDNF polymorphism is only associa-
tive. Fourth, a haplogroup (group of genes transmitted
together) may exert protective or compensative effects
on certain alterations in the secretion of proteins linked
to the polymorphism genes. For example, several studies
have demonstrated that for the Met allele, the Asian-
type population [63] seems to be protected from cogni-
tive aging. This ethnic influence was not considered in
our study, which was conducted in France on a mostly
Caucasian population. Future studies should adopt a
randomized controlled trial approach to determine in a
causal link for the benefit of PA training programs to
BDNF Val homozygous carriers and various types of
population in order to generalize the results.

Conclusions
To conclude, we observed a significant interaction be-
tween PA and BDNF polymorphism that affected the de-
layed score of the logical memory test. This result shows
that the association between PA and episodic memory was
mediated by BDNF polymorphism because PA increased
the episodic memory performance only in Val-Val homo-
zygous participants.
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