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Compound Impedance Control 
of a Hydraulic Driven Parallel 3UPS/S 
Manipulator
Lihang Wang1, Shaofei Cui1, Chong Ma1 and Lijie Zhang1,2*

Abstract 

The hydraulic parallel manipulator combines the high-power density of the hydraulic system and high rigidity of the 
parallel mechanism with excellent load-carrying capacity. However, the high-precision trajectory tracking control of 
the hydraulic parallel manipulator is challenged by the coupling dynamics of the parallel mechanism and the high 
nonlinearities of the hydraulic system. In this study, the trajectory control of a 3-DOF symmetric spherical parallel 
3UPS/S manipulator is evaluated. Focusing on the highly coupling and nonlinear system dynamics, a compound 
impedance control method for a hydraulic driven parallel manipulator is proposed, which combines impedance 
control with the spatial motion characteristics of a parallel manipulator. The control strategy is divided into the inner 
and outer loops. The inner loop controls the impedance of the actuator in the joint space, and the outer loop controls 
the impedance of the entire platform in the task space to compensate the coupling of the actuators and improve the 
tracking accuracy of the moving platform. Compound impedance control does not require force or pressure sensors 
and is less dependent on modeling precision. The experimental results show that the compound impedance control 
effectively improves the tracking accuracy of the moving platform. This research proposes a compound impedance 
control strategy for a 3-DOF hydraulic parallel manipulator, which has high tracking precision with a simple and cheap 
system configuration.
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1  Introduction
Parallel manipulators are widely applied in flight simula-
tors [1, 2], machine tools [3], and six-dimensional force 
sensors [4] because they have higher stiffness, increased 
precision, lower inertia of moving parts at a high speed, 
and higher accuracy than those of their serial counter-
parts. However, their closed chain structure creates a 
complicated forward kinematic analysis and highly cou-
pled time-varying nonlinear system dynamics. In addi-
tion, the uncertainty in the manipulator parameters and 
disturbances make it difficult to achieve high trajectory 
tracking control for parallel manipulators.

A number of works have investigated improving the 
tracking accuracy of parallel manipulators. PID control 
is the conventional and simplest method used to control 
the system and is widely used in parallel manipulators. 
However, because of the highly nonlinear and coupled 
dynamic behaver of parallel manipulators, the tracking 
error of pure PID control rapidly increases with speed [5]. 
To improve the performance of the PID controller, Amit 
Shukla proposed a novel controller that includes a PID 
controller and a compensator to deal with the coupling 
terms and varying parameters [6]. Londhe et al. [7] pro-
posed a robust nonlinear PID-like fuzzy control scheme 
for a 3-DOF parallel manipulator, by combining a feed 
forward term and PID-like fuzzy logic control. However, 
these methods cannot achieve a high tracking accuracy.

To overcome the highly coupled dynamics of parallel 
manipulators, a number of model-based control methods 
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have been proposed, such as computed torque control [8, 
9], feedforward force with PD feedback control [10, 11], 
adaptive control [12, 13], and robust control [14, 15]. A 
computed torque controller has been proposed for par-
allel manipulators, which is well suited for trajectory 
tracking control and disturbance rejection. However, the 
computed torque controller depends on the knowledge 
of the system, and the performance is generally signifi-
cantly degraded when the modeling is inaccurate. Tien 
Dung Le proposed an online self-gain tuning method for 
a 2-DOF planar parallel manipulator, which is based on 
a combination of a conventional computed torque con-
troller and an online tuning method using the neural net-
work [16]. Feedforward force with PD feedback control is 
a popular control strategy applied to parallel manipula-
tors. This method combines the advantages of calculated 
torque control and PID control and reduces the depend-
ence of the calculated torque control on the accuracy of 
the system model. To reduce the dynamic tracking error 
in a highly real time application, Yang et al. [17] proposed 
a computed force and velocity controller for hydrau-
lic 6-DOF parallel manipulators, which is composed of 
a conventional PID feedback controller and a desired 
driven force and actuator velocity as feed forward.

The adaptive control method enhances the adaptability 
of the control performance for the uncertainty by con-
structing a new dynamic system to continuously learn 
the system characteristics. Considering the uncertainty 
effect caused by a combination of rigid body parame-
ters, friction, and actuator dynamics, Cazalilla et al. [18] 
developed an adaptive controller for trajectory tracking 
control of a 3-DOF parallel manipulator. The application 
of adaptive control in parallel mechanisms reduces the 
requirement of precise dynamic modeling in the control-
ler. However, the adaptive control increases the real-time 
calculation burden of the controller, and the realization 
of adaptive control requires meeting the persistence 
excitation conditions, which improves the requirements 
of the tracking trajectory. Robust control can also deal 
with model uncertainties. Li et  al. [19] designed a con-
troller based on a passivity-based robust control scheme 
for a 3-PRC parallel manipulator. Other robust control 
methods include linear robust control [20], sliding mode 
control [21], etc.; however, the common disadvantage 
of these methods is that law leads to a chattering prob-
lem, which significantly reduces trajectory tracking 
performance.

Impedance control [22] improves the motion of the 
manipulators by adjusting the relationship between the 
motion and driving force. It is typically used in applica-
tions that require complex interaction with the environ-
ment, such as assembly, drilling, and milling. However, 
some researches [23, 24] have shown that impedance 

control also demonstrates the desirable trajectory 
tracking ability in free motion. The tracking ability of 
impedance control in free motion can be explained by 
introducing the concept of a virtual surface. Ghosh [25] 
proposed a robust control framework based on a bond 
graph modeling process. This method reduces the influ-
ence of system dynamics parameter uncertainties by add-
ing dominant terms for complex and highly non-linear 
robot dynamics. For manipulators with flexible founda-
tions, Pathak et  al. [26] improved the above method to 
eliminate the interference of flexible foundations more 
effectively without knowing the dynamic parameters of 
flexible foundations by adjusting the dynamic charac-
teristics of the mechanism in the form of an algorithm. 
Based on the physical reliability of the flexible founda-
tion, the virtual surface concept is further proposed. 
The impedance controller constructs the virtual surface 
through the desired trajectory in real time and real-
izes trajectory tracking in free motion by adjusting the 
motion error between the actual position and virtual sur-
face; thus, trajectory tracking control is realized.

Recently, lower-mobility parallel mechanisms were 
widely used in aviation, medical, and other industries 
owing to the lower cost and simpler controller [27]. 
Considering joint couplings, Liu et  al. [28] proposed an 
iterative approach for feedforward controller parameter 
tuning for a 3-DOF parallel mechanism. For a 2-DOF 
2PRP-PPR parallel manipulator, Santhakumar Mohan 
[29] proposed a robust cascaded control scheme for the 
end-effector pose error correction in trajectory track-
ing caused by mechanical inaccuracies. Angel et al. [30] 
applied a computed torque control strategy with a frac-
tional order PID method. This strategy shows a robust 
and active disturbance rejection compared to that with 
the integer order PID method. The research objective 
of this study is a 3-DOF spherical space parallel 3UPS/S 
mechanism for wave compensation, whose tracking 
accuracy affects the quality of compensation.

As an important driving form, hydraulic actuators 
provide an attractive alternative for parallel manipula-
tors, because they are robust and can produce significant 
forces/torques for their size without concern of overload-
ing. However, the highly nonlinear dynamics and uncer-
tainties in the hydraulic system make their closed-loop 
control design extremely challenging [31]. Common 
control strategies considering the dynamics of hydraulic 
actuators for parallel manipulators include cascade con-
trol [32, 33], backstepping control [34], virtual decom-
position control [35], etc. One of the key problems in 
motion control of the hydraulic driven parallel mecha-
nism is realizing high-precision driving force control 
of the hydraulic system. Guo et  al. [33] integrated non-
linear compensation of the flow rate of the servo valve, 
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positive velocity feedback, and load pressure feedback to 
control the pressure of the two chambers of the hydraulic 
cylinder. Considering the influence of the pipeline pres-
sure transients and friction, Yang et  al. [1] monitored 
the driving force in real time using a force sensor and 
obtained the piston force controller of the hydraulic actu-
ator based on feedback linearization. Huang et  al. [36] 
applied incremental nonlinear dynamic inversion (INDI) 
to design a robust force controller based on the pressure/
force sensor and obtained better force tracking perfor-
mance than that of the feedback linearization method. 
The control performance of the above methods depends 
on the high precision force/pressure sensor, which lim-
its the application of these methods. Yoo et al. [37] pre-
sented an impedance control approach for a hydraulic 
system that required no external force/pressure sensors 
based on a backdrivable servovalve. However, the manu-
facturing cost of this type of system is relatively high.

In this paper, a compound impedance control method 
is proposed for a 3-DOF hydraulic parallel manipulator. 
The proposed method adopts a double loop structure to 
deal with the highly coupling dynamic and complex driv-
ing characteristics of hydraulic parallel manipulators. The 
proposed method does not require exact system dynamic 
parameters, such as mass distribution and friction. The 
proposed method uses a simplified asymmetric hydrau-
lic servo system model based on a singular perturbation 
analysis, which has the characteristics of universality. 
Moreover, the proposed method uses the displacement 
sensors and regular servo-valves without expensive force 
or pressure sensors, creating a simple and cheap system 
configuration. The experimental result shows that the 
proposed method can track the typical reference signals 
according to wave motion and achieve a higher tracking 
accuracy than that of the fine-tuned PID controller.

The paper is organized as follows. The dynamic models 
of the 3UPS/S parallel mechanism and hydraulic actua-
tor are established in the second and third section. In 
the fourth section, the singular perturbation analysis for 
the hydraulic servo system is discussed. The relation-
ship between the input signal of the valve and the driv-
ing force is given, and the exponential convergence of 
the corresponding boundary layer model is determined. 
Then, the impedance control processes in the joint space 
and task space are described. Finally, the overall structure 
of the compound impedance control is given. In the fifth 
section, the 3UPS/S manipulator prototype is developed. 
Experiments are carried out for the tracking performance 
validation of the proposed method compared with the 
well-turned PID control.

2 � Modeling of the 3UPS/S Parallel Manipulator
As shown in Figure  1, the moving platform of 3UPS/S 
is connected to the fixed platform by a central spherical 
joint and three symmetrically distributed actuators. The 
upper end of each actuator is connected to the moving 
platform by a spherical joint, and the lower end is con-
nected to the fixed platform by universal joints. The 
3UPS/S mechanism is driven by hydraulic actuators, and 
the posture of the moving platform is adjusted by chang-
ing the length of the actuators. In contrast to the Stew-
art mechanism, the center spherical joint restrains the 
three-dimensional translation of the moving platform, 
retaining the three-dimensional rotation of the moving 
platform. Considering the workspace characteristics of 
the mechanism, the pitching and rolling motion of the 
moving platform are mainly used in practice.

2.1 � Modeling of the 3UPS/S Parallel Manipulator
As shown in Figure 2, coordinate system {N } is fixed to 
the fixed platform. Frame {A} is fixed to the moving plat-
form. The upper joint point distribution radius is R1. The 
joint point distribution radius is R2, and the center height 
of the central spherical joint is h.

The coordinates of the lower joint point Bi (i = 1,2,3) in 
{N} can be expressed as

where η1 = π , η2 = π
/

3, η3 = −π
/

3.

The coordinates of upper joint point Ai (i = 1, 2, 3) in 
{A} can be expressed as follows:

The RPY angle is used to describe the relative motion 
relationship between the moving platform and fixed plat-
form. The relationship between coordinate system {A} 

(1)Bi(R2 cos ηi,R2 cos ηi, 0),

(2)Ai(R1 cos ηi,R1 cos ηi, 0).

Figure 1  3UPS/S parallel manipulator
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and coordinate system {N} can be expressed by the rota-
tion matrix.

The transformation relationship between the vectors in 
{A} and {N} is as follows:

where Nu and Au represent the coordinates of vector u in 
{A} and f {N}, respectively.

3UPS/S has three-dimensional rotational degrees of 
freedom around the central spherical joint, and the rota-
tion angle of the moving platform relative to the fixed 
platform determines the posture of the manipulator. The 
length of the three actuators can be obtained uniquely 
from the rotation angle, which is referred to as the 
inverse kinematics model of the 3UPS/S manipulator.

In {N}, the coordinates of each position vector are as 
follows.

2.2 � Inverse Dynamics Model
The dynamic model of the 3UPS/S parallel mechanism 
is established by Kane’s method. The three-dimensional 

(3)N
AR =





c2 c3 + s1s2s3 c1s3 s1c2s3 − s2c3
s1s2c3 − c2s3 c1s3 s2s3 + s1 c2c3

c1s2 −s1 c1c2



.

(4)Nu = AuN
AR,

(5)li =
∣

∣

∣
rAiBi

∣

∣

∣
=

∣

∣

∣
rBiO + rOP + rPAi

∣

∣

∣
.

(6)

N rBiO = −[R2 cos ηi,R2 cos ηi, 0],

N rOP = [0, 0, h],

N rPAi = [R1 cos ηi,R1 cos ηi, 0]
N
AR.

rotation in the task space of the moving platform is 
selected as the generalized coordinates and denoted as 
q = [q1, q2, q3]

T . The coordinate u = [u1,u2,u3]
T of the 

angular velocity of the moving platform in {N} is selected 
as the generalized velocity, which yields the following:

The dynamics model of the 3UPS/S manipulator can be 
written as

where T   denotes the generalized active force caused by 
gravity and the forces in the Cartesian space of the mov-
ing platform,  T = T (q,FL,TL,G) ; FL,TL denotes the 
load force on the moving platform; M denotes the map-
ping matrix of the driving force from the joint space 
to the workspace,  M = M(q) ; Q denotes the driving 
force vector; F∗ denotes the generalized inertial force, 
F∗ = F∗

(

q, q̇, q̈
)

 . The detailed expressions for the above 
symbols are given in Appendix.

The inverse dynamic model of 3UPS/S can be written 
as follows:

3 � Dynamic Model of the Hydraulic Servo System
The 3UPS/S hydraulic servo system is shown in Figure 3, 
where r represents the input signal; Kp represents the 
proportional gain of the system; FL represents the load 
force; PS represents the supply pressure; P0 represents the 
tank pressure; PA and PB represent the pressures of the 
two chambers of the hydraulic cylinder; A1 and A2 repre-
sent the effective area of the two chambers.

The bond graph model of the hydraulic servo system is 
shown in Figure 4, where Rf  represents the friction of the 
hydraulic cylinder; Ri(i = 1, 2, 3, 4) represents the four 
resistances of the servovalve.

(7)ω
A = u1n1 + u2n2 + u3n3.

(8)T +MQ + F∗ = 0,

(9)Q = −M−1
(

T + F∗
)

.

Figure 2  Coordinate system of the 3UPS/S manipulator

Figure 3  Principle of the hydraulic servo system
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The servo valve can be expressed as four hydrau-
lic resistances connected to each other, which can be 
expressed as follows:

Here, P, T, A, and B represent the four ports of the servo 
valve; QPA, QAT , QBT and QPB denote the flow of the 
corresponding valve port, which is in the positive direc-
tion of P to A, A to T, B to T, and P to B, respectively; 
Cd represents the flow coefficient of the valve orifice; w 
represents the gradient of the servo orifice area with the 
opening of the valve; xv represents the displacement of 
the spool; ρ represents the density of the oil, and �Pi (i = 
1, 2, 3, 4) represents the differential pressure between the 
corresponding ports.

The friction force of the hydraulic cylinder is assumed 
to be proportional to the velocity.

where C is the damping coefficient, and vp is the velocity 
of the hydraulic actuator.

Assuming that the internal leakage of the hydraulic 
cylinder is small and can be ignored, the model of the 
hydraulic servo system can be expressed as follows:

(10)

QPA � f1(xv ,�P1) =

{

Cdwxv

√

2|�P1|
ρ

, xv > 0.

0, xv ≤ 0,

QAT � f2(xv ,�P2) =

{

0, xv > 0,

−Cdwxv

√

2|�P2|
ρ

, xv ≤ 0,

QBT � f3(xv ,�P3) =

{

Cdwxv

√

2|�P3|
ρ

, xv > 0,

0, xv ≤ 0,

QPB � f4(xv ,�P4) =

{

0, xv > 0,

−Cdwxv

√

2|�P4|
ρ

, xv ≤ 0.

(11)
�P1 � Ps − PA, �P2 � PA − P0,

�P3 � PB − P0, �P4 � Ps − PB.

(12)Ff = C vp,

Assumption 1  In a practical hydraulic system under 
normal working conditions, P1 and P2 are bounded by P0 
and Ps , i.e., P0 ≤ P1,P2 ≤ Ps.

4 � Controller Design
4.1 � Hydraulic Driving Force Model Based on Singular 

Perturbation
An important problem in a hydraulic driven parallel 
manipulator is the force generation in the hydraulic servo 
system. In this study, the relationship between the valve 
input signal and driving force is determined by a singu-
lar perturbation analysis. Most physical system models 
can be described by states with different rates, which can 
be divided into boundary layer subsystems described by 
faster states and reduced order subsystems described 
by slower states. The Tikhonov theorem [38] states that 
when the boundary layer model is stable, the fast-chang-
ing states can be removed, while the static relationship is 
considered the boundary condition to participate in the 
process of the slow-changing states, thus achieving sys-
tem dimensionality reduction and simplification. The 
singular perturbation analysis is widely applied in the 
hydraulic servo system [39]. Based on the above analy-
sis, the hydraulic servo system can be described by four 
states: the pressure states and mechanical states, which 
refer to the displacement and velocity of the actuator. 
Because of the pressure conduction characteristics of oil, 
the rate of the pressure states is much faster than that of 
the mechanical states. Through singular perturbation, the 
relationship between the valve input signal and driving 
force can be obtained from the static relation of the fast-
changing states. In this section, the corresponding sin-
gular perturbation analysis process and the proof of the 
exponential convergence of the boundary layer are given.

For the hydraulic servo system described in Eq. (13), 
the mechanical state is xh = [x1, x2]

T , and the pressure 
state of the hydraulic system is zh = [x3, x4]

T.
Considering the difference between the bulk modulus 

of the two chambers, the following is assumed:

(13)











































ẋ1 = x2,

ẋ2 =
1

mt
(A1x3 − A2x4 + FL − Cvx2),

ẋ3 =
E′
A

VA
[f1(xv ,Ps − x3)− f2(xv , x3 − P0)−x2A1] ,

ẋ4 =
E′
B

VB
[f4(xv ,Ps − x4)− f3(xv , x4 − P0)+x2A2] .

Figure 4  Bond graph of the hydraulic servo system
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The state equation for pressure can be written as 
follows:

Substituting Eq. (10) into Eq. (15) with ε = 0 , a quasi-
static representation of the pressure state is given by

where KQ1 � Cd1w1Kv

√

ρ
2 , KQ2 � Cd2w2Kv

√

ρ
2 .

The simplified order reduction model of the hydraulic 
servo system can be obtained by substituting Eqs. (16) 
and (17) into Eq. (18):

The boundary layer model of the hydraulic servo sys-
tem can be written as follows:

The auxiliary variable y = zh − h(t, x) is introduced to 
move the equilibrium point of the boundary layer model 
to the origin:

Substituting Eq. (20) into Eq. (19) and introducing time 
variable τ = 1

ε
(t − t0) , the boundary layer model is given 

as follows:

(14)
1

E′
A

= ε,
1

E′
B

=
1

kE′
A

=
1

k
ε.

(15)
εẋ3 =

1

VA
[f1 − f2 − A1x2],

εẋ3 =
k

VB
[f4 − f3 − A2x2].

(16)h1 � x̄3 =











Ps −
A2
1

K 2
Q1

·
x22
u2
, u > 0,

P0 +
A2
1

K 2
Q1

·
x22
u2
, u < 0,

(17)h2 � x̄4 =











P0 +
A2
2

K 2
Q2

·
x22
u2
, u > 0,

Ps −
A2
2

K 2
Q2

·
x22
u2
, u < 0,

,

(18)







ẋ1 = x2,

ẋ2 =
1

mt
(A1h1 − A2h2 − Cvxv + FL).

(19)















εẋ3 =
1

VA

�

f1 − f2 − A1x2
�

,

εẋ4 =
k

VB

�

f4 − f3 + A2x2
�

.

(20)
{

y1 = x3 − h1,

y2 = x4 − h2.

(21)
dy1

dτ
=

1

VA

(

f1 − f2 − A1x2
)

,

where

When u > 0,

Based on Assumption 1, one can obtain the following:

When u < 0,

Based on Assumption 1, one can obtain the following:

The following boundary layer model is obtained:

When u > 0 , x2 > 0, |x2| = x2,

When u < 0 , x2 < 0, |x2| = −x2,

Here, y = 0 is the equilibrium point of dydτ = g . After 
linearization, the stability of the boundary layer model is 
evaluated by solving the Jacobian matrix.

The Jacobian matrix can be written as follows:

where

(22)f1 − f2 =







KQ1u
�

Ps −
�

y1 + h1
�

, u > 0,

KQ1u
�

�

y1 + h1
�

− P0 , u < 0.

(23)
f1 − f2 = KQ1u

√

√

√

√Ps −

(

y1 + Ps −
A2
1

K 2
Q1

x22
u2

)

=

√

A2
1x

2
2 − y1u2K

2
Q1.

(24)A2
1x

2
2 − y1u

2K 2
Q1 ≥ 0.

(25)
f1 − f2 = KQ1u

√

√

√

√

(

y1 + P0 +
A2
1

K 2
Q1

x22
u2

)

− P0

= −

√

A2
1x

2
2 + y1u2K

2
Q1.

(26)A2
1x

2
2 + y1u

2K 2
Q1 ≥ 0.

(27)

dy1

dτ
=







1
VA

��

A2
1x

2
2 − y1u2K

2
Q1 − A1x2

�

, u > 0,

1
VA

�

−
�

A2
1x

2
2 + y1u2K

2
Q1 − A1x2

�

, u > 0.

(28)
dy1

dτ
=

1

VA

(

√

A2
1x

2
2 − y1u2K

2
Q1 − A1|x2|

)

.

(29)
dy1

dτ
=

1

VA

(

A1|x2| −
√

A2
1x

2
2 + y1u2K

2
Q1

)

.

(30)J =
∂g

∂y
=

[

∂g1
∂y1

0

0
∂g2
∂y2

]

,
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With Eq. (24), the following is obtained:

then

The sign of ∂g1
∂y1

 yields

Similarly, by defining y2 = z2 − h2 = x4 − h2 , the sign 
of ∂g2

∂y2
 is given by

The boundary layer model satisfies 
Re

[

�

{

∂g
∂y

}]

≤ −c < 0, ∀(t, x) ∈ [0, t1]× Dx . Thus, the 
boundary layer model of the singularly perturbed system 
has exponential convergence [38].

4.2 � Hydraulic Driving Force Model Based on Singular 
Perturbation

The relationship between the valve input signal and out-
put force of the hydraulic cylinder piston is obtained by 
the singular perturbation analysis for the hydraulic servo 
system. To realize position tracking control, the relation-
ship between the output force and motion of the hydrau-
lic actuator should be determined. To achieve an effective 
and stable drive, this relationship is designed as a spring 
damping model, as shown in Figure 5.

The desired force Fv satisfies

With the singular perturbation analysis, by ignoring the 
tank pressure, the driving force yields

(31)
∂g1

∂y1
=































−
1

VA

u2K 2
Q1

�

A2
1x

2
2 − y1u2K

2
Q1

, u > 0,

−
1

VA

u2K 2
Q1

�

A2
1x

2
2 + y1u2K

2
Q1

, u ≤ 0.

(32)A2
1x

2
2 ≥

∣

∣

∣
y1u

2K 2
Q1

∣

∣

∣
,

(33)

∣

∣

∣
A2
1x

2
2 − y1u

2K 2
Q1

∣

∣

∣
≤

∣

∣

∣
A2
1x

2
2

∣

∣

∣
+

∣

∣

∣
y1u

2K 2
Q1

∣

∣

∣
≤ 2

∣

∣

∣
A2
1x

2
2

∣

∣

∣
,

∣

∣

∣
A2
1x

2
2 + y1u

2K 2
Q1

∣

∣

∣
≤

∣

∣

∣
A2
1x

2
2

∣

∣

∣
+

∣

∣

∣
y1u

2K 2
Q1

∣

∣

∣
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∣

∣

∣
A2
1x

2
2

∣

∣
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.

(34)
∂g1

∂y1
≤ −

1

VA

u2K 2
Q1

√

2A2
1x

2
2

< 0.

(35)
∂g2

∂y2
≤ −

1

VB

u2K 2
Q2

√

2A2
2x

2
2

< 0.

(36)Fv � −K1(x1 − r)− K2(x2 − ṙ).

where KA denotes the valve characteristic coefficient and 
is defined as follows:

To realize trajectory tracking control, the following 
should be satisfied:

Here, FL denotes the total load force, including the fric-
tion force.

After replacing the actual speed with the instruction 
speed, the final control law is obtained:

Remark 1  One of the advantages of this algorithm is 
that the stiffness expression can be freely programmed. 
The drive stiffness should be large enough to guarantee 
position accuracy and robustness. In addition, the out-
put signal is required to be bounded without an infinite 
signal.

The drive stiffness could be planned by a hyperbolic 
tangent function, as shown in Figure 6.

Here, FS
D  denotes the driving force produced by the 

spring effect, and Fm is the maximum of the spring force.

(37)FD =











A1Ps − KA
x22
u2
, u > 0,

−

�

A2Ps − KA
x22
u2

�

, u > 0,

(38)KA �
A3
1

K 2
Q1

+
A3
1

K 2
Q2

.

(39)FD − FL = Fv = −K1(x1 − r)− K2(x2 − ṙ).

(40)

u =







|ṙ|
�

KA
A1Ps−K1|r−x1|+K2(x2−ṙ)−FLmax

, (r − x1) > 0,

−|ṙ|
�

KA
A2Ps−K1|r−x1|+K2(x2−ṙ)−FLmax

, (r − x1) < 0.

(41)
FS
D =

Fm[1+ tanh (k(r − x1))]+ Fm[tanh (k(r − x1))− 1]

2
.

Figure 5  Equivalent principle of impedance control
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Remark 2  To prevent output u from being infinite, the 
following should be satisfied: 

To improve system reliability, the output can be further 
limited: 

 where Sm is the maximum input of the valve; ṙ0 is a typi-
cal value of the command rate.

To track the abnormal reference speed, the effec-
tive command rate of 0.1–0.5 is used, substituting 
min(0.5,max(|ṙ|, 0.1)) for |ṙ| in Eq. (40).

4.3 � Impedance Control in the Task Space
The proposed impedance control is an operation process 
that takes load, command, and feedback signal as the 
input and the valve input signal as the output. To ensure 
reliability of the control process, the trajectory command 
of each actuator is obtained by an inverse kinematics 
model. Based on the idea of impedance control, the cor-
recting moment is obtained from the motion deviation 
in the task space of the manipulator and then mapped to 
the additional driving force of each driving branch as the 
load input to compensate the overall motion characteris-
tics of the manipulator.

When the manipulator is subjected to external torque 
Ts, the driving force in the equilibrium state is corre-
spondingly increased by �Q . To obtain the mapping 

(42)
A1Ps + FS

D + K2(x2 − ṙ)− F∗
Lmax > 0,

A2Ps + FS
D + K2(x2 − ṙ)− F∗

Lmax > 0.

(43)

√

KA

A2Ps + FS
D + K2(x2 − ṙ)− F∗

Lmax
≤

Sm

|ṙ0|
,

relationship between external torque Ts and driving force 
increment �Q , the platform dynamic inverse model Eq. 
(9) is written in increment form:

where the external moment �T  yields:

Using Eqs. (44) and (45), the relationship between �T  
and �Q is given as follows:

The generalized velocity of the moving platform rela-
tive to the fixed platform yields the following:

The mapping relationship between the task space 
and joint space of the 3UPS/S manipulator yields the 
following:

For impedance control, virtual spring damping is con-
structed in the task space, and the force is mapped to 
each actuator through matrix M−1:

4.4 � Impedance Control in the Task Space
Compound impedance control performs impedance con-
trol in the joint space and task space. First, through the 
singular perturbation analysis of the hydraulic servo sys-
tem, a single cylinder trajectory tracking control method, 
including load factors, is obtained and combined with 
impedance control. Then, for impedance control, vir-
tual spring damping is constructed in the task space of 
the mechanism, and the force is mapped to the driving 
branch in reverse. For each actuator, trajectory tracking 
control is performed in the joint space of the manipulator, 

(44)�Q = −M−1(�T ),

(45)�T = T s �
�

Tx,Ty,Tz

�





n1
n2
n3



.

(46)





�Q1

�Q2

�Q3



 = M−1





�T · ωA
1

�T · ωA
2

�T · ωA
3



.

(47)

N
ω
A
1 = (1, 0, 0)





n1
n2
n3



, N
ω
A
2 = (0, 1, 0)





n1
n2
n3



,

N
ω
A
3 = (0, 0, 1)





n1
n2
n3



.

(48)





Q1

Q2

Q3



 = M−1





Tx

Ty

Tz



.

(49)�Q = −M−1(K�q + C�q̇).

Figure 6  Relationship between the driving force and position error
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and real-time adjustment is performed according to the 
motion error in the task space.

Combining the impedance control algorithm in the 
joint space, an additional driving force �Qi is added to 
each actuator. The 3UPS/S overall control algorithm can 
be expressed as follows:

where

The corresponding block diagram is shown in Figure 7.
To realize the impedance control in the task space, the 

three-axis rotation angle should be obtained in the task 
space of the parallel platform in real time. Considering 
the measurement accuracy and reliability, an indirect 
measurement method is adopted to obtain the moving 
platform rotation angle by detecting the displacement of 
the driving joint based on forward kinematics solution of 
the manipulator. The forward kinematics analysis process 
of the 3UPS/S mechanism (nonlinear algebraic equa-
tions) is complex and has multiple solutions. In practice, 
numerical methods [40] are often applied to obtain the 
motion of the moving platform. In this study, the forward 
position solution of 3UPS/S is obtained using the neural 
network method, based on the comparison of accuracy 
and computational efficiency.

5 � Prototype System and Experimental Results
To verify the trajectory tracking performance of com-
pound impedance control, a hydraulic driven 3UPS/S 
parallel manipulator prototype is developed, as shown 

(50)
u =

1+ tanh (k(r − x1 + hv))

2
u+i

+
tanh (k(r − x1 + hv))− 1

2
u−i ,

(51)
u+i � |ṙ|

√

KA

A1Ps − K1(r − x1)− K2(ṙ − x2)−�Qi − FLmax
,

u−i � −|ṙ|

√

KA

A2Ps + K1(r − x1)+ K2(ṙ − x2)+�Qi − FLmax
.

in Figure 8 and Figure 9. The control system consists of 
the host computer and slave computer. The host com-
puter is implemented by Labview in Windows to real-
ize command generation/reception, data supervision, 
and recording. The slave computer adopts the NI-cRIO 
controller and completes the trajectory tracking control 
of each actuator according to the sequence of the dis-
placement command sent by the host computer. For the 
3UPS/S manipulator prototype, the distribution radius 
is 0.38 m; the distribution radius of the joint point of 
the lower platform is 0.51 m; the height of the platform 
at the center of central ball joint h is 1.15 m; the initial 

rotation angle of the moving platform is π/6 ; the stroke 
of the hydraulic actuator is 450 mm; the diameter of the 
hydraulic cylinder is 40 mm; the diameter of the hydrau-
lic piston rod is 25 mm; the hydraulic cylinder displace-
ment sensor accuracy is 0.02%, and the moving platform 
inclination sensor accuracy is ±1.67×10‒3 rad. From the 
wave spectrum, the desired trajectories in two freedoms 
are designed as follows:  

yr = 0.1222 sin(0.1 · 2π t)+ 0.03487 sin(0.4 · 2π t),

yp = 0.0873 sin(0.1 · 2π t)+ 0.05234 sin(0.25 · 2π t).

Figure 7  Compound impedance control of parallel mechanisms. PD: 
Proportional differential, FKM: Forward kinematics model, KIM: Inverse 
kinematics model, KIM−1: Dynamic mapping matrix, HSS: Hydraulic 
Servo System, SHIC: Single Channel Impedance Control

Figure 8  Mechanical structure of the hydraulic driven 3UPS/S 
manipulator
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The platform is designed to compensate wave motion 
and provide a stable working environment for shipboard 
equipment. The tracking curves of the PID control and 

compound impedance control for compound sinusoidal 
instructions with a frequency of 0.1‒0.4 Hz, according to 
the statistical law of wave motion, are shown in Figure 10 
and Figure  11. The classical PID control scheme is also 
applied to the parallel manipulator as a benchmark. For 
convenience of description, the rotation of the 3UPS/S 
platform around the n1 axis is defined as rolling motion 
α , and the rotation around the n2 axis is defined as 
pitching motion β . The attitude signal of the platform is 
obtained by the inclination sensor arranged on the mov-
ing platform. In Figures 10 and 11, the tracking curve of 
compound impedance control can reproduce the shape 
of the command curve, while the PID control shows obvi-
ous errors when the command speed sharply changes. 

In Figure  12, the trajectory tracking curve of the 
manipulator in the pitch-roll motion plane is given with 
compound impedance and PID control. The tracking 
command is the synthetic motion of the moving platform 
in the pitch-roll motion plane shown in Figures 9 and 10. 
In Figure  12, the platform with compound impedance 
control shows better tracking ability than that with PID 
control.

Figure 9  Control system of the hydraulic driven 3UPS/S manipulator

Figure 10  Trajectory tracking in roll freedom

Figure 11  Trajectory tracking in pitch freedom

Figure 12  Trajectory tracking curves in the pitch-roll plane
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The trajectory tracking performance of the parallel 
manipulator can be evaluated by the concept of compre-
hensive error [41]. In the pitch-roll plane, the trajectory 
error is defined as

where EP is the pitch trajectory tracking error of the mov-
ing platform, and ER is the roll trajectory tracking error.

Figure  13 shows the variation of synthetic error with 
respect to time. From Figure  13, the PID control error 
shows a continuous fluctuation trend with a peak of 
approximately 0.02 rad and an average of approximately 
0.01 rad. Whereas, the compound impedance control 
error is maintained at a low level overall, with a peak 
of 0.01 rad and an average of approximately 0.005 rad. 
Jouni Mattila [31] adopted the ratio of tracking error and 
motion speed to evaluate the control accuracy level of 
the mechanism. Figure  14 shows the distribution of the 

(52)zc =

√

E2
P + E2

R,

command velocity of the comprehensive trajectory error 
with different control methods. The comprehensive tra-
jectory error definition is shown in Eq. (52), and the com-
mand speed is defined as:

where v̂P is the command speed of the moving platform 
in pitch motion;  v̂R is the roll command speed in roll 
motion. 

From Figure  14, the compound impedance control 
error increases gradually with the command speed in the 
low-speed interval with the rate of 0.1 s. With further 
increasing command speed, the tracking error is stable at 
0.005 rad. The PID control error fluctuates at 0–0.02 rad.

6 � Conclusions

(1)	 The trajectory tracking control of a parallel 3-DOF 
manipulator is studied. The kinematics and dynam-
ics model of the 3-DOF 3UPS/S mechanism as well 
as the dynamics model of the hydraulic servo sys-
tem are established. Through the singular pertur-
bation analysis, a force sensor-less hydraulic force 
generator is obtained, and the exponential stability 
of the boundary layer model of the singular system 
is demonstrated.

(2)	 A compound impedance control strategy for trajec-
tory tracking of the hydraulic parallel manipulator 
is proposed. The control strategy is divided into the 
inner loop and outer loop. The inner loop controls 
the impedance of each actuator in the joint space, 
and the outer loop controls the impedance of the 
entire manipulator in the task space to compensate 
for the coupling of the actuators. The experimental 
results show that the compound impedance control 
has better trajectory tracking ability than that of the 
well-turned PID controller.

(3)	 The proposed compound impedance control does 
not require force or pressure sensors and has a low 
dependence on the accuracy of the modeling. Com-
pared with other advanced control methods, the 
compound impedance control has higher control 
accuracy and provides a novel framework for deal-
ing with the highly coupling and nonlinear dynam-
ics of hydraulic parallel manipulators.
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Appendix
In this Appendix, the detailed expressions for the sym-
bols in Eq. (8) are given as follows:

Here, FL and TL are the load force and moment of the 
moving platform, respectively, given by

(A1)T (q,FL,TL,G) =


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.

where GWu ,G
i
Lu
,Gi

Ld
are the gravity of the moving plat-

form and the ith driving branch, given below:

 Here,  vWu∗
r  denotes the partial velocity of the mass 

center of the moving platform; ωWu
r  denotes the partial 

angular velocity of the moving platform; ωLi
r   denotes the 

partial angular velocity of the ith driving branch;  vL
i
u∗

r  
denotes the partial velocity of the mass center of the 
ith upper driving branch, and  vL

i
d∗

r  denotes the partial 
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velocity of the mass center of the ith lower driving branch 
(r = 1, 2, 3):
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Here,  si  denotes the unit vector of the ith driving 
branch.

For moving platform Wu, the generalized inertial 
force and generalized moment of inertia are respectively 
expressed as

where aW ∗
u denotes the acceleration of the mass center 

of the moving platform; αWu denotes the angular accel-
eration of the moving platform; ωWu denotes the angular 
velocity the moving platform, and IWu denotes the cen-
tral inertia dyadic of the moving platform.

For the ith upper driving branch Liu , the generalized 
inertial force and generalized moment of inertia are 
respectively expressed as
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,

where aLiu∗ denotes the acceleration of the mass center 
of the ith upper driving branch; αLiu denotes the angular 
acceleration of the ith upper driving branch; ωLi denotes 
the angular velocity of the ith upper driving branch, and 

Table 1  Partial velocity and  partial angular velocity 
of the components in 3UPS/S

Component Partial velocity Partial velocity Subscript range

Moving platform 
Wu

ω
Wu
r = ω

Wu
∣

∣

Ev=Er
v
W

∗
u

r = v
W

∗
u

∣

∣

∣

Ev=Er

r = 1, · · · , 3

driving branchLi ω
Li
r = ω

Li
∣

∣

Ev=Er v
L
i∗
u
r = v

L
i∗
u

∣

∣

∣

Ev=Er

v
L
i∗
d
r = v

L
i∗
d

∣

∣

∣

Ev=Er

r = 1, · · · , 3
r = 1, · · · , 3

IWu denotes the central inertia dyadic of the ith upper 
driving branch.

The relationship between the motion of the moving 
platform and generalized velocity can be obtained as 
follows:

For the ith driving branch, the relationship can be 
obtained by

where vAi  denotes the velocity of upper joint Ai; 
aAi denotes the acceleration of upper joint Ai, 
aAi = α

A × rPAi + ω
A ×

(

ω
A × rPAi

)

.
The generalized velocity vectors are defined as
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and the unit vector is as follows:

The partial velocities of each component are listed in 
Table 1.
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