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Abstract

unknown.

for myocardial ischemia and reperfusion injury.

Background: Histone deacetylases (HDACs) play a critical role in modulating myocardial protection and cardiomyocyte
survivals. However, Specific HDAC isoforms in mediating myocardial ischemia/reperfusion injury remain currently

We used cardiomyocyte-specific overexpression of active HDAC4 to determine the functional role of activated
HDAC4 in regulating myocardial ischemia and reperfusion in isovolumetric perfused hearts.

Methods: In this study, we created myocyte-specific active HDAC4 transgenic mice to examine the functional
role of active HDAC4 in mediating myocardial I/R injury. Ventricular function was determined in the
isovolumetric heart, and infarct size was determined using tetrazolium chloride staining.

Results: Myocyte-specific overexpressing activated HDAC4 in mice promoted myocardial I/R injury, as
indicated by the increases in infarct size and reduction of ventricular functional recovery following I/R injury.
Notably, active HDAC4 overexpression led to an increase in LC-3 and active caspase 3 and decrease in SOD-1 in
myocardium. Delivery of chemical HDAC inhibitor attenuated the detrimental effects of active HDAC4 on I/R injury,
revealing the pivotal role of active HDAC4 in response to myocardial I/R injury.

Conclusions: Taken together, these findings are the first to define that activated HDAC4 as a crucial regulator
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Background

Histone deacetylases (HDACs) are a group of enzymes
that regulate gene expression by the modulation of their
interactions with chromatin through the deacetylation of
histones. The acetylation and deacetylation of chromatin
histones are considered to be critical in the regulation of
transcription in in the biological responses. Acetylation
of histone is caused by histone acetyl transferase, which
leads to nucleosomal relaxation and altered transcrip-
tional activation. In contrast, histone deacetylase result
in deacetylation and transcriptional repression (Turner
2000; McKinsey 2012).
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Since the identification of HDAC 1 (Hassig et al. 1998),
18 HDACs have been identified and were classified into
three distinct groups (Verdin et al. 2003). Class I HDACs
consist of HDACs 1, 2, 3, and 8. Class II HDACs are fur-
ther divided into the following: Ila (HDACs 4, 5, 7 and 9)
and IIb (HDACs 6 and 10). It is notable that both HDAC
4 and HDAC 5 are highly expressed in the myocardium,
brain and skeletal muscles, which indicates that both
HDAC:s are important in modulating the biological func-
tion of these organs. (Fischle 1999; Grozinger et al. 1999;
Wang et al. 1999). Class III HDACs were identified on the
basis of sequence similarity with Sir, which includes
SIRT1-7 and Sir2.

Recent studies have demonstrated that HDACs play an
important role in the development of myocardial hyper-
trophy and ischemic injury (Antos et al. 2003; Kee et al.
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2006; Kong et al. 2006; Haberland et al. 2009; Granger
et al. 2008). Inhibition of HDAC with chemical inhibitor
trichostatin A attenuated cardiomyocyte hypertrophy.
Likewise, pharmacological inhibition of HDACs sup-
pressed myocardial hypertrophy and improved cardiac
performance in vivo (Kong et al. 2006; Haberland et al.
2009). Furthermore, HDAC inhibition was found to be
closely associated with the attenuation of myocardial
ischemia and reperfusion injury in mice (Granger et al.
2008). More importantly, our extensive studies in animal
models suggest that pharmacological inhibition of
HDAC is considered to be one of the most important
signals to reduce myocardial ischemia and reperfusion
injury and improve cardiac performance (Zhao et al
2007; Zhang et al. 2012a; Zhang et al. 2012b; Zhang
et al. 2010). Additionally, we also demonstrated that
HDAC inhibition or genetic inhibition of specific
HDAC4 promoted myocardial repair through stimulat-
ing cardiac progenitor cells (Zhang et al. 2012a; Zhang
et al. 2012b). Notably, we have found that HDAC inhib-
ition increased the survival of embryonic stem cells
through the reduction and degradation of HDAC4
isoform (Chen et al. 2011).

It is generally recognized that class II HDACs are crit-
ical to modulate cardiac injury, hypertrophy and devel-
opment, but HDAC4 demonstrates very little activity.
Most of the studies only focused on defining the func-
tion of the magnitude of HDAC expression rather than
the activation of HDAC4, especially activated HDAC4,
in modulating myocardial function. It is critical to iden-
tify the function of activated HDAC4 in the heart. These
evidences indicate that HDAC4 is one of the most
important class II HDACs in the heart and muscle and
plays a critical role in modulating cardiac development,
ischemic injury, and hypertrophy. In the present study,
we created cardiac HDAC4 transgenic mice in which
HDAC4 was activated to determine how active HDAC4
modulates myocardial injury. This will provide new
insight into understanding the functional role of acti-
vated HDAC4 in heart disease.

Materials and methods

Generation of cardiac specific active HDAC4 mice
Creation of the mice carried out in Boston University
transgenic core facility. A ¢cDNA encoding an activated
HDAC4 was cloned into an expression vector encoding
alpha-myosine heavy chain (the a-MHC promoter,
5.4 kb), a cardiomyocyte-specific promoter at the mul-
tiple cloning site. After ligation, the construct was puri-
fied and verified by restriction enzyme digestion and
sequencing. Transgenic mice were generated by micro-
injection of the a-MHC-HDAC4 DNA construct into
fertilized FVB/n mouse eggs F; eggs. Founder mice and
transgenic expression of HDAC4 were identified by
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analysis of genomic DNA with primer A (5-CCTC
GTTCCAGCTGTGGT-3); a sense primer specific to
MHC promoter exon 2) and antisense primer B
(5-AGCGCCAGGAGCTCCTGCTGC-3);  specific to
HDAC4 cDNA. The protocol for the animal experiments
in this study was approved by IACUC, which is fully in
agreement with the guidance for the Care and Use of
Laboratory Animals published by the US National Insti-
tutes of Health.

Reagents and antibodies

Trichostatin A, 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyl-
tetrazolium bromide (MTT) and 4,6-Diamidino-2-pheny-
lindole (DAPI) were obtained from Life Technologies
(Grand Island, NY). Primary antibodies including HDAC4
rabbit polyclonal and B-actin antibodies (Cell Signaling ™™
(Beverly, MA), and primary active caspase 3 were pur-
chased from Abcam (Cambridge, MA). SOD-1 and LC3
poly clonal primary antibodies was purchased from Santa
Cruz biotechnology (Dallas, Texas). All chemicals for per-
fused hearts were purchased from Aldrich-Sigma (St. Louis,
Missouri).

Langendorff isolated heart perfusion and functional
measurement

The methodologies of Langendorff perfused system, ven-
tricular function detection, and infarct size measurement
has been described previously (Zhao et al. 2007). Briefly,
adult male mice were anesthetized with a lethal intraper-
itoneal injection (i.p.) of sodium pentobarbital (120 mg/
kg). The hearts were rapidly isolated and kept in ice-cold
Krebs-Henseleit buffer. The isolated hearts were then
cannulated through the ascending aorta in the isovolu-
metrically perfused system (Langendorff method) for
retrograde perfusion using oxygenated Krebs-Henseleit
buffer. They were then cannulated via the ascending
aorta for retrograde perfusion by the Langendorff
method using Krebs-Henseleit buffer containing
2.5 mmol/L of CaCl,2H,O. During the course of the
retrograde perfusion, Krebs-Henseleit buffer was con-
tinuously aerated with 95%0,:5%CO, to maintain the
value of pH of Krebs-Henseleit buffer at 7.4. The
Langendorff system was maintained at 37 °C, and the
perfusion pressure was adjusted at a constant pressure
of 55 mmHg. A water-filled latex balloon, attached to
the tip of polyethylene tubing, was then inflated suffi-
ciently to provide a left ventricular end-diastolic pres-
sure (LVEDP) of about 10 mmHg. Left ventricular
function was assessed by inserting a water-filled latex bal-
loon into the left ventricle, which was connected to a pres-
sure transducer and recorded through Power Lab recording
system (ADInstruments, Bella Vista, AUSTRALIA). Ven-
tricular functional parameters were measured, which
include left ventricular end-diastolic pressure (LVEDP), left
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ventricular systolic pressure (LVSP), left ventricular devel-
oped pressure (LVDP), rate pressure product (RPP), heart
rate (HR), and coronary flow (CF).

Experimental protocol for myocardial I/R injury

Mice about 2 month old were randomized into four
experimental groups that underwent the following treat-
ments, as shown in the experimental protocol. Control
wild-type and a-MHC-HDAC4 mice were subjected to
30 min of stabilization and 30 min of ischemia followed
by 30 min of reperfusion. To examine the contribution
of HDAC4 to cardioprotection elicited by HDAC inhib-
ition, we treated animals with HDAC inhibitor to deter-
mine whether HDAC inhibitor was able to attenuate the
detrimental effects of HDAC4 over-expression in the
heart. We utilized an established preconditioning proto-
col. Control wild-type and a-MHC-HDAC4 mice were
treated (i.p. injection) with TSA 24 h before ischemia.
Animals were divided into two additional groups: TSA +
Wild type mice (n=>5), Wild type mice were injected
with TSA (0.1 mg/kg ip); TSA + a-MHC-HDAC4 mice
(n=5), a-MHC-HDAC4 mice were injected with TSA
(0.1 mg/kg ip). Twenty-four hours later, the hearts were
subjected to 30 min of ischemia followed by 30 min of
reperfusion.

Measurement of myocardial infarction

Tetrazolium chloride (TTC) staining was employed to
detect infarct size. After Langendorff perfusion, the
hearts were then frozen in the refrigerator for a short
period. Then, the frozen hearts were cut from apex to
base into 1 mm thick slices. These slices were then
placed in 10% TTC for 20 min. The cardiac sections
were fixed in paraformaldehyde (4%) for photography.
NIH Image] software was utilized to measure the area of
viable and dead portion of tissues. The infarct size of
each heart was determined and shown as the percentage
of risk area, defined as the sum of total ventricular area
minus cavities (Zhao et al. 2007).

Echocardiographic measurement of cardiac function

Cardiac functions of wild type and a-MHC-HDAC4 trans-
genic mice were assessed using echocardiographic mea-
surements. Ventricular parameters include left ventricular
internal dimension in end and systole (LVID;d and
LVID;s); fractional shortening (FS) and ejection fraction
(EF), which were described previously (Zhang et al. 2017).

Electrophoresis and western blot analysis

Protein extraction and western blot for analysis of protein
expression were conducted as described as before (Zhao
et al. 2007). In brief, myocardial tissues were isolated and
then homogenized in cold lysis buffer containing protease
inhibitor cocktails (Calbiochem, Billerica, MA). The
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protein lysates were subjected to centrifugation at
12,000 g at 4 °C for 15 min. The supernatant of these sam-
ples were then collected, and the protein concentration of
the samples were determined using a Micro BCA Assay
Kit (Thermo Scientific, Rockford, IL). The samples (50 pg/
per lane) were loaded and run on SDS polyacrylamide gels
at a constant voltage 100 V and transferred to polyvinyli-
dene difluoride membrane at 24 V (PVDF). The PVDF
was blocked in non-fat dry milk (5%) at room temperature
for 1 h followed by incubation with individual primary
antibodies, their respective polyclonal antibodies. Protein
signals were then visualized by incubation with anti-rabbit
horseradish peroxidase-conjugated secondary antibody
and developed with ECL Chemiluminescence detection
reagent (Amersham Pharmacia Biotech).

Immunohistochemistry

The cardiac tissues were fixed with buffered paraffin and
then embedded samples were cut into 10 um-thick sec-
tions. Tissue sections were de-paraffinized in xylene and
then rehydrated at decreasing concentrations of ethanol,
which was described in our previous protocol (Zhang
et al. 2012a). Active caspase 3 was used to assess for
apoptotic signals in the heart. LC-3 was used to deter-
mine the signal of autophagy in myocardium. Positive
signals in term of active caspase 3 and LC-3 from car-
diac sections were counted from 3 to 5 randomized
fields. A detailed methodology of immunostaining for
detection of active caspase-3 and LC3 was carried out as
described in our previous protocol (Zhang et al. 2012a).

Measurement of HDAC activity

Measurement of cardiac HDAC activity was carried out
by using by using a colorimetric HDAC activity assay kit
(BioVision, Mountain View, CA).

Statistical analysis

All data, including ventricular function, infarct size, pro-
tein density, and immunostaining signals are expressed
as mean + SE. Differences among the groups were ana-
lyzed by one-way analysis of variance (ANOVA) followed
by Bonferroni correction. Student’s unpaired ¢ test was
conducted to compare the difference between groups.
p<0.05 was considered to be a significant difference
between groups.

Results

Characterization of cardiac-specific HDAC4 mice

The HDAC4 proteins in the heart from MHC-HDAC4
levels were significantly higher than that of control wild
type. In adult 2-month old mice, there was no differ-
ences in HDAC4 on other organs (Fig. 1a). The HDAC4
protein was increased in MHC-HDAC4 mice as com-
pared to wild type (Fig. 1b). There is no difference in
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Fig. 1 Generation and characterization of cardiac myocyte-specific HDAC4 transgenic mice. a HDAC4 over-expression in a-MHC-HDAC4 mice and
wild type mice; b Densitometric analysis of HDAC4 proteins from the heart; ¢ HDAC4 proteins in heart and other organs in wild type mice (scale bar =
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Fig. 2 Myocardial function of a-MHC-HDAC4 mice and wild type littermates. a Echocardiographic measurements of cardiac function from o-MHC-HDAC4
mice and wild type mice. Values represent mean + SE (n = 5/per group). EF: Ejection fraction; FS: Fractional shortening; LVID: left ventricle internal diameter;
b Representative image of M-Mode of echocardiographic measurements
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HDAC4 proteins in the other organs wild type mice
(Fig. 1c). There is no obvious abnormality except for
heart size at whole organ level (Fig. 1d). There were no
significant difference cardiomyocytes and the heart
weight-body weight ratio between MHC-HDAC and
wild-type mice at two-month-old age, which is consistent
with the myocyte sizes detected by WGA (Fig. le—g).
HDAC4 activity was also increased in MHC-HDAC4-Tg
mice as compared to wild type mice (Fig. 1h). Echocardio-
graphic measurements show no differences in cardiac
function as indicated by LVIDs, LVIDd, EF, and ES at
two-month of age between wild type and MHC-HDAC4
mice (Fig. 2).

Baseline ventricular functions prior to I/R

Baseline functional parameters, including left ventricular
developed pressure (LVDP), LV-dP/dt max LV-dP/dt
min, heart rate, and coronary effluent were recorded
among control wild type and HDAC4 transgenic mice
before subjection to I/R. The experimental protocol for
I/R was shown in Fig. 3. As shown in Table 1, there were
no significant differences among the groups before
ischemia.

Infarct size

Myocardial infarct size, an index of irreversible myocar-
dial injury, was measured. As shown in Fig. 4a, the in-
farct size following I/R in a-MHC-HDAC4 transgenic
mice was (43.6 + 0.6%) as compared with the wild type
mice (28.6 + 3.1%); the representative images are shown
as Fig. 4b. This suggests that activation of HDAC4 in-
creased infarct size in response to ischemia and reperfu-
sion injury. However, following TSA treatment, the
infarct size in a-MHC-HDAC4 transgenic mice group
was reduced as compared to a-MHC-HDAC4 transgenic
mice in absence of TSA treatment. The magnitude of in-
farct size in TSA-treated a-MHC-HDAC4 transgenic
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mice is still larger than that of TSA-treated wild type
mice. The data suggest that HDAC4 overexpression in
the heart increased myocardial infarct size. It also indi-
cates that the increase in the infarct size in
a-MHC-HDACH4 transgenic mice was blocked by inhib-
ition of HDAC4 activity.

Ventricular function recoveries following I/R
As shown in Fig. 5, left ventricular functional recovery de-
clined dramatically as compared with baseline. However,
as compared with the wild-type control, the post-ischemic
LVEDP demonstrated a remarked elevation in
MHC-HDAC4 mice (p<0.05 vs Wild type), which was
also accompanied with the reduction of RPP recovery
MHC-HDAC4 at both 15 min (Fig. 5a) and 30 min
(Fig. 5b) of reperfusion. The coronary effluent and heart
rate demonstrated a slight decline as compared to
pre-ischemic stage, but showed no difference following I/
R between wild type and MHC-HDAC4 mice (Table 1).
We investigated whether, TSA, an HDAC inhibitor, could
target HDAC4 to attenuate the depression of ventricular
functional recoveries following I/R in MHC-HDAC4 mice.
We delivered trichostatin A at a dose of 0.1 mg/kg, which
has been shown to be protective in I/R injury, to both
wild-type and MHC-HDAC4 mice. TSA treatment blocked
the depression of the recovery of left ventricular functional
recovery in MHC-HDAC4 mice (Fig. 5a and b). Thus,
HDACH4 overexpression exacerbates myocardial I/R injury,
and this process is attenuated by therapeutic delivery of
chemical HDAC4 inhibitor.

Signaling mechanism of HDAC4 overexpression increased
I/R injury

It was noticed that the HDAC inhibition-induced reduction
in cell death was correlated with the suppression in autoph-
agy (Cao et al. 2011). Autophagy was evaluated by western
blot detection of the autophagosome associated lipidated
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Fig. 3 The experimental protocol for myocardial I/R. Wt: wild-type, TSA: trichostatin A; I/R: ischemia/reperfusion
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Table 1 Baseline ventricular function in Langendorff hearts
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Groups LVDP mmHg LV-dP/dt max mmHg/s LV-dP/dt min mmHg/s CF ml/min Heart rate bmp
WT 80 £ 10 2563 + 337 2773 + 437 3603 392 + 38
MHC-HDAC4 106 + 15 2757 £ 417 2843 + 2521 28 £ 04 368 + 28
TSA+WT 115+ 6 3126 + 168 3066 + 82 38£05 349 £ 29
TSA+ a-MHC-HDAC4 94 £8 3394 + 258 3237 £ 180 3603 380 = 34

LVDP Left ventricular develped pressure, CF coronary effluent, TSA trichostatin A

No significant differences were found between the experimental groups for any of the functional parameters (n = 4-5/per group)

isoform LC3 (LC3-II). The LC3-II level, relative to autoph-
agy abundance, was detected in the ischemic heart of wild
type mice, but overexpression of HDAC4 resulted in a sig-
nificant increase in LC3-II in the heart (Fig. 6a and b), but
this increased LC3-II was attenuated by treatment of TSA.
Furthermore, activation of HDAC4 also increased
active-caspase 3 and decreased SOD-1 signals (Fig. 6a
and b). TSA treatment attenuated the effect of HDAC4 on
active caspase 3 and SOD-1 levels in the heart. The immu-
nostaining was also confirmed by an increase in caspase-3
positive nuclei in the HDAC4-Tg heart (Fig. 7a and b).

HDAC inhibition attenuated myocardial infarction in pig
I/R model

As shown in Additional file 1: Figure Sla, there was no
significant difference in the ratio of risk area/left
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Fig. 4 Myocardial infarct sizes in wild type and a-MHC-HDAC4 mice
in response to I/R injury. a Myocardial infarction in wild type littermates
and a-MHC-HDAC4 mice. b Representative image of infarct size. At the
end of the experimental protocol as described in Methods, the hearts
were sliced into 4-5 sections and stained with 2,3 5-triphenyltetrazolium
chloride followed by fixation in formalin. Viable areas are stained brick
red, whereas infarcted areas are gray or white. Values represent mean +
SE (n = 5/per group). *p < 0.05 vs wild-type mice *p < 0.05 vs wild-type
mice + TSA and a-MHC-HDAC4 mice

ventricular area between control and TSA-treated
groups. In contrast, as compared to the control group,
TSA-treated group demonstrated a marked reduction in
the ratio of infarct/risk area. Likewise, TSA treatment also
manifested a significant reduction in infarct/left ventricular
area. The representative histologic images are presented in
Additional file 1: Figure S1b. The a-MHC-HDAC4 mice
and wild type mice e results indicate that HDAC inhibition
reduced myocardial infarction in the hearts exposed to I/R

injury.

Discussion

Salient findings

In this study, we demonstrated that: 1) This is the first
study to identify that overexpression of activated HDAC4,
a major class II HDAC isoform in the heart exacerbates
myocardial I/R injury, as indicated by the increase in
infarct size and the reduction of myocardial function; 2)
Over-expression of HDAC4-induced I/R injury was attenu-
ated by delivery of HDAC inhibitor, TSA; 3) Furthermore,
activated HDAC4 promoted I/R injury was associated with
increased in autophagy, apoptosis and decreased SOD-1.
These findings indicate that cardiac-specific activated
HDAC4 reduces myocardial function and increases cardiac
injury following I/R, which is associated with increased
autophagy and apoptosis.

The roles of class II HDACs in cardiac development
and hypertrophy were assessed in previous observations
(Antos et al. 2003; Kee et al. 2006; Kong et al. 2006;
Haberland et al. 2009; Granger et al. 2008). Class II
HDAC4 only demonstrated a minimal enzymatic activity
or lacked the activation in physiological condition. Im-
portantly, cardiac injury or pathological stress resulted
in enzymatic activation of HDAC4, suggesting that acti-
vated HDAC4 is more important for developing injury
and serves as an effective target for potential therapy. In
the present study, we created a cardiac-specific HDAC4
mouse model to provide the genetic and physiological
evidence of HDAC4 in myocardial I/R. Our results indi-
cated that specific activation of HDAC4 promotes myo-
cardial injuries in the heart exposed to I/R, revealing
that activated HDAC4 is crucial to modulate I/R injury.
Previous reports indicated that the deletion of regular
HDAC4 displayed premature ossification of developing
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Fig. 7 Immunostaining detecting active caspase-3 in myocardium. a Immunostaining showing the increase of active caspase-3 positive signals in
HDAC4-Tg mice vs wild type littermates. b Percentage of active caspase-3 positive nuclei in the myocardium following I/R. Values represent mean + SE
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premature bone and early onset chondrocyte hyper-
trophy (Zhang et al. 2012c¢). In addition, over-expression
of HDAC2 had augmented hypertrophy, but HDAC2
deficiency prevented attenuated cardiac hypertrophy
(Trivedi et al. 2007). Likewise, transgenic mice with mu-
tant HDAC4 displayed greater left ventricular hyper-
trophy and a larger cross-sectional area of LV myocytes
(Ago et al. 2008). Even though all of these studies points
out the importance of HDACs in contribution to cardiac
failure and development. There is no information to de-
fine the role of activated HDAC4 in in mediating cardiac
ischemia and reperfusion injury.

HDAC inhibitors were tested in many disease models
to achieve their therapeutic effects by antagonize enzym-
atic activity of various HDACs. Our previous works and
other observations have demonstrated that HDAC inhib-
itors elicited cardioprotective effects against myocardial
ischemic injury (Zhao et al. 2007; Zhang et al. 2012a;
Zhang et al. 2012b; Zhang et al. 2010; Chen et al. 2011).
Although HDAC inhibitors were largely included to
investigate the function of HDAC4 in various patho-
logical models, however, non-specific effects of HDAC
inhibitor demonstrated the limitation of assessing the
role of specific HDAC isoforms. In our previous study,
HDAC inhibitor (TSA) caused the degradation of
HDAC4 in addition to the inhibition of HDAC activity.
It is likely that the magnitude of HDAC4 content in
HDAC4-Tg mice could be reduced due to the degrad-
ation of HDAC4. Therefore, we sought to include tri-
chostatin A to see whether the physiological function of
cardiac HDAC4 would be affected in response to ische-
mia and reperfusion injury. We also used the same dose

of TSA in wild type mice, which is consistent with our pre-
vious report showing that HDAC inhibitor demonstrated
protective effects in wild type mice (Zhao et al. 2007). In
this observation, delivery of HDAC inhibitor effectively
blocked the deleterious effect of HDAC4 in I/R injury,
revealing the importance of activated HDAC4 in contribut-
ing to I/R injury. This is supported by our previous studies
in which cultured cardiomyocyte infected with HDAC4
increased hypoxic-induced cell damage, and trichostatin A
antagonized the detrimental effect of HDAC4 in associ-
ation with the reduction of HDAC4 (Du et al. 2015). Fur-
thermore, HDAC4 was up-regulated in response to
oxidant stress, and suppression of HDAC4 promoted
embryonic stem cell-derived myogenesis and survival
(Chen et al. 2011), implying that HDAC4 inhibition may
function as a critical HDAC isoform attributable for the
cardiac protective effect. More interestingly, we proceeded
to define whether trichostatin A treatment could induce
myocardial protection using a large animal model. Our
results suggested that inhibition of HDAC protects the
heart against ischemia/reperfusion injury in pig, as indi-
cated by the reduction of myocardial infarct size. The find-
ing provides a strong evidence demonstrating that HDAC
inhibitor holds promise in developing a potential thera-
peutic strategy holding clinical implications in the future.

Signaling pathway involving activated HDAC4-induced I/R
injury

It was noticed that the HDAC inhibition-induced reduc-
tion in cell death was correlated with the suppression in
autophagy (Cao et al. 2011). This change in autophagic
activity was thought to be linked with a variety of
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pathological conditions and recognized to be involved in
ischemia and reperfusion injury. Interestingly, a previous
report indicated that HDAC inhibition attenuated cardiac
hypertrophy in association with the suppression of au-
tophagy, establishing a correlation between HDAC and in-
duction of autophagy in response to cardiac hypertrophy
(Cao et al. 2011). In agreement with this observation, our
finding indicates that overexpression of HDAC4 resulted
in an increase in autophagy, which was also attenuated by
TSA treatment. In addition, myocardial ischemia and re-
perfusion injury demonstrates an over-expression of
HDAC4 in the heart caused by the reduction in
anti-oxidant enzymes (SOD) and increase in apoptosis
(Wang et al. 2017), which were prevented by TSA treat-
ment. Our results indicate that the specific activation of
HDAC4 promotes myocardial injuries in the heart ex-
posed to I/R, which is associated with reduction of SOD-1
and increased apoptosis. It is also interesting to see the ef-
fects of TSA on other class II HDACs in HDAC4 overex-
pression mice in response to I/R injury in the future.

Conclusion

Our study provides direct evidence that active HDAC4 in
the heart is crucial to promote myocardial I/R injury, and
HDAC4-induced I/R injury can be attenuated by delivery of
HDAC inhibitor. Furthermore, activated HDAC4-elicited
cardiac injury was associated the increased autophagy,
apoptosis and decreased SOD-1. Importantly, the studies
provide new insight into understanding the molecular
mechanism of active HDAC4 in I/R injury and hold prom-
ise in developing new therapeutic strategies to target active
HDACH4.

Additional file

Additional file 1: Figure S1. HDAC inhibition reduced myocardial infarct
size in myocardial ischemia and reperfusion in pig. (TIF 3568 kb)
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