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Abstract

Background: Recent identification of 10 germline variants predisposing to monoclonal gammopathy of
undetermined significance (MGUS) explicates genetic dependency of this asymptomatic precursor condition with
multiple myeloma (MM). Yet much of genetic burden as well as functional links remain unexplained. We propose a
workflow to expand the search for susceptibility loci with genome-wide interaction and for subsequent
identification of genetic clusters and pathways.

Methods: Polygenic interaction analysis on 243 cases/1285 controls identified 14 paired risk loci belonging to
unique chromosomal bands which were then replicated in two independent sets (case only study, 82 individuals;
case/control study 236 cases/ 2484 controls). Further investigation on gene-set enrichment, regulatory pathway and
genetic network was carried out with stand-alone in silico tools separately for both interaction and genome-wide
association study-detected risk loci.

Results: Intronic-PREX1 (20q13.13), a reported locus predisposing to MM was confirmed to have contribution to
excess MGUS risk in interaction with SETBP1, a well-established candidate predisposing to myeloid malignancies.
Pathway enrichment showed B cell receptor signaling pathway (P < 5.3 × 10− 3) downstream to allograft rejection
pathway (P < 5.6 × 10− 4) and autoimmune thyroid disease pathway (P < 9.3 × 10− 4) as well as epidermal growth factor
receptor regulation pathway (P < 2.4 × 10− 2) to be differentially regulated. Oncogene ALK and CDH2 were also
identified to be moderately interacting with rs10251201 and rs16966921, two previously reported risk loci for MGUS.

Conclusions: We described novel pathways and variants potentially causal for MGUS. The methodology thus proposed
to facilitate our search streamlines risk locus-based interaction, genetic network and pathway enrichment analyses.
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Background
Monoclonal gammopathy of undetermined significance
(MGUS) is a premalignant phase of multiple myeloma
(MM) and the most common plasma cell dyscrasia
present in as high as 3.2% of general population below
50 years of age and up to 5.3% for population aged
70 years or older (Kyle et al. 2018). At an approximate
annual rate of 1% MGUS progresses to MM, lympho-
plasmacytic lymphoma/ Waldenström macroglobuline-
mia or amyloid light chain amyloidosis (AL amyloidosis)
(Kyle et al. 2006; Dispenzieri et al. 2010). Apart from the
knowledge of familial clustering from population studies,
there has not been much development in deciphering
the genetic architecture of MGUS (Greenberg et al.
2012; Frank et al. 2016; Landgren et al. 2009). Of late, 17
risk loci have been found predisposing to MM among
which 9 are supposed to share association with MGUS
(Mitchell et al. 2016; Thomsen et al. 2017; Weinhold
et al. 2014; Greenberg et al. 2013).
A GWAS from our group on 243 German individuals

with MGUS has recently discovered 10 susceptibility loci
with varying degree of significance (Thomsen et al.
2017). GWAS on a genetic heterogeneous disorder such
as MGUS would possibly be subject to ‘missing herit-
ability’ which asserts, an association study can account
for merely a small proportion of true causal genetic vari-
ations due to low detection power (Manolio et al. 2009).
Linear interactions on paired single nucleotide polymor-
phisms (SNPs) can thus be used to inflate genomic reso-
lution of test space and find novel risk locus pairs which
otherwise would remain undetected. In a case/control
approach statistical interaction models explain extra
additive effects due to co-occurrences of two variants on
top of the fixed effects (Cordell 2009). We use an un-
biased statistic with high convergence rate, and observe
increased detection power for genome-wide interacting
pairs (Wellek and Ziegler 2009). Gene-set enrichment
along with genome-wide pathway analysis that measures
association of a phenotype to a predefined genetic clus-
ter has become rather common in extending biological
understanding of differentially regulated pathways affect-
ing quantitative traits and phenotype variation (Rama-
nan et al. 2012; Khatri et al. 2012). This approach of
mapping cancer susceptibility regions and detection of
novel pathways in site-specific cancers has opened
opportunities to new therapeutic approaches (Yi et al.
2017; Lee and Gyu Song 2015). Here we report a case/
control interaction study on a discovery population of
243 MGUS cases and 1285 controls. The findings are
subsequently supported by a case-only interaction study
on 82 cases and finally confirmed with case/control
interaction analysis on another population of 236 cases
and 2484 controls. We pursue pathway enrichment ana-
lysis on a subsequent stage, based on both our current

interaction study and the previous GWAS. To this end
we use three in silico tools to discover novel pathways,
corresponding genetic loci and clusters predisposing to
MGUS taking into account significance of previously
detected risk loci.

Methods
Ethics
Collection of samples and clinicopathological informa-
tion from subjects was undertaken with the relevant
ethical board approvals in accordance with the tenets of
the Declaration of Helsinki. All subjects provided written
informed consent. Ethical approval was obtained from
Ethics committee of medicine faculty, University of Hei-
delberg, Heidelberg, Germany.

Datasets
The University Clinic of Heidelberg and the University
Clinic Ulm discovered 243 MGUS cases among which
114 (47%) were males with a mean age at diagnosis of
62 years, SD ± 11 years. The Ig isotype distribution was
72% IgG, 12% IgA, and 16% other Ig isotypes (Thomsen
et al. 2017; Weinhold et al. 2014). These MGUS cases
were identified during diagnostic work-up of a different
unrelated disease. Out of the 243 cases, two developed
MM within 3 years after sampling and 46 individuals
were seen only at the time of sampling. IgM MGUS
cases were excluded from the Heidelberg/Ulm cohort.
For replication, 236/82 MGUS patients were identified
for case-control/case-only replication in Essen within
the Heinz -Nixdorf Recall (HNR) study (Schmermund et
al. 2002). About 61% of the replication set were males
with the mean age at diagnosis of 64 years, SD ± 9 years.
Detection of MGUS was based on internationally
accepted criteria (Criteria for the classification of mono-
clonal gammopathies 2003): monoclonal protein concen-
tration less than 30 g/l, less than 10% monoclonal
plasma cells in bone marrow, normal plasma calcium
and kidney function and no bone destruction or anemia.
The reference population for the Heidelberg/Ulm set
consisted of 1285 German individuals from the HNR
study of whom 59% were males with a mean age at
sampling of 60 years, SD ± 8 years (Schmermund et al.
2002). The reference population for the Essen set was
also recruited within the HNR study, adding up to 2484
individuals, not overlapping with the reference popula-
tion for the Heidelberg set.
Illumina HumanOmniExpress-12v1.1 chip arrays were

used for genotyping the Heidelberg/Ulm MGUS set and
the corresponding control set was genotyped using the
Illumina HumanOmniExpress-12v.1.0 chip array (Schmer-
mund et al. 2002). The Essen set was genotyped using six
different chips: 365 (15 cases, 350 controls) were geno-
typed on Illumina HumanCoreExome-12v1–1 chip arrays,
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1491 (82 cases, 1409 controls) on Illumina HumanCore
Exome-12 v1–0 chip arrays, 133 (119 cases, 14 controls)
on Illumina Human660W Quad_v1 chip arrays, 811 (45
cases, 766 controls) on Illumina Human Omni-Quad V.1
chip arrays and 1385 (82 cases, 1303 controls) on Illumina
HumanOmniExpress-12v.1.0 chip arrays (Additional file 1).
The amount of overlaps among the SNPs genotyped is
reported in Additional file 2. Quality control assessment
for genotyping has previously been described and all
variants and samples considered for the final analysis
passed the predefined thresholds (Broderick et al. 2011;
Chubb et al. 2013).

Quality control of GWAS samples
We excluded SNPs with less than 1% minor allele fre-
quency, and also if the call rate was less than 99% in
cases and controls. Genotype distribution in controls
was tested for Hardy-Weinberg equilibrium with a χ2
test with 1 degree of freedom or Fisher’s exact test and
SNPs with P value lower than 10− 5 was removed. This
stringent quality control filtering produced 489,555
autosomal SNPs from Heidelberg/Ulm GWAS set for
further analysis common to all of the 243 cases and
1285 controls and also 82 HNR samples (cases) genotyped
on the same array. Application of similar quality control
protocol rendered 195,490 autosomal SNPs present in 236
cases and 2484 controls of Essen GWAS set.

Statistical and bioinformatics analysis
Genome-wide case-control interaction analysis with CASSI
and INTERSNP
Statistical analyses were performed with R version 3.3.1,
CASSI version 3, and INTERSNP v1.15 (Table 1). All
pairwise combinations of post-quality controlled selected
SNPs from Heidelberg/Ulm GWAS were tested for
interactions on genome-wide scale. The interaction term
of a pairwise fixed effects logistic regression model
involving binary regressors may be interpreted to be the
ratio of the odds ratios of association between alleles in
cases to the odds ratios of association between alleles in
controls. Hence the odds ratio of association between

alleles in cases will be equal to that of the population
interaction odds ratio given the odds ratio of association
between alleles in controls are equal to 1. Epistasis en-
forces a logistic regression with linearity assumption
among the fixed single marker effects and interaction ef-
fect of the two markers (Karkkainen et al. 2015; Purcell
et al. 2007). This includes all 489,555 SNPs and approxi-
mately N = 1.2 × 1011 interactions. However, linkage dis-
equilibrium (LD) among the SNPs, if not taken into
account in argument space, possibly renders a large por-
tion of tests redundant which destabilizes the test statis-
tic. To avoid this deflation of test power, we employed
Wellek-Ziegler statistic which promises high variance
stability and unbiased estimate on the condition of
Hardy-Weinberg equilibrium conformity (Wellek and
Ziegler 2009). CASSI Genome-Wide Interaction Ana-
lysis software is used to this end and we benefit from the
computational efficiency thus achieved. Interaction test
in CASSI (−wz) was applied with default initial pruning
on single marker association P value at 10− 3 level of sig-
nificance which decreases the computational burden
(Ueki and Cordell 2012). This step selected 2.8 × 107SNP
pairs to be tested for interaction. For replication of inter-
actions in the discovery set, reanalysis with full
log-linear model was obtained with INTERSNP which
selects a user-predefined number of top single marker
hits as candidate SNPs for subsequent interaction tests.
On a predefined level of 5000 selections, INTERSNP
produced approximately N = 1.25 × 107 variant pairs
(Herold et al. 2009).

Case-only analysis with CASSI
We chose the additional smaller cohort of 82 individuals
with MGUS for a validation study and adopt a case-only
approach. Case-only approach in SNP – SNP interaction
studies answers the question of association (or correl-
ation) between alleles of two loci irrespective of pheno-
typic categorization. Assuming the general population
(control group) is devoid of any correlation between the
specific loci, the case-only approach ensures evidence of
gene-gene functional pair interactions with higher power

Table 1 Overview of tools and different subsequent protocols in use. Study designs enlist three stages of analysis

Tool
in use

Statistic
used

Statistical model
in use

Default pre-selection
criteria for interaction
test

Study
design

No. of
tests
performed

Bonferroni adjusted
genome-wide level
of significance (< 1% FDR)

No. of risk
loci pairs
discovered

CASSI Wellek-Zeigler
statistic

Logistic regression;
fixed effects weighted
model

Single marker test
P value < 10−3

Discovery
study

2.8 × 107 5 × 10− 10 561

Follow up
study

4.4 × 105 5 × 10−10 352

Replication
study

8.2 × 106 5 × 10−10 23

INTERSNP Chi square
statistic

Full log-linear model Top 5000 variants
of single marker test

Discovery
study

1.25 × 107 8 × 10−10 none

FDR false discovery rate
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in detection due to reduced number of multiple testing.
As the risk loci are tested against each other rather than
a reference set, allelic co-occurrence indicates bi-allelic
interaction jointly predisposing phenotype changes (Ueki
and Cordell 2012). However, case-only approach makes
a quite strong assumption of no apparent genetic correl-
ation among controls which is difficult to justify under
the effects of LD which calls for cautious investigation of
the results which further needs to be tested against a
control population as reference to avoid misinterpret-
ation due to the assumption. Case-only interaction test
with CASSI with Wellek-Ziegler statistics (−wz-cc-only)
on post quality-controlled SNPs rendered transformed
Fisher’s Z statistics on 4.4 × 105 out of a total of 1.2 ×
1011 interaction pairs. We re-observed 31 genome-wide
significant pairs from the discovery set. The number of
overlaps detected between the two tested interaction
population sets with high power extracted from the
case-only set ensured viability of the replication GWAS
data being used for replication (Wu et al. 2010).

Case-control replication study with CASSI
The Essen GWAS data consisting of 236 cases and 2484
controls was chosen for the case-control replication of
the results obtained. The interaction tests for replication
were performed similarly as explained before using
Wellek-Ziegler statistic. Approximately N = 8.2 × 106

tests were performed among the 195,490 SNPs after
application of initial quality control. Among the
quality-controlled SNPs from the Essen GWAS, we
observed 188,198 overlaps with that of the Heidelberg/
Ulm discovery GWAS. With approximately 35% cross
table commonality we do not expect to see chance
findings overlapping with high significance which takes
care of the ‘winner’s curse’ (Shi et al. 2016; Poirier et al.
2015; Jiang and Yu 2016).

Network analysis with STRING
Two-locus epistasis evidence is verified by network
construction with the in silico tool STRING. It is a
web-based data repository dedicated to protein-protein
interactions among 2.5 million proteins among 630
organisms including mammalians (version 8.0) (Jensen
et al. 2009). Scores for each of the interacting protein
pair is computed with combined scores integrating
discovery probabilities from different sources adjusting
for arbitrary false positives. Subsequently pathway en-
richment is performed with the background repository
for the interaction identified loci.

Gene prioritization and pathway analysis of the MGUS
GWAS
Due to LD, causal regulatory elements often remain
unidentified in genome-wide association studies. To gain

biological insight, pathway analysis via gene-set enrich-
ment is traditionally carried out to integrate signals from
different sentinel variants and linked SNPs. We applied
three tools designed for biological interpretation of GWAS:
Pathway Scoring Algorithm (PASCAL), Data-driven Ex-
pression Prioritized Integration for Complex Traits (DE-
PICT) and Meta-Analysis Gene Set Enrichment of Variant
Associations (MAGENTA). PASCAL is a pathway analysis
tool developed for association summary statistics for
variants annotated to genes. PASCAL uses maximum of
chi-squares (MOCS) or sum of chi-squares (SOCS) statis-
tics with null distribution as Gamma with varying degrees
of freedom (Lamparter et al. 2016). Although pathway scor-
ing was performed using both MOCS and SOCS statistics,
the results were comparable and SOCS produced deflated
significance levels with similar order as of that by MOCS.
With empirical sampling and subsequent supervised
clustering according to the significance levels introduced by
single marker association tests, it utilizes the idea of gene
fusions i.e. clusters of correlated genes, for which the
variants are in LD. We performed gene set enrichment
analysis (GSEA) using single marker P values from our
published GWAS on MGUS and SNPs were mapped to
closest genes searched 20 kb upstream and downstream
from the gene. However, SNPs, corresponding to several
genes responsible for regulating a single pathway, if they
were in LD, were used to cluster the corresponding genes
as single genetic entities for the given pathway and were
called ‘gene fusions’. Kyoto encyclopedia of genes and
genomes (KEGG), REACTOME and BioCarta libraries
were used for pathway enrichment.
For further investigation of the distinguished path-

ways, we used DEPICT, a gene prioritization, tissue
enrichment and pathway analysis tool for biological
interpretation of GWASs distributed by Broad institute,
which employs Python shell script on a Java platform for
efficiency (Pers et al. 2015). This framework is built on
sophisticated predictive modeling employing guilt by
association on reconstituted gene sets to perform gene
prioritization and GSEA (van Rheenen et al. 2016). De-
pict derives enrichment analysis viability from 77,840
gene expression datasets. We used DEPICT’s gene set
knowledge base derived from Gene ontology (GO),
Ensembl, The Mammalian Phenotype (MP), KEGG and
REACTOME and followed analogous analyses.
Literature on pathway analysis with MAGENTA is

populous (Koster et al. 2014; Wang et al. 2012; Duncan et
al. 2014). We executed GSEA in MAGENTA from
MATLAB platform as a replication tool. For pathway ana-
lysis, single marker association P values and chromosomal
regions were annotated to genes corresponding to a
pre-existing chromosomal range and enrichment compu-
tation was applied on non-confounders (Segrè et al. 2010;
Shim et al. 2015). Pathway annotations were extracted in
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back end from GO, KEGG, Protein Analysis through Evo-
lutionary Relationships (PANTHER), BioCarta and REAC-
TOME databases. Across the three platforms thus used to
prioritize pathways, p values are pooled subject to a total
overlap and are combined using empirical Brown’s
method. Traditionally p values thus analyzed are assumed
to be dependent and thus the method applied provided a
conservative restriction. All additional analyses were per-
formed with R version 3.3.1.

Results
Genome-wide interaction analysis identifies 23 variant
pairs
Two machine level in silico tools, CASSI and INTERSNP
were employed to explore curated genome-wide inter-
action on a set of 243 German individuals diagnosed with
MGUS in a case-control design. Among the 489,555 geno-
typed post-quality control SNPs, a brute search algorithm
required 1.2 × 1011 tests at a whole-genome scale to per-
form a multivariate log-linear association test. However,
CASSI restricted the runs to approximately 2.8 × 107over-
all tests at the system-defined single marker association
test threshold of P = 10−3. As approximately 2.8 × 107 tests
were performed, Bonferroni corrected level of global
threshold of significance was determined to be 5 × 10−10

which restricts the family-wise error rate (FWER) at 1%
(Table 1). Selection of chance findings over significant var-
iants was thus avoided by applying Bonferroni correction
for multiple testing. At this empirically determined P < 5 ×
10−10, CASSI reported 561 significant variant pairs. The top
ranked interaction (rs12471071 [2q37] - rs1385453 [9p24])
from the discovery set had a Wellek-Zeigler (W-Z) P =
4.19 × 10−13 and a simple logistic regression P = 8.67 ×
10−11 (Additional file 3). Although the CASSI algorithm
detected several common variant SNP pairs to be
genome-wide significant, previous researches demonstrate
that such findings were often subject to false discovery.
Interaction tests in INTERSNP were employed accord-

ing to subjective pre-selection of the 5000 most signifi-
cantly associated SNPs from the single marker tests (P =
2.47 × 10−3) which restricted the number of tests per-
formed to an approximate 1.25 × 107 pairs. Subsequently,
693 unique interaction pairs were identified at 5 ×
10−5significance level where none of the observations
reached genome-wide threshold of approximate 8 ×
10−10 calculated taking Bonferroni correction into ac-
count on 99% confidence level. The top interaction was
found to be between rs10099120 and rs3738270 with P
= 9.05 × 10−8 and we note, rs10099120 is located in the
intronic region of RALYL and rs3738270 corresponds to
a missense mutation on IGFN1 (Additional file 4). Over-
all 52 common variant pairs were co-discovered for both
INTERSNP and CASSI.

A follow-up case-only analysis by CASSI on the 82
cases genotyped, rendered approximately 4.4 × 105 over-
all tests after initial single marker test shrinkage similar
to that described above. The most significant interaction
(rs4433825 [16p13] - rs2295179 [20p12]) showed a
case-only P = 3.35 × 10−24 against W-Z case-control P =
1.5 × 10−12. At 5 × 10−10 level we detected 352 variant
pairs replicated in the discovery set with varying levels
of significance (Additional file 5). The order of signifi-
cance observed in the follow-up analysis is consistent
with the literature of case-only studies bolstering higher
detection power due to the inherent mathematical
assumption although we decided not to interpret the re-
sults as evidence of functional relation between variants
due to the difference in number of overlapping SNP
pairs tested with the discovery set. As the single marker
pre-selection criteria prunes significant number of SNPs,
the observed overlaps are ensured to have presumably
higher individual fixed effects which is devoid of the
hypotheses (Ueki and Cordell 2012). Nonetheless it con-
firms viability of the case-control replication study with
a larger genetically overlapping sample(s).
Next, we evaluated W-Z interactions by CASSI in

the case-control replication set consisting 8.2 × 106

test pairs with an inflation factor of 1.0151
(Additional file 6). We were able to replicate 23 out
of all 561 genome-wide significant variant pairs of the
discovery set which are annotated to same chromo-
somal regions (Table 2, Fig. 1). The top interaction
was found among variants annotated to TNC and
CRYL1 corresponding to 9q33 and 13q12 (rs10118040
– rs7337130, W-Z P = 6.9 × 10−11 and rs1330368 –
rs7337231, W-Z P = 2.48 × 10−8, respectively). Among
the 23 replications, 14 were unique regions and there
were 5 regions with multiple unique interactions.
Interestingly, SETBP1 and PREX1 interaction at
18q12 and 20q13 were represented by 6 SNP-SNP
pairwise overlaps with LD coefficient of r2 < 0.2 be-
tween SNPs belonging to corresponding regions. The
locus at 20q13 has already been identified as a predis-
posing locus for MM and as an expression and
methylation quantitative trait locus at PREX1 without
affecting an active promoter site (Mitchell et al.
2016). SETBP1 is a well-established candidate gene
harboring somatic mutation in various myeloid malig-
nancies including secondary acute myeloid leukemia
(sAML) and chronic myelomonocytic leukemia
(CMML) (Makishima et al. 2013). Previously our
group had identified 10 common variant risk loci for
MGUS (Thomsen et al. 2017), among which two
SNPs showed noteworthy interactions in our analysis:
rs10251201 (7p21, GLCCI1) with rs1104869 (2p23,
ALK), W-Z P = 8.75 × 10−7 and rs16966921 (18q12,
GALNT1) with rs8092870 (18q12, CDH2), W-Z P =
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1.71 × 10−7. Although both the latter two SNPs are lo-
cated at 18q12, they are not in LD ( r2 < 0.2).

ErbB signaling and B cell receptor signaling are enriched
based on genetic network analysis
A partnership dependence structure of functional net-
work was constructed with the risk variants from the
final overlapping set subject to identifiable annotation
from the interaction analyses. Twenty-six such reconsti-
tuted genes were used as nodes which together with first
order interacting genes created scaffolding for further
enrichment analysis (Fig. 2). Thirty-six potentially differ-
entially regulated pathways were identified (Additional
file 7). Among them were 18 enriched pathways at 0.01
level of significance, with as many as 5 gene nodes
downstream to KEGG ErbB signaling pathway (P =
7.09 × 10−5) and 3 gene nodes downstream to KEGG B
cell receptor signaling pathway (P = 5.32 × 10−3) were
found to be the two most significant pathways.

GSEA and pathway analysis confirms enrichment of ErbB
cascade and detects pathways upstream to B cell
receptor signaling in the MGUS GWAS
Similar to genome wide-association and interaction
studies, pathway enrichment for MGUS is still unex-
plored in literature due to obvious limitations regarding
caveats in identification and inclusion of adequate MGUS
cases. We identified 65 enriched pathways at 95% confi-
dence (19 at 99%) employing PASCAL (Additional file 8).
For confirmation of our results we employed MAGENTA
on the same set and detected 111 functionally enriched
pathways significant at 95% level (22 at 99%) (Additional
file 9). Although 28 overlapping pathways between the
two algorithms used were discovered with a combined
corrected P < 0.025 (Additional file 10), we wanted to
extend our search introducing more detection power with
curated microarray data. Further gene set enrichment ana-
lysis (GSEA) and pathway enrichment with DEPICT iden-
tified 99 pathways at the suggestive threshold of 10−5 (4 at

Fig. 1 Interaction Analysis identifies 14 unique risk loci pairs. a Circos plot of genome-wide association and significant interaction results for the
identified paired risk loci. The second outer most panel displays results from genome-wide association study on a Manhattan plot for autosomal
variants on a log transformed scale (−log10) of 1 to 8.5. Negative log transformed interaction P values corresponding to each of the interaction
pair is calculated from log linear transformed regression on the discovery set and is represented on an adjusted inflated scale of 9.3 to 10.2 in the
second inner most panel. More than one unique variant pair combinations are present in the same interacting regions which are marked with
their corresponding odds in this panel. Genome-wide significant paired loci are line-joined in the inner most panel based on their chromosomal
positions (NCBI build 19 human genome). Annotations of single nucleotide polymorphisms to gene ids are displayed at the outer most panel. b
Forest plot with embedded confidence intervals for each of the identified interaction pairs. Each pair indicates two interacting chromosomal
locations with base pair information for the indexing loci. Paired variants annotated to the same indexing chromosomes are line joined. chr
chromosome, BP base pair; OR, odds ratio; CI, confidence interval
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genome-wide threshold of 5 × 10−8) (Additional file 11).
With a combined analysis throughout the three algo-
rithms, we observe 9 pathways with varying levels of sig-
nificance (Table 3). Among the overlapping pathways,
KEGG allograft rejection pathway (combined P = 1.60 ×
10−6) and KEGG autoimmune thyroid disease pathway

(combined P = 5.41 × 10−6), both related to B cell receptor
signaling pathway, were the two most significant ones.
Thus we determine that the B-cell receptor signaling path-
way and EGFR regulatory pathway are present in both the
interaction and genome-wide association study-oriented
pathway analyses with statistical significance.

Fig. 2 Genetic Interaction network. A network of 26 identified genes annotated to risk loci with added predicted genes in interaction. All nodes
represent first order interaction. Colored edges convey status of predicted network edge correspondingly cyan, curated database; magenta,
experimentally determined; forest green, gene neighborhood; red, gene fusion; navy blue, gene co-occurrence; lawn green, text mining; black,
co-expression; lavender indigo, protein homology. Node color signifies protein functionality. Additional nodes are considered based on prediction
score≥ 0.9 (for more details, refer to STRING data base)

Table 3 Combined results of gene set enrichment analysis from MAGENTA, PASCAL and DEPICT. Pathways are pooled from several
repositories which are enlisted with data base. P values from PASCAL, DEPICT and MAGENTA are corrected for multiple testing

PASCAL DEPICT MAGENTA

Data base Pathway P value P value P value *Combined P value

KEGG Allograft rejection 0.083 0.001 0.005 5.62E-04

KEGG Autoimmune thyroid disease 0.043 0.001 0.022 9.30E-04

KEGG Glycosaminoglycan biosynthesis keratan sulfate 0.008 0.171 0.036 9.89E-03

REACTOME Platelet aggregation plug formation 0.044 0.952 0.005 2.28E-02

REACTOME EGFR downregulation 0.776 0.951 0.003 2.45E-02

REACTOME Integrin cell surface interactions 0.16 0.396 0.011 4.51E-02

KEGG Dorso ventral axis formation 0.151 0.233 0.022 4.78E-02

REACTOME P130CAS linkage to MAPK signaling for integrins 0.035 0.988 0.032 4.85E-02

*Pooled p values are combined using empirical Brown’s method assuming dependency across test hypotheses
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Discussion
Here we investigated MGUS, the preliminary phase of
the lymphoproliferative neoplasm MM, assuming bio-
logical evidence of genetic burden to be spread across
the whole genome spectrum. Performing genome-wide
interaction analysis with case/control and case-only data
together with subsequent follow-ups, our design essen-
tially narrows down brute-force search to rather sizable
genomic regions. Extending from the methodology
developed by Ueki and colleagues for systematic imple-
mentation of Wellek – Zeigler statistics in interaction
tests (Ueki and Cordell 2012), we propose a workflow to
integrate statistical findings with biological knowledge
base. Streamlining detection of risk loci with enriched
protein-protein interacting networks to discover differ-
entially regulated novel pathways facilitates understand-
ing of disease mechanisms and congregates statistical
evidence with biologically interpretable information.
Rather than simple bi-allelic association estimated with

a dichotomous logistic model, we employed Pearson’s
product-moment correlation coefficient r2 for associ-
ation test. In simple linear association models, loss in
precision is surmountable subject to non-conformity to
Hardy-Weinberg equilibrium, especially while estimating
for variant pairs in high LD. Wellek and Zeigler estab-
lished genotype-based estimator of pearsonian r to be un-
biased and circumstantial loss in information for
unphased genotypes to be considerably lower than the
haplotype-based estimators (Wellek and Ziegler 2009).
Hence, we used genotype-based W-Z statistic, which em-
ploys a variance stabilizing Fisher’s z transformation and
produces robust estimates with high convergence rate.
Literature recognizes statistical interaction and func-

tional interaction among genes/proteins exclusively, as
the former stands for genetic association and the latter
signifies biological process dependency. Thus, translation
of statistical evidence to interpretable genetic functional
involvement is of utmost importance. Creating
node-based protein networks with STRING enabled us
to visualize statistical clusters of genes in inter-play
among the interacting genomic loci and observe the
enriched biological processes that confer to them relat-
ing small genetic hubs created by clusters of genes
specific to pathways. Consequently, we executed
gene-prioritization and enrichment analysis accumulat-
ing tests in the previously published MGUS GWAS data
from three different algorithms, PASCAL, MAGENTA
and DEPICT, that engage different repositories. Ob-
served overlaps therefore served as strong evidence
connecting interacting common variant loci to the path-
ways via genetic networks.
We detected KEGG allograft rejection (hsa05330) and

autoimmune thyroid disease (hsa05320) pathways with
highest combined power from all three GWAS enrichment

algorithms. Conspicuously B cell receptor signaling which
is enriched in our genetic network is also downstream to
both of the pathways. This pathway is shown to be
dependent on mitogen-activated protein kinase signaling
(MAPK), phosphatidylinositol-3 kinase and protein kinase
B signaling (PI3K-Akt), nuclear factor κB signaling (NF-κB)
and calcium signaling pathways. It is also dependent on
adhesion molecule induced mechanisms that mediate im-
mune tolerance in T cell receptor signaling cascade. Detec-
tion of ErbB signaling (hsa04012) in genetic network
enrichment is also supported by detection of EGFR down-
regulation pathway from our pathway analysis. We identi-
fied ErbB4 (HER4) to be a high-risk locus interacting with
15q22 and 9p23. ErbB4 is one of the four epidermal growth
factor receptor (EGFR) family members with tyrosine
kinase activity. In both cancerous and non-cancerous cells,
EGFR plays a crucial role in controlling key cellular path-
ways influencing cell proliferation, differentiation and devel-
opment through MAPK and PI3K/Akt pathways and
overexpression of which is associated to multiple cancer
types (Yarden and Sliwkowski 2001). PTPRD has been char-
acterized as a tumor suppressor gene in MM and a homo-
zygous deletion in PTPRD encoding locus is known to
modulate phosphorylation of STAT3 that promotes IL6
signaling (Lohr et al. 2014). Whereas, RORɑ is a regulator
of circadian clock, responsible for cytokine secretion
especially interleukins (Paiva et al. n.d.). Contextually, with
a mechanistic aggression, circulating MM tumor cells
undergo circadian rhythm dependent selective egression.
Circadian rhythm was one of the suggestively selected
enriched pathways encompassing the genetic network
(Additional file 7, p = 1.38 × 10−2). Involvement of HER4 in
cancer has yet not been comprehensively addressed, al-
though it has been shown to be overexpressed in colorectal
cancer and postulated to promote carcinogenesis in general
(Lau et al. 2014; Williams et al. n.d.).
We find rs10251201, one of the previously identified

risk loci for MGUS with moderate significance,
annotated to 36 kb 5′ to GLCCT1 in interaction with
rs1104869 mapping to an intronic region of an onco-
gene, anaplastic lymphoma receptor tyrosine kinase
(ALK). Notably ALK amplification, mutations and espe-
cially chromosomal rearrangements have been found in
several cancers (Chiarle et al. 2008). Another previously
identified MGUS risk locus (rs16966921) annotated to
GALNT1 was shown in our data to have moderately
significant interaction with (rs8092870) annotated to
cadherin 2 (CDH2), an adhesion molecule and down-
stream target of FGFR3 signaling pathway (Takehara et
al. 2015). Cell adhesion is an integral part of cell surface
interaction and is of two major types: cell-to-cell and
cell-to-extracellular matrix (ECM). Cadherin family cell
adhesion molecules play important roles in the forma-
tion and functions of cell-cell adhesions. CDH2 is
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associated with several neoplasias and has been reported to
be overexpressed in MM co-existing with the t(4,14) trans-
location (Dring et al. 2004). Interestingly, we also identified
a novel risk locus on another cadherin gene, CDH13 in an
interaction with 9p22. CDH13 is not involved in cell-cell
adhesion, but protects vascular endothelial cells from apop-
tosis due to oxidative stress and is found to be hypermethy-
lated in myeloid leukemia, B-cell lymphomas among
several other cancers (Andreeva and Kutuzov 2010).
At cell-ECM adhesions, the major transmembrane

proteins are integrin heterodimers. Several integrins, in-
cluding integrin-β1, −β7 and -α8 have been shown to
play a role in MM cell adhesion, migration, invasion,
bone marrow homing and drug resistance. We observed
REACTOME integrin cell surface interactions pathway
as a comparably significant hit from all three of our
pathway analyses. Our assumption of interplay between
cell adhesion and integrin pathways is also supported by
the discovery of the REACTOME platelet aggregation
(plug information) pathway, a crucial adhesion mechanism
not only in normal hemostasis but also in pathophysio-
logical processes such as inflammation, immune-mediated
host defense and cancer metastasis. Integrin-αIIbβ3 plays a
key role in platelet adhesion and aggregation (Ruggeri and
Mendolicchio 2007).
Functional epistasis traditionally derives its appeal on

the assumption of polygenic risk where genes in ensem-
ble are supposed to accumulate larger deregulating
impact than considered individually. Although direct ag-
gregation of interaction test and enrichment analysis
may seem tempting following a step-wise implementa-
tion procedure, caveats due to low statistical power ren-
der it unfeasible. Hence, a major limitation of this study
is the low case numbers which mostly is due to the scar-
city of identifiable individuals. MGUS being an asymp-
tomatic condition, studies are dependent on indirect
diagnosis in its entirety. We admit that detection power
of our analysis is marginally compromised accounting
for stringent selection criteria since pairwise interaction
algorithms require large statistical power to avoid high
false discovery rate and that may result subsequent re-
jection of false negative results. However, we have mini-
mized this loss of information by analyzing gene set and
pathway enrichment on GWAS summary statistics par-
allel to the interaction test. Fang et al. 2017 have recently
proposed such a procedure on building pathway map
based on linear interaction model. Although to make the
later analysis viable, their study proposes selection of
risk loci at a very nominal level of significance (Fang
et al. 2017). Unfortunately, this rather permissive selec-
tion criterion makes their proposed BridGE algorithm
unreliable as it may allow a large proportion of false
positive findings. This calls for further careful inspection
in the statistics to achieve robustness in inference.

Conclusion
In summary, we developed a method that unifies variant
pair interaction with genetic networks and pathway
enrichment. We also discovered evidence which sup-
ports that several signaling cascades including B cell
receptor, epidermal growth receptor and cell adhesion
related pathways play a role and are regulated via several
interacting loci in development of MGUS that possibly
explicates its further progression to MM.
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