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Systematic biases in DNA copy number originate
from isolation procedures
Sebastiaan van Heesch1, Michal Mokry1,2, Veronika Boskova1, Wade Junker3, Rajdeep Mehon4, Pim Toonen1,
Ewart de Bruijn1, James D Shull3,5, Timothy J Aitman4, Edwin Cuppen1,6* and Victor Guryev1,7*

Abstract

Background: The ability to accurately detect DNA copy number variation in both a sensitive and quantitative
manner is important in many research areas. However, genome-wide DNA copy number analyses are complicated
by variations in detection signal.

Results: While GC content has been used to correct for this, here we show that coverage biases are tissue-specific
and independent of the detection method as demonstrated by next-generation sequencing and array CGH.
Moreover, we show that DNA isolation stringency affects the degree of equimolar coverage and that the observed
biases coincide with chromatin characteristics like gene expression, genomic isochores, and replication timing.

Conclusion: These results indicate that chromatin organization is a main determinant for differential DNA retrieval.
These findings are highly relevant for germline and somatic DNA copy number variation analyses.
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Background
The ability to accurately detect DNA copy number var-
iation (CNV) in both a sensitive and quantitative man-
ner is important in many research areas. While the
detection of CNVs previously relied on low resolution
techniques like quantitative PCR or MLPA, high-resolu-
tion array-based comparative genomic hybridization
(aCGH) and next-generation sequencing (NGS)-based
depth of read coverage (DOC) approaches [1] now allow
for detailed genome-wide analyses. However, both aCGH
and DOC are complicated by the presence of ‘wave pat-
terns’ in the raw data where the measurement deviates sys-
tematically from equimolar representation. These regions
span up to tens of megabases and pose challenges on CNV
calling. To reduce the number of false-positive calls intro-
duced, algorithms were designed to suppress wave effects
[2-6]. In these studies, quantity of DNA during hybridiza-
tion, dye-biases, enzymatic effects, and correlations with
GC content were proposed as the main contributors to the
wave patterns. However, understanding the source of the

observed patterns is important for reliable genome-wide
analyses based on aCGH and NGS techniques.

Results and discussion
To discover the source of unequal DNA representation
in genomic data we performed pairwise aCGH analyses
comparing all possible combinations of DNA samples
isolated from blood, brain, liver, and testis from two rats
from different inbred strains. We observed large-scale
tissue-specific variation in hybridization intensities that
were reproducible between strains and consistent in
dye-swap experiments (Figure 1A). Fold-changes for this
variation could computationally be defined as tissue-spe-
cific CNVs (within the same strain) and were typically
much lower than for germline CNVs (between strains).
Even though the amplitude of variation did not exceed
30%, the reproducibility of tissue-specific differences
between multiple rat strains was very high, both in
terms of pattern and magnitude (Figure 1A). Theoreti-
cally, these patterns could reflect somatic copy number
changes, in line with recently observed somatic hetero-
geneity [7-9]. Nevertheless, systematic artifacts of the
methods used might also underlie such observations. In
support of a potential systematic artifact we noted that
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the genomic regions involved are often megabases in
size, while regular CNVs are typically much shorter.
Although aCGH analyses using different platforms
(Nimblegen and Agilent) and labeling techniques
revealed highly similar patterns (not shown), shared arti-
facts associated with aCGH such as dye or sequence-
dependent hybridization effects cannot be excluded.
Therefore, we performed a depth of coverage analysis

on four tissues from a single animal using NGS-based
low-pass whole genome sequencing (5-10 M reads per
sample) (Figure 1B). Interestingly, both aCGH and NGS
show highly similar DNA content patterns (r2 = 0.71,
P < 0.001, Additional file 1), excluding previously pro-
posed array-specific artifacts [2-5,10] as the sole basis
for the observed patterns and suggesting a common
source for the observed variation.

Figure 1 Reproducible patterns in genome-wide aCGH and NGS data. (A) Pairwise aCGH analysis results of blood, liver, brain, and testis
samples for rat chromosome 16. For all panels, the variability in log2 ratios is displayed (each dot represents the median value over 100
consecutive probes). The top two panels show dye swap aCGH (Nimblegen) results using blood and liver samples from a single animal (Brown
Norway strain). The third panel shows the comparison of blood and liver from an animal from a different inbred strain (ACI). The bottom panel
shows the aCGH analysis results between brain and testis of that same ACI animal. (B) Comparison of aCGH hybridization signal with NGS depth
of coverage analysis results. DNA isolated from the testis and from blood of the same animal was analyzed by aCGH (Nimblegen) and by low-
pass next-generation sequencing (6.3-7.2 M reads; 0.075× - 0.086× genome coverage).
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Systematic analysis of genomic regions with tissue-
specific differences in aCGH hybridization and DOC sig-
nal revealed several interesting characteristics. A very
clear correlation was found with replication timing [11],
gene density, presence of SINE elements, and the rela-
tive GC content, which is strongly related to isochores
[12,13] (Figure 2, Additional file 2). GC content has
been documented to affect a wide range of molecular
biological techniques, including PCR and next-genera-
tion sequencing [6] and may thus explain part of the
observed patterns. Regional high GC content was
recently described to affect the thermostability of DNA,
resulting in ultra-fastened regions that affect amplifica-
tion [14]. However, as DNA content is assumed to be
largely the same in every cell, the GC content alone can-
not explain the observed tissue-specific patterns or dif-
ferences in signal magnitude (Figure 1). When we
perform a GC correction on the aCGH data, this flattens
out large parts of the pattern, as expected based on the
high correlation with GC. However, the GC correction
alone is insufficient to flatten the profile between differ-
ent tissues from the same animal (Figure 3). As we used
asynchronous whole tissue samples with only a very
small amount of actively proliferating cells, early repli-
cating genomic regions are also unlikely the cause of
apparent copy number gains. Intriguingly, replication
timing has been shown to correlate with retrotranspo-
son content, genome isochores, and gene expression
activity [15], and all of these factors are known to be
highly related to chromatin status. Therefore, we
hypothesized that tissue-specific chromatin organization
may explain the observed correlations and that non-
equimolar representation might be due to DNA retrieval
artifacts that result in differential representation of
euchromatin compared to more densely packed hetero-
chromatin. In support of this, we do observe prominent
tissue-specific gene expression in regions with higher
apparent tissue-specific copy number status (Additional
file 3).
To study a potential bias resulting from differential
chromatin status and introduced during the DNA isola-
tion procedure, we first isolated DNA using standard
phenol/chloroform extraction procedures and a com-
mercial DNA isolation kit. aCGH was used to measure
potential differences in relative DNA content between
the two extraction methods but no significant differ-
ences were observed (Additional file 4). Next, we modu-
lated the stringency of extraction by varying proteinase
K treatment conditions prior to phenol/chloroform
extraction, and used NGS fragment sequencing to deter-
mine the DNA recovery patterns across the whole gen-
ome. We compared five different lysis durations in the
presence of proteinase K and observed that increased
duration of treatment improved the evenness of read

distribution across the whole genome (thus lowering the
wave-amplitude; Figure 4A). Especially in the more diffi-
cult to cover regions the increased treatment duration
improved coverage (Figure 4B). Next, we determined if
the increased duration of the treatment also reduced the
tissue-specific differences as depicted in Figure 1. By
comparing sequenced DNA from homogenized brain
and liver samples of the same animal at four time
points, we indeed find that an increased lysis time
results in smaller tissue-specific differences (Figure 4C),
although it should be noted that biases are not removed.
In agreement with our previous observations, the results
of copy number profiling of brain and liver samples are
affected by proteinase K treatment duration, even after
GC correction. While segments totaling to 45 Mb show
copy number differences of at least 10% after a 30-min
proteinase K treatment, only 1.3 Mb exhibit changes of
this scale when treatment is done overnight (Additional
file 5).
These results demonstrate that the observed wave patterns
are the result of combined tissue-specific DNA isolation
biases. As the magnitude, but not the pattern, of the biases
decreases with longer proteinase K treatment (Additional
file 6), we postulate that DNA retrieval effects are due to
differences in degradation of DNA/protein complexes,
which subsequently results in depletion of stable aggre-
gates by early precipitation or separation into the phenol
phase. Densely packed heterochromatic regions, but also
nuclear lamina attached chromatin, are likely to be most
affected by such process.
To test whether the DNA in the under-represented

genomic regions was simply absent from the sample, or
just inaccessible for subsequent applications like sequen-
cing or aCGH, we modulated the DNA isolation experi-
ments even further. First, DNA was extracted after only
10 min of lysis in the presence of proteinase K. After one
initial round of phenol/chloroform extraction and precipi-
tation, the sample was divided in half. One part was trea-
ted with proteinase K for 2 additional hours, while the
other was used as a control and left untreated. We subse-
quently extracted the DNA from both samples using a sec-
ond round of phenol/chloroform extraction. Surprisingly,
the NGS data show that an additional 2 h of treatment
dramatically improves the evenness of the genome-wide
coverage as compared to the control sample (Figure 4D),
now resembling the read distribution of samples that were
treated for a minimum of 2 h. This suggests either that
inaccessible DNA was present after the first phenol/
chloroform extraction and made accessible by the addi-
tional proteinase K treatment, or that the second phenol/
chloroform purification step removed additional protein-
bound DNA from the control sample. In any case, these
experiments further demonstrate that equimolar DNA
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Figure 2 Correlation of DNA content variability with genome characteristics. The middle panel shows aCGH results comparing BN blood
versus BN liver DNA and is aligned with replication timing (early replication is represented by high values, data obtained from Ryba et al. [11]),
SINE distribution, GC content (100 kb windows), and gene density. Pearson correlation scores (r) are given per comparison. For each, P values are
< 0.001. For this visualization, genomic positions of rat aCGH data were translated to positions on the first 50 Mb of human chromosome 2
(HSA2) to be able to compare rat data with human data on replication timing.
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Figure 3 GC correction reduces, but does not diminish tissue-specificity in aCGH signal intensity. The red line depicts the GC content in
percentage (secondary y-axis) across rat chromosome 16. The dashed black line shows the log2 aCGH signal intensity of brain versus testis (ACI
rat strain). The black line shows the signal intensity after GC correction. Specific peaks at high GC regions are visibly removed (for example, at 18
Mb), while others are not (for example, at 28 Mb).
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Figure 4 The duration of proteinase K exposure affects the evenness of genome-wide read distribution. (A) For five different durations
of lysis (10, 30, 60, 120 min, and overnight (O/N)), the evenness of coverage is determined by calculating the number of 20 kb windows and
the number of sequencing reads therein. The y-axis displays the genome-wide number of windows (X 1,000) while the x-axis depicts the
number of quantile normalized reads. The width of the curve shows the genome-wide variation in read-depth between all windows. (B)
Zoomed-in region of (A) to illustrate the read differences in windows with relatively difficult to cover genomic regions. (C) Genome-wide tissue-
specific differences in read-depth per window are displayed for brain and liver at four different durations of lysis (30, 60, 120 min, and overnight).
(D) Comparison of the genome-wide read distribution for a sample treated 10 min with proteinase K (blue line), and the exact same DNA
sample after 120 min of extra proteinase K treatment (black line).
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representation is affected by differences in DNA isolation
conditions.

Conclusions
We demonstrate that DNA isolation procedures can
introduce a systematic bias that contributes to the wave
effects in aCGH data and the variation in coverage
depth in NGS data. We show that extended lysis with
proteinase K treatment results in: (1) more even repre-
sentation of NGS reads across the genome; (2) more
similar representation of DNA derived from different
tissue sources; and (3) improved DNA content unifor-
mity for a previously undertreated DNA sample. Our
data show that the basis for the observed bias is tissue-
specific and related to specific chromatin characteristics.
Interestingly, from the four tissues that we sampled in
this study, brain showed the lowest variation in NGS
read coverage. This could reflect the diversity of cell
types within this tissue and the associated increased
variety of chromatin conformations. More homogeneous
tissues like blood and liver exhibited the largest bias in
read coverage (Additional file 7), again supporting a cell
type-specific origin of the effects rather than primary
DNA characteristics. Tissue-specific chromatin charac-
teristics could originate from protein-DNA interactions,
3D organization, and epigenetic modifications.
The observations presented in this study are relevant

for a wide range of genomics techniques. Obviously, the
described artifacts affect the accuracy of CNV detection
[16,17], in particular somatic CNV analyses such as in
cancer where sample heterogeneity requires accurate
detection of relatively small changes. Furthermore,
genome-wide nucleotide variation analyses using next-
generation sequencing may also be affected, as depleted
regions will have lower sequencing coverage, which
results in lower reliability of variant calling. Accurate
experimental reflection of the original amounts of DNA
is also important for other genomics techniques, as was
recently demonstrated for ChIP-seq experiments [18].
As none of the methods or conditions tested could
completely remove the signal bias, special care should
be taken to control for potential DNA isolation and tis-
sue-specific effects in experiments involving quantitative
DNA interpretation. Furthermore, detection of somatic
copy number variation will require independent mea-
surements, for example, using allele imbalances [7,8].

Materials and methods
Isolation of genomic DNA
Tissues were collected from BN (BN/Crl, Charles River),
WU (HsdCpb:WU), and ACI rats (ACI/Seg/Hsd, Harlan
Laboratories B.V., The Netherlands) 6 weeks of age,
snap frozen and powdered. A total of 30 mg input mate-
rial was used for strain and tissue comparisons, 100 mg

input material was used for DNA isolation methods
comparisons. DNA was isolated using standard phenol/
chloroform extraction (1:1, pH 7.9) or Qiagen DNeasy
Blood & Tissue kit (cat.no. 69506). Tissues were lysed in
lysis buffer (100 mM Tris-HCI pH 8.0 200 mM NaCl,
0.2% SDS, 5 mM EDTA) using a Kontes Dounce tissue
grinder (Kimble and Chase, 885300-0002) and incubated
for 2 h at 50°C in the presence of RNase A (50 μg/mL)
and proteinase K (100 μg/mL). For WU rat brain and liver,
additional proteinase K conditions were tested (10 min,
30 min, 60 min, 120 min, and overnight in lysis buffer).
These time series were followed by two rounds of standard
phenol/chloroform extraction with in-between precipita-
tion of the DNA (1x phenol, 1x phenol/chloroform, and 1x
chloroform). DNA precipitation was done with 3 volumes
of pure ethanol in the presence of 1/10 volume sodium
acetate (3 M). Pelleted DNA was washed with 70% ethanol
and dissolved in 10 mM Tris pH 8.0. For the additional
proteinase K treatment experiment, 50% of the DNA that
was extracted after a 10-min lysis was treated for an addi-
tional 120 min of proteinase K (100 μg/mL) in the lysis
buffer described above. Next, both samples were cleaned
during a second round of phenol/chloroform and ethanol
precipitation, similar to the other samples in the time
series.
For isolation of blood DNA with the Qiagen kit, all

steps were performed exactly according to manufac-
turer’s instructions (Qiagen DNeasy Blood & Tissue
handbook, 07/2006). DNA quality and quantity of all
isolations were measured using NanoDrop ND-1000
(Thermo scientific) and a Qubit Quant-iT™ dsDNA
broad range assay (Invitrogen).

Array comparative genomic hybridization (aCGH)
NimbleGen whole genome tiling path arrays covering the
complete, non-repetitive part of the rat genome were
used. The 2.1 M probe arrays had an average probe spa-
cing of 1 probe per 1.3 kb and a GC-content close to
50%. For strain and tissue comparisons, DNA derived
from tissues of BN and ACI rats was used for hybridiza-
tion. The exact quantity of DNA recommended by Nim-
bleGen was used (2 μg input for sonication, 1 μg input
for exo- klenow mediated Cy3 and Cy5 labeling, 13 μg
for hybridization). DNA labeling (NimbleGen dual-color
DNA labeling kit), array hybridization (HX1 mixers,
NimbleGen hybridization system 4), washing (Nimble-
Gen wash buffer kit), and scanning were performed
exactly according to manufacturer’s instructions (Nim-
bleGen Arrays User’s Guide - CGH analysis Version 6.0).
Image analysis, data normalization, and plotting were
performed using NimbleScan 2.4 software using para-
meters preset by the manufacturer. For platform and
extraction method comparisons, Agilent custom designed
tiling path arrays (4 × 44 k, ± 1.5 kb probe spacing) were
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designed for the complete rat chromosome 14 (RNO14).
aCGH DNA preparation steps and array hybridization
were performed according to manufacturer’s instructions
(Agilent Oligonucleotide Array-Based CGH for Genomic
DNA Analysis V4.0).

SOLiD mate-pair sequencing and depth of coverage
analysis for the sequencing aCGH comparison
For the mate-pair sequencing data presented in Figure 1,
118 microgram of genomic DNA was fragmented by
incomplete digestion during a time series of 15 s to
25 min with the Alu I restriction enzyme (Promega,
R6281). Time points were pooled and the fragmented
DNA was loaded on a 1% agarose gel for gel excision of
1-3 kb fragments. Mate-pair libraries were prepared
according to the Applied Biosystems User’s Guide (12/
2007 4391587 Rev. B) and sequenced on SOLiD V2.
Sequencing data were mapped against Rat genome assem-
bly RGSC3.4 by BWA 0.5.9 software [19] (parameters -c -l
25 -n 2 -k 6). We calculated the number of reads using
genomic windows containing 100 kb of genome sequence
(excluding sequence gaps). The number of reads in each
sample was normalized as reads per million sequenced
reads. These normalized values were used for the calcula-
tion of log ratios and plotting. In total, 6,325,428 reads
were used for blood, 6,600,672 for brain, 6,764,588 for
liver, and 7,183,059 for testis. These numbers equal a low-
pass genome coverage ranging between 0.075× and
0.086×.

SOLiD fragment sequencing and depth of coverage
analysis for the time series
For the time series experiments presented in Figure 5, bar-
coded fragment libraries were produced on an automated
system (BioMek), introducing no variation in the library
preparation procedure. One microgram of DNA was used
as input and libraries were prepared exactly according to
manufacturer’s instructions for SOLiD 5500XL library pre-
paration. SOLiD libraries were pooled equimolary, quality
assessed, and size selected on the Caliper XT system.
Sequencing reads were aligned to the Rat reference gen-
ome RGSC3.4 using BWA 0.5.9 [19] (parameters -c -k 2 -l
25 -n 10). PCR duplicates were marked in the alignments
and were not used in the analysis, resulting in 10 to 35 M
unique and unambiguously mapped reads per time point.
For tissue comparisons, the coverage of each library was
normalized by random removal of reads to 10 M of unam-
biguously mapped tags (0.2× genome coverage), which
corresponds to the liver library with the least amount of
mapped reads. For the additional proteinase K treatment
comparisons, only brain samples were used and these
could thus be normalized to 14.8 M reads (0.3× genome
coverage; limited by the brain library with the least num-
ber of reads).

The genome was partitioned into windows each con-
taining 20 kb of NGS-accessible sequence (excluding
repeats and gaps). The read count and GC content were
determined for each window and library. GC-correction:
read counts were adjusted for each library by normaliza-
tion against the median read count in 100 genomic win-
dows with most similar GC content using the following
formula: Ncorr = Nmed*Nobs/NmedGC where: Ncorr, GC-
corrected number of reads; Nobs, observed number of
reads; Nmed, median reads per window for this library;
and NmedGC, median number of reads in 100 windows
with the most similar GC content. After GC correction,
potential somatic copy number changes were deter-
mined using a dynamic window approach (DWAC-seq).

Correlation of DNA content variability with various
genome characteristics and gene expression
GC content, repeat, and gene annotation were extracted
from the Ensembl database [20] (v.69). Gene expression
data were exported from the UCSC genome browser
[21].

Data availability
All sequencing data are available from the Sequence
Read Archive (SRA) at EBI under accession number
(ERP001927). Array CGH data are available from the
Gene Expression Omnibus (GEO) database at NCBI
under accession number (GSE45308). Whole genome
aCGH plots for tissue comparisons are available as
Additional file 8 (ACI blood versus liver and brain versus
testis; BN blood versus liver and liver versus blood).

Additional material

Additional file 1: Additional data file 1 is a figure showing the
genome-wide correlation between aCGH results and NGS read-
depth.

Additional file 2: Additional data file 2 is an Excel table listing all
the correlations between the aCGH data and specific genome
characteristics belonging to Figure 2(replication timing, SINEs, gene
density, GC content).

Additional file 3: Additional data file 3 shows the relation between
tissue-specific aCGH patterns and gene expression data.

Additional file 4: Additional data file 4 contains a figure illustrating
that independent DNA isolation techniques (phenol-chloroform and
a commercial column-based DNA isolation kit) have no effect on
the aCGH pattern.

Additional file 5: Additional data file 5 is an excel table listing all
putative somatic CNV regions that could be identified by
comparing brain and liver tissue after either 30 min or 60 min of
proteinase K treatment.

Additional file 6: Additional data file 6 shows the effects of increase
proteinase K treatment on the wave pattern on rat chromosome 16
(30 min versus overnight treatment). Also, it shows all time points on
a genome-wide scale compared to a fully random read distribution.

Additional file 7: Additional data file 7 is a figure showing that NGS
read coverage depends on the homogeneity of a tissue,
independent of the GC content.
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Additional file 8: Additional data file 8 provides additional genome-
wide aCGH plots for the tissue and strain comparisons presented in
Figure 1A.
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