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metastatic progression to the lung in a mouse
model of type 2 diabetes
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Abstract

Introduction: Hyperinsulinemia, which is common in early type 2 diabetes (T2D) as a result of the chronically
insulin-resistant state, has now been identified as a specific factor which can worsen breast cancer prognosis. In
breast cancer, a high rate of mortality persists due to the emergence of pulmonary metastases.

Methods: Using a hyperinsulinemic mouse model (MKR+/+) and the metastatic, c-Myc-transformed mammary
carcinoma cell line Mvt1, we investigated how high systemic insulin levels would affect the progression of
orthotopically inoculated primary mammary tumors to lung metastases.

Results: We found that orthotopically injected Mvt1 cells gave rise to larger mammary tumors and to a
significantly higher mean number of pulmonary macrometastases in hyperinsulinemic mice over a period of six
weeks (hyperinsulinemic, 19.4 ± 2.7 vs. control, 4.0 ± 1.3). When Mvt1-mediated mammary tumors were allowed to
develop and metastasize for approximately two weeks and were then surgically removed, hyperinsulinemic mice
demonstrated a significantly higher number of lung metastases after a four-week period (hyperinsulinemic, 25.1 ±
4.6 vs. control, 7.4 ± 0.42). Similarly, when Mvt1 cells were injected intravenously, hyperinsulinemic mice
demonstrated a significantly higher metastatic burden in the lung than controls after a three-week period
(hyperinsulinemic, 6.0 ± 1.63 vs. control, 1.5 ± 0.68). Analysis of Mvt1 cells both in vitro and in vivo revealed a
significant up-regulation of the transcription factor c-Myc under hyperinsulinemic conditions, suggesting that
hyperinsulinemia may promote c-Myc signaling in breast cancer. Furthermore, insulin-lowering therapy using the
beta-adrenergic receptor agonist CL-316243 reduced metastatic burden in hyperinsulinemic mice to control levels.

Conclusions: Hyperinsulinemia in a mouse model promotes breast cancer metastasis to the lung. Therapies to
reduce insulin levels in hyperinsulinemic patients suffering from breast cancer could lessen the likelihood of
metastatic progression.

Introduction
Breast cancer incidence and progression are affected by
several lifestyle factors, such as hormone therapy, body
mass index, dietary intake and physical activity [1]. Type
2 diabetes (T2D) is an emerging major health concern,
affecting around 285 million adults worldwide and

predicted to affect up to 439 million by 2030 [2]. Epide-
miological studies have recently demonstrated that the
risks for breast cancer incidence and mortality are
increased in individuals suffering from T2D [3-6]. A
prolonged phase of pre-diabetes usually occurs before
the onset of officially diagnosed T2D in which the main
components of the metabolic syndrome, including dysli-
pidemia, hyperglycemia and hyperinsulinemia may be
present for many years. For hyperinsulinemia,* Correspondence: derek.leroith@mssm.edu
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specifically, a positive correlation has recently been
reported with breast cancer incidence [7,8].
An array of human breast cancer specimens have been

found to harbor high expression of the insulin receptor
(IR) subtype A [9-11], which is involved in the mito-
genic response to insulin, as opposed to IR-B which
plays a major role in metabolism [12]. Likewise, in vitro,
numerous studies have reported that breast cancer cell
lines proliferate in response to insulin [13-15].
In the last few years our laboratory has been studying

a mouse model of type 2 diabetes, which manifests
hyperinsulinemia and dyslipidemia, namely the MKR+/+

mouse model. MKR+/+ mice were generated a decade
ago [16] by overexpression of a kinase dead insulin-like
growth factor-1 receptor (IGF-IR) specifically in muscle
under control of the creatine kinase promoter. Hyperin-
sulinemic MKR+/+ female mice demonstrated enhanced
mammary gland ductal branching and increased lateral
bud formation. Growth and progression of orthotopic-
and genetically-induced mammary tumors in female
MKR mice were accelerated as compared to controls,
but were blocked using pharmacological inhibitors of
insulin signaling or insulin-sensitizers [17,18].
A high rate of mortality from breast cancer persists due

to the emergence of metastases in distant organs, com-
monly the lungs [19]. Although studies from our labora-
tory and others have shown that insulin promotes
primary tumor growth, studies investigating a possible
connection between insulin and metastatic events in gen-
eral are limited. In this study we use the hyperinsuline-
mic MKR+/+ mouse model to study the development of
mammary tumors and metastases following orthotopic
injection of a highly proliferative and metastatic murine
tumor cell line Mvt1, which, like many tumor types,
over-expresses the transcription factor c-Myc. In MKR+/+

mice, not only do Mvt1-mediated mammary tumors
develop more rapidly, but the incidence of Mvt1-
mediated pulmonary metastases is significantly higher.
Mvt1 cells, both in vivo and in vitro, respond to hyperin-
sulinemia with increased expression of the transcription
factor c-Myc, suggesting that high levels of insulin could
increase the activity of this oncogenic factor in breast
cancer. Furthermore, when we used insulin-lowering
therapy in the MKR+/+ mice harboring Mvt1 cells, lung
metastatic burden was reduced to control levels.

Materials and methods
Animal studies
Mice were housed four per cage in a clean mouse facil-
ity, fed a standard mouse chow (Purina Laboratory
Chow 5001; Purina Mills (St. Louis, Missouri, USA)
and water ad libitum, and kept on a 12-hour light:dark
cycle. Animal care and maintenance were provided
through the Mount Sinai School of Medicine AAALAC

Accredited Animal Facility. All procedures were
approved by the Animal Care and Use Committee of
the Mount Sinai School of Medicine according to the
National Institutes of Health Guide Line. All mice were
on Friend Virus B (National Institute of Health) (FVB/
N) background. For orthotopic injections, 100,000 Mvt1
cells resuspended in sterile PBS in a volume of 100 μl
were injected using a 30-gauge needle into the left ingu-
inal mammary fat pad. Tumor volume was measured
with calipers until tumors reached a specified dimension
for resection (30 to 40 mm3) or until the time of sacri-
fice. Tumor volume was calculated using a three-co-
ordinate system using the formula: Volume = 4/3 π
(length/2 × width/2 × depth/2). For analysis of pulmon-
ary metastases, mice were sacrificed and lungs were
inflated via the trachea with 10% formalin, removed and
examined for macrometastatic lesions. Lungs were
embedded in paraffin, sectioned and stained using hae-
matoxylin and eosin (H & E). Intravenous cell inocula-
tions were performed by injecting 10,000 Mvt1 cells in a
total volume of 100 μl.

Cell culture
The murine mammary cell line Mvt1 was derived from
an explant culture of an MMTV c-Myc/Vegf transgenic
female mouse as described elsewhere [20]. Cells were
maintained in Dulbecco’s Modified Eagles Medium
(DMEM) supplemented with 10% Fetal Bovine Serum
(FBS) (Invitrogen, Grand Island, NY, USA), 100 U/ml
penicillin and 100 μg/ml streptomycin (Mediatech, Man-
assas, VA, USA) and grown at 37°C in 5% CO2 atmo-
sphere with 95% humidity.

Western blotting
Mvt1 cells or tumor tissues were lysed in chilled lysis
buffer (pH 7.4) containing 50 mM Tris, 150 mM NaCl,
1 mM EDTA, 1.25% CHAPS, 1 mM sodium orthovana-
date, 10 mM sodium pyrophosphate, 8 mM B-glycero-
phosphate and Complete Protease Inhibitor Cocktail
tablet. Protein concentration of samples was measured
using the BCA protein assay kit (Thermo Scientific,
Rockford, IL, USA). Protein samples were resuspended
in 3× loading buffer containing DTT (Cell Signaling
Technologies, Danvers, MA, USA) and denatured by
boiling for five minutes at 96°C. Samples were then sub-
jected to SDS polyacrylamide gel electrophoresis (SDS-
PAGE) and transferred to a nitrocellulose membrane.
Membranes were probed with the appropriate primary
antibodies: anti-phospho Akt (Ser473), Akt, c-Myc, matrix
metalloprotease (MMP) -9 and b-actin (obtained from
Cell Signaling Technology, Danvers, MA, USA), anti-
insulin receptor (IR)-b, IGF-IR and vascular endothelial
growth factor (VEGF) (obtained from Santa Cruz Bio-
technology, Santa Cruz, CA, USA) before being
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incubated with secondary antibodies (LI-COR Bios-
ciences, Lincoln, NE, USA) and being exposed to the
LI-COR infrared detection system (LI-COR Biosciences).
Semi-quantitative polymerase chain reaction (PCR)
RNA was extracted from tumor tissues using the
RNeasy lipid extraction kit (QIAGEN, Valencia, CA,
USA) according to the manufacturer’s instructions. RNA
integrity was verified using a Bioanalyzer (Agilent Tech-
nologies 2100 Bioanalyzer-Bio Sizing, Version A.02.12
SI292), (Agilent Technologies, Santa Clara, CA, USA).
One μg of RNA was reverse-transcribed to cDNA using
oligo (dT) primers with a RT-PCR kit according to the
manufacturer’s instructions (Invitrogen). After reverse
transcription of RNA, cDNA was subjected to PCR
cycling conditions as follows: initial denaturation at 95°
C for 2 minutes, 30 cycles of amplification consisting of
a 15 s denaturation step at 95°C, a 30 s annealing step
at 58°C, and a 1 minute extension step at 72°C. A final
seven-minute extension was performed at 72°C. Primer
sequences used were as follows: IGF-I 5’ GGACCAGA-
GACCCTTTGCGGGG, IGF-I 3’ GGCTGCTTTTGT
AGGCT TCAGTGG, IGF-II 5’ CCTTCGCCTTGTGCT
GCAT, IGF-II 3’ ACGGTTGGCACGGCTTAA, b-actin
5’ CCTAAGGCCAACCGTGAAAA, b-actin 3’ GAGGC
ATACAGGGACAGCACA.

Proliferation assays
Mvt1 cells were seeded in 24-well plates at a density of
1 × 104 cells/ml and allowed to adhere for 24 hours.
Standard growth medium was then exchanged for
serum-free DMEM containing 0.1% BSA and cells were
allowed to rest for one hour before the addition of insu-
lin. Cells were incubated with insulin at concentrations
of 10 nM or 100 nM for 72 hours and medium was
changed daily. Cells were then trypsinized, diluted in
trypan blue (1:2) and counted by haemocytometer using
trypan blue exclusion.

Statistical analysis
Results are expressed as means ± SEM. Statistical ana-
lyses were conducted using the Student’s t-test and,
where appropriate, two-way ANOVA followed by Tukey
HSD post-hoc test, with P ≤ 0.05 considered significant.

Results
In MKR+/+ mice, orthotopically injected Mvt1 cells form
larger primary tumors and exhibit more pulmonary
metastases than in control mice
The metabolic characteristics of female MKR+/+ mice have
been described and illustrated previously [17,18]. The
principal abnormalities in these mice include severe insu-
lin resistance and hyperinsulinemia on a background of
mild dysglycemia (approximately 20% elevated blood glu-
cose compared to controls). Female MKR+/+mice are non-

obese and weigh moderately less than control mice. In
addition, total body fat in MKR+/+ is lower than in con-
trols and inflammatory factors commonly elevated in obe-
sity are expressed at normal levels. We injected 100,000
Mvt1 cells into the left inguinal mammary pad of 8- to-
10-week-old control and MKR+/+ mice and monitored
growth of mammary tumors weekly. A significant increase
in Mvt1-mediated mammary tumor growth was observed
in MKR+/+ mice compared to controls (Figure 1A), which
was confirmed by the terminal weights of tumors (Figure
1B). At the time of sacrifice (six weeks after cell injection),
lungs from control and MKR+/+ mice were removed and
macrometastases were counted. The mean number of
macrometastases/mouse was significantly higher in MKR
+/+ mice (mean number of macrometastases = 19.4 ± 2.7)
compared to controls (mean number of metastases = 4.0 ±
1.3) (Figure 1C). Lungs of representative groups of MKR
+/+ mice (n = 3) and control mice (n = 3) were paraffin-
embedded, sectioned and stained with H & E to verify the
increased incidence of metastatic lesions in MKR+/+ com-
pared to control mice (Figure 1D).

The incidence of pulmonary metastases remains higher in
MKR+/+ mice compared to controls, independent of
mammary tumor size
It is possible that the significantly increased number of
macrometastases in MKR+/+ mice is simply a conse-
quence of larger tumors at the primary site, which could
promote greater tumor cell dissemination. To eliminate
the effect of primary tumor size on metastasis occur-
rence, we controlled for primary tumor size. Separate
cohorts of 8- to 10-week-old control and MKR+/+ mice
were injected in the inguinal mammary fat pad with
100,000 Mvt1 cells. Mammary tumor volume was mea-
sured with calipers twice-weekly. When tumors reached
a volume of 30 to 40 mm3 (14 to 16 days following cell
injection, (data not shown) they were surgically
removed. Tumor volumes (Figure 2A) and weights (Fig-
ure 2B) at the time of resection demonstrated no signifi-
cant difference between MKR+/+ and control mice.
After tumor resection, mice were returned to their

original housing for a period of four weeks and were
then sacrificed. Lungs from all mice were removed and
pulmonary macrometastases quantified. A significant
increase in the number of metastases was observed in
MKR+/+ mice (mean number of metastases = 25.1 ± 4.6)
compared to controls (mean number of metastases = 7.4
± 0.42) (Figure 2C).

When equal numbers of Mvt1 cells are injected
intravenously into control and MKR+/+ mice, lung
metastatic burden is higher in MKR+/+ mice
In MKR+/+ mice, insulin levels are increased and may
promote mitogenesis through activation of the IR. To
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address whether metastatic lesions in the lungs of MKR
+/+ mice exhibit greater proliferative activity than those
in the lungs of control mice, an equal amount of Mvt1
cells (10,000) were injected intravenously into both
MKR+/+ and control mice. After three weeks, all mice
were sacrificed and examined for pulmonary metastases.
Significantly more metastases were observed in lungs of
MKR+/+ mice compared to controls (MKR+/+, 6 ± 1.63
vs. control, 1.5 ± 0.68) (Figure 2D) indicating that the
environment of the hyperinsulinemic lung is more per-
missive for the proliferation of circulating tumor cells.

Mammary tumors express elevated levels of c-Myc, MMP-
9, IR, IGF-IR and VEGF
In order to examine the effects of hyperinsulinemia on
the metastasis of tumor cells from the primary site, we
examined levels of c-Myc, MMP-9, IR, IGF-IR and
VEGF in tumor tissue extracted from control and MKR
+/+ mice. As shown in Figure 3A, B, in MKR+/+ mice,
expression levels of c-Myc, IR, IGF-IR and VEGF were
significantly up-regulated compared to controls. MMP-9
expression was also elevated, although overall, a

statistically significant increase was not observed. As
hyperinsulinemia can also affect the expression level of
IGFI and IGFII, we used semi-quantitative PCR to com-
pare the levels of both Igf1 and Igf2 mRNA in MKR+/+

and control mice. As shown in Figure 3C, D, we did not
detect any difference in expression of Igf1 in tumors
from MKR+/+ and control mice. We found Igf2 levels to
be barely detectable in tumors and could thus not
observe any significant difference in levels of Igf2 mRNA
in MKR+/+ versus control mice.

Insulin stimulates Akt phosphorylation and increased
proliferation in mammary tumor cell line Mvt1 in vitro,
and increases the expression of c-Myc and MMP-9
In order to find a potential mechanism to explain why
Mvt1 cells grow faster and metastasize more readily in
the presence of elevated insulin, we studied their reac-
tion to insulin stimulation in vitro. Initially we verified
that Mvt1 cells demonstrated a typical response to insu-
lin stimulation. Short-term stimulation of Mvt1 cells
with up to 20 nM insulin caused robust phosphorylation
of Akt (Figure 4A), a central signaling protein and key
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mediator of insulin action downstream of the IR,
demonstrating that Mvt1 cells respond appropriately to
insulin. We observed no change in the phosphorylation
of Erk1 and Erk2 in response to insulin stimulation. To
determine whether insulin also affects the proliferation
of Mvt1 cells in vitro, cells were seeded at a density of 1
× 104 cells/ml in 24-well plates and stimulated with 10
nM or 100 nM insulin for 72 hours. Viable cell number
was assessed by trypan blue exclusion using a haemocyt-
ometer. The presence of insulin at both 10 nM and 100
nM was sufficient to cause a significant increase in the
proliferation of Mvt1 cells in vitro (Figure 4B).
Mvt1 cells, like many other tumor types, over-express

c-Myc, a transcription factor which is regulated by sev-
eral extracellular growth factors [21]. We investigated
whether insulin could alter the expression of c-Myc in
Mvt1 cells in vitro. Cells were serum-starved for 72 h

and then stimulated with 10 nM and 100 nM insulin for
up to one hour. As shown in Figure 4C, exposure of
Mvt1 cells to insulin caused an increase in the expres-
sion levels of c-Myc. Mvt1 cells are a highly metastatic
cell line; we thus also investigated whether MMP-9, a
key protein involved in cell metastasis from primary
tumors, was affected by insulin stimulation in vitro. As
shown in Figure 4C, insulin stimulation increased
MMP-9 levels, demonstrating that insulin may also
enhance cell signaling pathways which lead to metastasis
from the site of primary tumors in breast cancer.

Insulin-reducing therapy decreases the incidence of
pulmonary metastases in MKR+/+ mice
To examine whether the increased metastatic burden in
MKR+/+ mice was insulin-mediated, we used a pharma-
cological agent to lower insulin levels and then observed
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the result of this intervention on metastases formation
in the lung. CL-316243 is a potent and highly selective
b3-adrenoceptor agonist, which decreases blood insulin
and glucose levels following oral administration in vivo
[22]. In our previous studies we have shown that CL-
316243 dramatically improved the diabetic state in male
MKR+/+ mice by reducing circulating glucose and insu-
lin levels and enhancing whole body metabolic rate [23].
Furthermore, we have shown that CL-316243 treatment
in female MKR+/+ mice, caused a significant decrease in
the growth rate of both PyVmT and Neu/ErbB2 cell-
mediated mammary tumors [17]. To assess the effect of
CL-316243 treatment on the metastatic growth of Mvt1
cells, both MKR+/+ and control mice were injected intra-
venously with 10,000 Mvt1 cells. Mice were then treated
with either CL-316243 (1 mg·kg body wt-1 day-1) or
vehicle for three weeks. During the CL-316243 or vehi-
cle treatment period, we monitored metabolic

parameters. As shown in Figure 5A, MKR+/+ mice
demonstrated a significant reduction of total fat mass as
well as a reduction in serum insulin levels (Figure 5A,
D) and a concomitant decrease in blood sugar (Figure
5B). In control mice, no change in insulin levels was
observed (Figure 5D). Throughout the CL-316243 treat-
ment, no change in body weight was observed in control
or MKR+/+ mice (Figure 5C), consistent with our pre-
vious observations [17].
At the end of the treatment period, all mice were

sacrificed and numbers of macrometastases were quanti-
fied. As shown in Figure 5E, we observed a significant
reduction in the numbers of Mvt1-mediated metastases
in MKR+/+ mice treated with CL-316243 and no effect
in controls, suggesting that reductions in insulin levels,
independent of primary mammary tumor size, could
directly lower the incidence of Mvt1 metastases in MKR
+/+ mice.
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Discussion
Several epidemiological studies have demonstrated that
the risks of breast cancer incidence and mortality are
both positively associated with type 2 diabetes (T2D), a
multi-factorial disease encompassing several metabolic
dysfunctions, such as insulin resistance and hyperinsuli-
nemia, hyperglycemia and dyslipidemia [3-6,24]. Addi-
tionally, hyperinsulinemia, specifically, is a significant
risk factor for breast cancer incidence, independent of
other factors associated with type 2 diabetes [7]. Breast
cancer mortality rates remain high, primarily due to the

metastasis of primary tumors to distant organs, such as
the lungs [25]. In type 2 diabetic patients, it is possible
that breast cancer metastasis may also be augmented by
metabolic dysfunctions; thus we investigated in a mouse
model whether hyperinsulinemia, specifically, affects the
metastasis of primary mammary tumors to the lung.
We used the female MKR+/+ mouse, which manifests

severe insulin resistance and hyperinsulinemia, yet is
only mildly hyperglycemic and leaner than controls. Pre-
vious work from our laboratory has established that two
different murine mammary tumor cell lines (Met1 and
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MCNeuA) develop significantly larger orthotopic tumors
in MKR+/+ mice compared to controls, demonstrating a
potent effect of hyperinsulinemia on mammary tumor
development [17,18]. We now use an alternative mouse
mammary tumor cell line, Mvt1, which spontaneously
metastasizes from orthotopically-induced mammary
tumors in order to study the effect of hyperinsulinemia,
during type 2 diabetes, on the progression of primary
tumors to metastases. When inoculated, Mvt1 cells form
significantly larger tumors in MKR+/+ mice than in con-
trols, a finding which reinforces our previous data on
hyperinsulinemia and mammary tumor development.
Furthermore, the number of spontaneous metastases in
the lungs of MKR+/+ mice is also greater than in con-
trols, demonstrating a positive association between
hyperinsulinemia and mammary tumor metastasis.
A relationship between hyperinsulinemia and breast

cancer progression to metastasis has not been verified
by clinical studies. However, experimental data indicate
that the major events of primary tumor metastasis, such

as migration, invasion and angiogenesis, are enhanced
by elevated insulin levels. Chinese Hamster Ovary
(CHO) cells overexpressing the IR become highly che-
motactic toward insulin stimulation [26]. Insulin
increases the migration and invasion of human hepato-
carcinoma cell line H7721, and its adhesion to human
umbilical vein endothelial cells (HUVEC). Furthermore,
these metastases-related effects can be reversed by the
addition of an inhibitor to phosphatidylinositide 3-
kinase (PI3-K), one of the main signaling molecules
downstream of activated IR [27]. In an in vivo study of
orthotopically-induced mouse mammary tumors pro-
gressing to lung metastases, down-regulation of the IR
in tumor cells results in reduced primary tumor growth
and fewer pulmonary lesions, along with diminished
angiogenesis, demonstrating an important role for insu-
lin signaling in cancer progression [28].
We observed more spontaneous metastases in the

lungs of MKR+/+ mice compared to controls; however,
we identified that this finding could be due simply to
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the larger tumors in MKR+/+ mice, rather than a
response to insulin. Our surgical removal of tumors
from MKR+/+ and control mice when they reached a
specific size (35 to 40 mm3) demonstrated that more
metastasis had already occurred in MKR+/+ mice com-
pared to controls, apparent from the greater number of
metastases which were later detected in the lungs. This
demonstrates the potent effect of elevated insulin in
advancing the metastatic spread of tumor cells.
Our analysis of tumor tissue reveals increased c-Myc

expression in tumors of MKR+/+ mice compared to con-
trols. c-Myc is a transcription factor which controls cell-
cycle progression, metabolism and differentiation, and is
expressed at low levels in normal resting cells [29]. Acti-
vation of c-Myc depends on its formation of a heterodi-
meric complex with Max [30]. Around 50% of breast
cancers are a consequence of c-Myc-driven oncogenic
transformation, which occurs by gene amplification,
chromosomal translocation or protein overexpression
and stabilization [29,31-33]. Certain growth factors aug-
ment oncogenic c-Myc expression in human breast can-
cer, including TGFa and IGF-I [34-36]. Insulin can up-
regulate c-Myc in the estrogen-driven human breast
cancer cell line MCF-7, which is augmented by the addi-
tion of estradiol [37]. Additionally, both insulin and
IGF-I have been reported to stimulate expression of c-
Myc in non-transformed bovine fibroblast cells in cul-
ture [38]. To our knowledge, there are no reports of
insulin influencing c-Myc levels in an in vivo setting;
thus, we believe that ours are the first data to demon-
strate this association. In our model, we observed ele-
vated c-Myc expression in the presence of high insulin
levels both in vivo and in vitro. We also observed
increased tumor mass and cell proliferation, respectively,
suggesting a role for insulin in significantly promoting
the growth-mediating effects of c-Myc.
c-Myc is integrally involved in breast cancer metasta-

sis, promoting loss of apoptosis, invasion, and angiogen-
esis [39-42]. Thus, in addition to accelerating cell
proliferation, insulin-mediated increases in c-Myc
expression could potentially enhance metastatic events.
Indeed, in our model, increased c-Myc was associated
with elevated levels of MMP-9 and VEGF, which are
both important mediators of metastatic events in vivo
[43,44]. MMP-9 is a key protease secreted from meta-
static cells, which implements proteolytic modification
or degradation of the extracellular matrix during tumor
cell dissemination [45]. Knock-down of c-Myc in a mur-
ine lung cancer model led to a reduction in MMP-9
levels and diminished metastasis of lung tumor cells to
distant sites [46]. It has also been reported that MMP-9
is a direct target of c-Myc in cultured murine lymphoid
endothelial cells during the initiation and progression of
atherosclerotic lesions [47].

VEGF is a key mediator of angiogenesis and is essen-
tial for intravasation of metastasizing tumor cells [43] as
well as for primary tumor development [48]. Transgenic
mice overexpressing c-Myc in the mammary gland
resulted in low rates of lung micrometastases, whereas
when c-Myc and VEGF were expressed simultaneously,
high rates of macrometastases occurred [49]. In the
ascites of patients with metastatic ovarian cancer, lyso-
phosphatidic acid (LPA) stimulated expression of VEGF,
an event which was completely dependent on c-Myc
expression [50]. In agreement with these data, we
observed increased VEGF in tumor tissue which also
expressed elevated levels of c-Myc.
We also demonstrated a significant up-regulation of

the IR and an elevation of the IGF-IR in tumors from
MKR+/+ mice. Although human clinical studies have not
investigated levels of the IR in breast tumors from
hyperinsulinemic patients, specifically, it has been
reported that IR expression, as well as being a strong
predictor of poor survival rate, spans all three subsets of
clinical breast cancer (luminal, Her2 positive and triple
negative) [9,10], and mammary tumorigenesis in mice
resulting from transgenic expression of Neu, Wnt1, or
Ret oncogenes is accompanied by significant elevations
of IR levels in all three tumor types [51]. These data all
suggest that increased IR expression is linked to the
onset or development of breast cancer. The IGF-IR is
highly homologous to the IR, activates similar signaling
pathways when bound by IGFI/II, and has a well-estab-
lished role in the progression of breast cancer [52]. It
has been reported that insulin itself can increase IGF-IR
levels [53]. Hyperinsulinemia is also known to increase
circulating IGF1 production, either by up-regulating
growth hormone receptor levels [54] or by suppressing
IGF binding protein (IGFBP) -1 and -2 [55]. However,
we found no significant difference in Igf1 mRNA levels
in the tumor tissue of MKR+/+ and control mice, sug-
gesting that any differences in tumor growth or metas-
tases formation were due to insulin rather than IGF-I. It
is known that IGF-II causes activation of the IR [12];
but its expression is confined mainly to fetal develop-
ment and thus circulates at extremely low levels postna-
tally in rodents [56]. Indeed, in tumor tissue from both
control and MKR+/+ mice we observed barely detectable
levels of Igf2 mRNA expression.
Our finding of increased metastatic burden following

intravenous injection of Mvt1 cells in the absence of a
primary tumor suggests that hyperinsulinemia promotes
increased survival or proliferation (or both) of circulat-
ing tumor cells that arrest in the lungs. Our in vitro
data confirm that insulin stimulates the expected cano-
nical Akt signaling pathway in Mvt1 cells and also
enhances Mvt1 proliferation. The significantly reduced
number of lung metastases, which we observed after
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three weeks of insulin-lowering treatment with CL-
316243, suggests that reducing insulin levels causes a
decrease in either survival or proliferation of Mvt1 cells
in the lungs. In agreement with this finding, previous
work from our laboratory has reported an abrogation of
both PyVmT- and Neu- mediated orthotopic mammary
tumor growth during chronic CL-316243 treatment [17].
In summary, we have used a hyperinsulinemic mouse

model to study the effect of elevated systemic insulin
levels on mammary tumor metastasis to lung. As well
as confirming previously published data whereby insu-
lin accelerates primary tumor growth, we also provide
important new findings which suggest that insulin also
affects breast cancer progression to the metastatic
stage. This indicates that breast cancer patients pre-
senting with hyperinsulinemia may be at increased risk
of primary tumor progression to lung metastases.
These data could explain, in part, the increased mor-
tality in patients with breast cancer and T2D and high-
lights the benefit of using insulin-reducing therapies to
reduce the mortality risk from the combined effect of
these two diseases.

Conclusions
Hyperinsulinemia in vivo can significantly increase both
primary tumor growth and subsequent metastasis to the
lung in a mouse model. During periods of hyperinsuli-
nemia, the lungs may provide an environment which
can augment the survival or proliferation of metastatic
cells. Oncogenic c-Myc expression is increased during
periods of hyperinsulinemia, both in vivo and in vitro
and this could contribute both to primary tumor growth
and metastatic events. Finally, insulin-reducing treat-
ment can significantly diminish the growth of intrave-
nously inoculated metastatic cells in the lungs,
suggesting that therapies to lower insulin in breast can-
cer patients presenting with hyperinsulinemia could be a
valuable strategy to reduce mortality from breast cancer
metastatic progression.
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