Research article

Available online http://breast-cancer-research.com/content/11/4/R60

Dysregulated expression of Fau and MELK is associated with poor

prognosis in breast cancer

Mark R Pickard!, Andrew R GreenZ?, lan O Ellis2, Carlos Caldas3, Vanessa L Hedge?,
Mirna Mourtada-Maarabouni' and Gwyn T Williams

TInstitute for Science and Technology in Medicine and School of Life Sciences, Keele University, Huxley Building, Keele ST5 56BG, UK
2Division of Pathology, School of Molecular Medical Sciences, University of Nottingham and Nottingham University Hospitals, Derby Road,

Nottingham NG7 2UH, UK

3Cancer Research UK Cambridge Research Institute and Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 ORE, UK

Corresponding author: Gwyn T Williams, g.t.willams@keele.ac.uk

Received: 10 Dec 2008 Revisions requested: 20 Feb 2009 Revisions received: 1 May 2009 Accepted: 11 Aug 2009 Published: 11 Aug 2009

Breast Cancer Research 2009, 11:R60 (doi:10.1186/bcr2350)

This article is online at: http://breast-cancer-research.com/content/11/4/R60

© 2009 Pickard et al.; licensee BioMed Central Ltd.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Introduction Programmed cell death through apoptosis plays
an essential role in the hormone-regulated physiological
turnover of mammary tissue. Failure of this active gene-
dependent process is central both to the development of breast
cancer and to the appearance of the therapy-resistant cancer
cells that produce clinical relapse. Functional expression cloning
in two independent laboratories has identified Finkel-Biskis—
Reilly murine sarcoma virus-associated ubiquitously expressed
gene (Fau) as a novel apoptosis regulator and candidate tumour
suppressor. Fau modifies apoptosis-controller Bcl-G, which is
also a key target for candidate oncoprotein maternal embryonic
leucine zipper kinase (MELK).

Methods We have used RNA interference to downregulate Fau
and Bcl-G expression, both simultaneously and independently,
in breast cancer cells in vitro to determine the importance of
their roles in apoptosis. Expression of Fau, Bcl-G and MELK
was measured by quantitative RT-PCR in breast cancer tissue
and in matched breast epithelial tissue from the same patients.
Expression data of these genes obtained using microarrays from
a separate group of patients were related to patient survival in
Kaplan—Meier analyses.

Results siRNA-mediated downregulation of either Fau or Bcl-G
expression inhibited apoptosis, and the inhibition produced by
combining the two siRNAs was consistent with control of Bcl-G
by Fau. Fau expression is significantly reduced in breast cancer
tissue and this reduction is associated with poor patient survival,
as predicted for a candidate breast cancer tumour suppressor.
In addition, MELK expression is increased in breast cancer
tissue and this increase is also associated with poor patient
survival, as predicted for a candidate oncogene. Bcl-G
expression is reduced in breast cancer tissue but decreased
Bcl-G expression showed no correlation with survival, indicating
that the most important factors controlling Bcl-G activity are
post-translational modification (by Fau and MELK) rather than
the rate of transcription of Bcl-G itself.

Conclusions The combination of in vitro functional studies with
the analysis of gene expression in clinical breast cancer samples
indicates that three functionally interconnected genes, Fau, Bcl-
G and MELK, are crucially important in breast cancer and
identifies them as attractive targets for improvements in breast
cancer risk prediction, prognosis and therapy.

Introduction
Breast cancer is the most common cancer in women in the

developed world [1], and is the second leading cause of can-
cer-related deaths after lung cancer. Despite recent advances
in therapy, the development of therapy-resistant breast cancer
cells is a major cause of death. Initial or acquired resistance to

endocrine therapy or to trastuzumab (Herceptin) is seen in a
majority of patients [2,3]. These difficulties provide a powerful
incentive for further molecular dissection of the processes
involved in breast cancer development and therapy.

Fau: Finkel-Biskis—Reilly murine sarcoma virus-associated ubiquitously expressed gene; FCS: foetal calf serum; FUBI: Fau ubiquitin-like domain;
MELK: maternal embryonic leucine zipper kinase; MEM: minimal essential Eagle's medium; PCR: polymerase chain reaction; RT: reverse tran-

scriptase; siRNA: small interfering RNA.
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Cellular self-destruction through the active gene-dependent
process of apoptosis is fundamental to breast epithelial cell
physiology. Oestrogen is critical to homeostasis in breast tis-
sue, and high concentrations stimulate cell proliferation and
suppress cell death (for example [4]). In healthy breast tissue,
lowering of oestrogen concentrations both removes the prolif-
erative stimulus and alleviates the suppression of cell death,
resulting in apoptosis. The physiological balance between pro-
liferation and cell death breaks down during the development
of breast cancer, and the failure of breast cancer cells to
engage the apoptosis programme is crucial for oncogenesis,
as is the case for other cancers [5,6].

Induction of apoptosis is also critical to the success of breast
cancer therapy. Oestrogen blockade by anti-oestrogens lifts
the suppression of apoptosis in oestrogen receptor-positive
cells, resulting in the elimination of susceptible cells [7]. Many
other anticancer therapies act not by direct destruction of the
cancer cell, but by producing intracellular damage to which
the cell responds through self-destruction by apoptosis [8,9].
Failure of apoptosis produces drug-resistant cancer cells that
can give rise to clinical relapse [10].

The central importance of apoptosis in the development and
therapy of breast cancer has stimulated many investigations
aimed at improving understanding of the process at the molec-
ular level. Such an understanding is essential to provide the
rational basis for targeting the molecules that play critical roles
in the control of cell death and survival in order to develop
novel and effective therapies. Functional expression cloning
provides a powerful and proven strategy for the direct identifi-
cation of molecules controlling cell death through their effects
on cell survival. This strategy has successfully identified many
genes that play important roles in controlling the cell fate in
both healthy tissue and cancers, and has highlighted important
mechanisms controlling cancer cell death that had escaped
detection by other methods (for example [11-16]). One gene
identified directly through its control of cell death and survival
by two independent laboratories is Finkel-Biskis—Reilly
murine sarcoma virus-associated ubiquitously expressed gene
(Fau) [12,15]. The Finkel-Biskis—Reilly murine sarcoma onco-
genic virus contains a sequence antisense to Fau that
increases the tumorigenicity of the virus, suggesting that Fau
can act as a tumour suppressor [17]. Fau induces apoptosis
in several cell types and is required for T-cell apoptosis
induced by DNA-damaging agents such as UV radiation and
cisplatin [15]. Serial analysis of gene expression has indicated
that Fau is downregulated early in breast cancer development
[18].

The molecular mechanism of action of Fau involves the transfer
of its ubiquitin-like FUBI domain to cellular target proteins as a
post-translational modification analogous to other ubiquitin-
like modifications, such as SUMO [19]. One prominent target
for FUBI modification is Bcl-G (Bcl2L14 [20]), a member of
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the Bcl-2 family of apoptosis-controlling proteins that fre-
quently plays an important role in cancer development and
therapy (reviewed in [6]). This observation [21] immediately
suggests a potential mechanism for the control of apoptosis
by Fau; that is, through regulation of the effects of Bcl-G.

Further attention has been focused on Bcl-G because of its
identification [22] as an important target for maternal embry-
onic leucine zipper kinase (MELK). MELK is a recently identi-
fied protein kinase and candidate oncoprotein that is
upregulated in several types of cancer, including breast can-
cer [22,23], and is associated with resistance to apoptosis
[22]. Once again, the modification of Bcl-G (in this case by
phosphorylation) provides an attractive mechanism of action
for the observed pro-survival effects of MELK [22].

Materials and methods

Breast cancer cell culture

The human breast cancer cell line T-47D was maintained in
MEM (M5650; Sigma, Gillingham, Dorset, UK) supplemented
with 5% heat-inactivated FCS, 2 mM L-glutamine, 10 ng/ml
insulin and 50 pg/ml gentamycin. Cells were routinely cultured
at 37°C with 5% CO,. All experiments were carried out using
cells in the logarithmic growth phase.

RNA interference by siRNA

Cells were trypsinized and plated at a density of 4 x 105 cells/
cm? in six-well plates in fresh medium. After 24 hours the
medium was replaced and cells were transfected with
Silencer predesigned siRNAs (30 nM final concentration in
culture medium; Ambion/Applied Biosystems, Foster City, CA,
USA) using RNAIiFect reagent (Qiagen, Crawley, West Sus-
sex, UK), according to the supplied protocol. For Fau knock-
down, two different siRNAs were employed, termed FAU1 and
FAU2 (Ambion siRNA ID 46005 and ID 10907; target exons
2/3 and 3/4, respectively). The negative control siRNA was
Silencer negative control #1 siRNA (Ambion code 4611). For
Fau and Bcl-G combined knockdown, FAU2 siRNA and Bcl-
G siRNA (Ambion siRNA ID 120721; targeting exons 2) were
used, either alone or in combination. In these experiments,
negative control siRNA was used at 30 nM (control for single
knockdowns) and at 60 nM (control for combined knock-
downs). In all experiments, cells were incubated with siRNAs
for 120 hours. For evaluation of transfection efficiency, parallel
transfections were conducted with Cy3-labelled siRNA pre-
pared using the Silencer siRNA labelling kit (Ambion), accord-
ing to the supplied protocol. The proportion of cells exhibiting
fluorescence was determined by microscopy 24 hours post
transfection. Transfection efficiencies were routinely 80% to
85%.

UV irradiation and determination of cell viability and
apoptosis

A hand-held UVG-54 lamp (UVP Ltd, Cambridge, UK) was
used for irradiation. Radiation from the lamp was routinely



measured using a Blak-Ray UV (shortwave) intensity meter
(model J-225; UVP Ltd., Cambridge, UK). Trypsinized cells
were resuspended at 105 cells/ml medium and were exposed
to UVC light in plastic petri dishes with the lids removed for
20/30 seconds at a distance of 25 cm (40/60 J/m2) or were
mock-irradiated. Immediately after UV exposure, cells were
centrifuged and resuspended in the same volume of fresh
medium.

For determination of their colony-forming ability (clonogenic
assays), cells (20 pl UVC-irradiated; 5 pl mock-irradiated)
were added to 1.5 ml maintenance medium supplemented
with 10% (v/v) cell-conditioned medium (prepared from log
phase cells) and plated in six-well plates. After 3 weeks of
incubation, colonies were stained with crystal violet and were
counted. Data are expressed as colonies per 100,000 cells
plated.

For determination of short-term cell viability and apoptosis,
cells were plated in 12-well plates (8 x 104 cells/well) in main-
tenance medium, incubated for 48 hours, and then trypsinized.
Cell viability was determined by the nigrosin blue dye exclu-
sion analysis. Apoptosis was determined by fluorescence
microscopy; by assessment of either nuclear morphology or
caspase activation. For the former assay, cells were stained
with acridine orange (25 pg/ml), and the proportion of cells
containing condensed or fragmented chromatin was scored.
For the latter assay, the CaspaTag™ Fluorescein Caspase
Activity Kit (Chemicon, Chandler's Ford, Hampshire, UK) was
used, according to the manufacturer's instructions.

Real-time RT-PCR

For cell culture samples, total RNA was isolated using TRIZOL
reagent (Invitrogen, Paisley, UK). For clinical samples, paired
tumour and adjacent normal breast epithelial tissues were col-
lected from a total of 21 female patients with ductal breast
cancer, rapidly frozen and stored at -140°C. All samples were
examined histologically, and samples grossly contaminated
with adipocytes, or with noncancerous tissue in the case of
tumour samples, were excluded from the study. Total RNA was
isolated using 1.4 M guanidine thiocyanate/0.5% sodium
dodecyl sulphate/25 mM ethylenediamine tetraacetic acid/50
mM Tris—Cl (pH 7.5) [24,25]. For all samples, isolated RNA
was treated with RQ1 RNase-free DNase (Promega, South-
ampton, Hampshire, UK), and was reverse transcribed using
random hexamer priming and SuperScript | Reverse Tran-
scriptase (Invitrogen), according to the supplied protocols.
Real-time PCR was conducted using the Sensimix (dT) DNA
kit (Quantace, Finchley, London, UK) and Tag Man Gene
Expression Assays (assay codes Hs00609872_g1 for Fau,
Hs00373302_m1 for Bcl-G, Hs00207681_m1 for MELK,
Hs00167441_m1 for ALAS1, and Hs99999901_m1 for 18S;
Applied Biosystems, Foster City, CA, USA), as recommended
by the manufacturers, and was run on an ABI Prism Sequence
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Detection System model 7000 (Applied Biosystems, Foster
City, CA, USA).

A standard curve, comprising cDNA prepared from the T-47D
parental cell line, was included with each run to allow relative
quantitation. Assays usually contained 0.1 to 30 ng standard
(approximately threefold serial dilutions) or 5 ng sample cDNA
in a final volume of 25 pl. For quantitation of Bcl-G, however,
the sample and standard input were increased to 40 ng and
0.6 to 200 ng cDNA, respectively. For each assay, a standard
curve of threshold cycle value versus log input standard cDNA
was constructed by linear regression, and the equation of the
line was used to calculate input amounts of samples from their
respective threshold cycle values. Data were expressed rela-
tive to an endogenous control gene (Bcl-G sample values
were first corrected for increased sample input). ALAS1 was
used as the endogenous control gene, since the ALAS1/18S
rRNA ratio is similar in breast ductal carcinoma and normal tis-
sue, as described elsewhere [26].

Statistical analysis

Data are presented as the mean and standard error of the
mean, and statistical significance was determined either by a
paired Student's ¢ test or by one-way analysis of variance with
Bonferroni's multiple comparison test for post-hoc analysis of
selected groups, as specified in each case, depending upon
the number of groups to be compared. Homogeneity of vari-
ance was checked by Bartlett's test and, where necessary,
data were transformed (log or square root) prior to analysis.

Correlation of gene expression with breast cancer
patient survival

The analysis of gene expression using microarrays in a cohort
of 99 breast carcinoma patients and the correlation of this with
the survival data for these patients were as previously reported
[27]. Total RNA was isolated from frozen tumours retrieved
from Nottingham Hospitals NHS Trust Tumour Bank between
1986 and 1992 as described elsewhere [27]. RNA integrity
and genomic DNA contamination were analysed using an Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA). Total RNA was biotin-labelled using the lllumina Total-
Prep RNA Amplification kit (Ambion) following the manufac-
turer's instructions. Biotin-labelled cRNA (1.5 nug) was used
for each hybridization on Sentrix Human-6 BeadChips (lllu-
mina, San Diego, CA, USA) in accordance with manufac-
turer's protocol. lllumina gene expression data containing
47,293 features were processed and summarized in the lllu-
mina BeadStudio software. Analyses of the probe level data
were performed using the beadarray Bioconductor package
(Numina Cambridge, Saffron Walden, Essex, UK). The expres-
sion data have been deposited in ArrayExpress at the Euro-
pean Bioinformatics Institute [EBI:E-TABM-576] [28].

Normalized expression of genes was dichotomized into low

and high expression using the median value (Fau, range 10.05
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to 11.60, median 10.96; MELK, range 5.63 to 8.25, median
6.20; Bcl-G, range 5.62 to 6.02, median 5.75).

Results and discussion

The functional importance of endogenous Fau in the induction
of apoptosis in breast cancer cells is indicated by the effects
produced by reducing Fau expression in the T-47D breast
cancer cell line using siRNAs. Two siRNAs termed FAU1 and
FAU2 (target exons 2/3 and 3/4, respectively) were used, and
each reduced endogenous Fau expression, as determined by
real-time RT-PCR (Figure 1a). Fau knockdown markedly atten-
uated the UV-induced apoptosis of T-47D breast cancer cells
(Figure 1b) and protected short-term cell viability (Figure 1c).
Importantly, siRNA-mediated Fau silencing also increased the
long-term survival of T-47D cells after UV irradiation, as meas-
ured using a colony-forming assay (Figure 1d). These effects
are entirely consistent with the inhibition of T-cell apoptosis
induced by downregulation of Fau with Fau antisense [15],
and with the effects of Fau siRNAs on the embryonic kidney
cell line HEK 293T and the prostate cell line 22Rv1 (Pickard

MR and Williams GT, unpublished data), indicating the gen-
eral validity of these observations.

Since serial analysis of gene expression has identified Fau as
a downregulated transcript in ductal carcinoma in situ when
compared with normal breast epithelium [18], we employed a
real-time RT-PCR approach to determine Fau transcript levels
in paired tumour and adjacent normal epithelial tissue from
women with ductal carcinoma of the breast. The analysis
shows a substantial and statistically significant reduction in
Fau mRNA levels in breast ductal carcinoma samples (Figure
2a), both for patients with grade Il disease (42% control value)
and for patients with grade lll disease (33% control value)
(Figure 2b).

A further independent cohort of 99 primary operable invasive
breast carcinomas presenting between 1986 and 1992 from
the Nottingham-Tenovus Series, with long-term clinical follow-
up, have been analysed previously using gene microarrays
[27]. Normalized Fau expression was dichotomized using
median levels and was associated with clinical outcome,
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Downregulation of Fau inhibits UV-induced apoptosis of T-47D breast cancer cells. T-47D cells were transfected with one of two different siRNAs
to Fau or with a negative control (NC) (Ambion code 4611) siRNA using RNAiFect (Qiagen). After 120 hours samples were collected for real-time
RT-PCR analysis, and trypsinized cells were either exposed to UV light (40 J/m2; closed bars) or were mock-irradiated (open bars), and then replated
in fresh medium. (a) Real-time RT-PCR analysis of Fau transcript levels. Data, expressed relative to the house-keeping gene ALAS1, are the mean +
standard error of the mean. *P < 0.05 versus NC siRNA (one-way analysis of variance (ANOVA) with Bonferroni's multiple comparison test); n = 3.
(b) The proportion of apoptotic cells was determined 48 hours post UV exposure by acridine orange staining and fluorescence microscopy. *P <
0.05, *P < 0.01 versus NC siRNA (UV-irradiated; one-way ANOVA with Bonferroni's multiple comparison test); n = 3. (c) Short-term cell viability
was determined 48 hours post UV exposure by dye exclusion. *P < 0.01 versus NC siRNA (UV-irradiated; one-way ANOVA with Bonferroni's multi-
ple comparison test); n = 3. (d) Long-term cell viability after UV irradiation was determined in further cultures by measuring colony formation; colo-
nies were counted 3 weeks post UV exposure. *P < 0.05, **P < 0.01 versus NC siRNA (UV-irradiated; one-way ANOVA with Bonferroni's multiple

comparison test); n = 4.
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Reduced Fau transcript levels in breast cancer are associated with poor patient survival. (@) RNA was isolated from tumour tissue and adjacent nor-
mal tissue (n = 21 patients), was reverse transcribed, and Fau and ALAST transcript levels were determined using Tagman assays and real-time
PCR using a relative standard curve protocol (cDNA from T-47D cells as standard). The Fau/ALAS1 transcript ratio is reduced in tumour tissue. *P
= 0.002; paired Student's t test. Inset: scattergram of data. (b) Fau transcript levels are also reduced in tumour tissue (closed bars) versus normal
tissue (open bars) in subsets of patients with grade Il and grade lll disease. *P < 0.05; n = 7 and **P < 0.001; n = 12; one-way analysis of variance
with Bonferroni's multiple comparison test. (c) Kaplan—Meier survival curve showing reduced overall breast-cancer-specific survival in invasive

breast cancer with lower Fau expression levels (P = 0.006).

revealing that lower gene expression of Fau was clearly corre-
lated with a significant reduction in the breast-cancer-specific
survival of patients (Figure 2c). The difference in survival of
those with high expression versus low expression of Fau is
both striking and statistically significant (P=0.006), indicating
that higher expression of Fau has a protective effect — as pre-
dicted for a candidate tumour suppressor.

Novel protein kinase MELK has, like Fau, been shown to regu-
late Bcl-G [22]. We therefore analysed the level of MELK
expression by real-time RT-PCR in matched breast cancer tis-
sue and unaffected breast epithelial tissue from the same
patients (Figure 3a). MELK expression is significantly upregu-
lated in the breast cancer samples, confirming and extending
the independent observations made by other laboratories on
unmatched breast cancer tissue and normal tissue [22,23].
This increase in MELK expression in cancer, together with the

observation that downregulation of MELK suppresses the
growth of breast cancer cells in vitro [22], is fully consistent
with the putative role of MELK as an oncogene. We therefore
analysed the relationship between MELK expression levels
and breast cancer patient survival in the same cohort of 99
patients used for the study on Fau expression (above). Higher
MELK expression shows a strong correlation with poor sur-
vival in breast cancer patients (Figure 3b), supporting the sug-
gestion that MELK expression is indeed an important factor in
the clinical progression of breast cancer.

MELK has already been shown to modulate Bcl-G activity in
breast cancer cells [22], but Fau has previously been shown
to modulate Bcl-G only in mammalian leukocyte cell lines [21]
(Pickard MR and Williams GT). We therefore used RNA inter-
ference to downregulate both Fau and Bcl-G in breast cancer
cells, in order to determine whether they act in the same path-
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Figure 3
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Increased MELK transcript levels in breast cancer are associated with
poor patient survival. (@) RNA was isolated from tumour and adjacent
normal tissue (n = 11 patients), was reverse transcribed, and MELK
and ALAST transcript levels were determined using Tagman assays
and real-time PCR using a relative standard curve protocol (cDNA from
T-47D cells as standard). The MELK/ALAS1 transcript ratio is elevated
in tumour tissue. *P = 0.022; paired Student's ¢ test on log-transformed
data. Inset: scattergram of data. (b) Kaplan-Meier survival curve show-
ing significantly reduced overall breast-cancer-specific survival in inva-
sive breast cancer with higher MELK expression levels (P = 0.001).

way in these cells. Downregulation of either Fau or Bc/l-G inde-
pendently had a significant inhibitory effect on UV-induced
apoptosis, confirming the importance of both of these mole-
cules in the induction of apoptosis (Figure 4). This effect was
clearly demonstrated both by reductions in the proportion of
cells staining for active caspases and by increases in the pro-
portion of viable cells (Figure 4b). Both graphs also show that
the simultaneous downregulation of both Bcl-G and Fau does
not produce any additive protection. This is again consistent
with both of these genes acting in the same pathway; that is,
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with the apoptosis-controlling effects of Fau being mediated
by Bcl-G.

The striking correlations between changes in Fau and MELK
expression and breast cancer progression focused attention
on their common target, Bcl-G, in order to determine whether
Bcl-G expression levels, or the post-translational modifications
by Fau and MELK, were more important in controlling its activ-
ity. Real-time RT-PCR analysis of Bc/-G expression in breast
cancer samples and matched normal samples indicated that
Bcl-G expression was indeed reduced in breast cancer sam-
ples (Figure 4c). Analysis of the relationship between Bcl-G
expression levels and breast cancer patient survival in the
cohort of breast cancer patients examined for Fau and MELK
(above), however, did not indicate any significant correlation
(Figure 4d). This suggests that the regulation of Bcl-G activity
by post-translational modification is more important than the
Bcl-G expression level itself in determining breast cancer
patient survival.

A notable combination of clinical studies and observations on
breast cancer cells in vitro converge on the functionally con-
nected Fau, Bcl-G and MELK molecules, and indicate that
they are of considerable importance in breast cancer progres-
sion. This makes them attractive candidates for use in progno-
sis, risk prediction and targeted prevention, as for other breast
cancer susceptibility genes [29]. /n vitro studies from our own
laboratory (Figures 1 and 4 above) and other laboratories [22]
demonstrate that changes in the expression levels of these
genes affect breast cancer cell susceptibility to apoptosis,
indicating that the cancer-associated changes in gene expres-
sion observed are of functional as well as diagnostic impor-
tance, and suggesting several targets for cancer therapies. As
a protein kinase, MELK is a particularly suitable target for drug
therapy, given the mounting successes from specifically inhib-
iting other kinases in cancer therapy [30,31]. In addition, the
interaction of BH3-only Bcl-2-related proteins such as Bcl-G
with other members of the Bcl-2 family is a crucial stage in the
induction of apoptosis and can be mimicked with small molec-
ular weight candidate drug molecules [32,33], emphasizing
the clinical importance of the investigation of these interac-
tions for breast cancer treatment.

Conclusions

The functionally inter-connected proteins Fau, Bcl-G and
MELK play critical roles in the control of apoptosis that are
central to breast cancer development and therapy. Reduced
expression of candidate tumour suppressor Fau in breast can-
cer cells is associated with poor patient survival. Increased
expression of candidate oncogene MELK is also associated
with poor prognosis. Both Fau and MELK act, at least in part,
through covalent modification of apoptosis controller Bcl-G.
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siRNA-mediated knockdown of Fau and Bc/-G expression attenuates UV-induced apoptosis in breast cancer cells. siRNA-mediated knock-
down of Fau and Bcl-G expression, either alone or in combination, attenuates UV-induced apoptosis of T-47D breast cancer cells. T-47D cells were
transfected with siRNA to Fau (FAU2), Bcl-G or negative control (NC). To observe the effects of combined knockdown, Fau plus Bcl-G siRNAs
were co-transfected (Fau + Bcl-G); the controls for this group were cells transfected with double the amount of NC siRNA (2x NC). At 120 hours
post transfection, samples were collected for the determination of Fau and Bcl-G transcript levels, and cells were either exposed to UV light (40 J/
m2) or were mock-irradiated. (a) Real-time RT-PCR analysis of Fau (left-hand panel) and Bc/-G (right-hand panel) transcript levels. Data, expressed
relative to the housekeeping gene ALAST, are the mean * standard error of the mean. *P < 0.05 versus NC siRNA, P < 0.05 versus 2x NC siRNA
(Bonferroni's multiple comparison test); n = 5. (b) At 48 hours post UV exposure, the proportion of apoptotic cells (left-hand panel) was determined
by a CaspaTag assay and fluorescence microscopy, and the short-term cell viability (right-hand panel) was determined by dye exclusion. Data for
mock-irradiated (light bars) and UV-treated (dark bars) cells are the mean * standard error of the mean. *P < 0.05 versus NC siRNA (UV-irradiated),
AP <0.05 versus 2x NC siRNA (UV-irradiated) (Bonferroni's multiple comparison test); n = 5. Note that knockdown of either Fau or Bcl-G alone or
in combination attenuates apoptosis induction by UV and that the extent of inhibition is similar for all three treatments. (c) Bcl-G transcript levels are
reduced in ductal carcinoma of the breast. RNA was isolated from tumour and adjacent normal tissue (n = 18 patients), was reverse transcribed, and
Bcl-G and ALAST1 transcript levels were determined using Tagman assays and real-time PCR using a relative standard curve protocol (cDNA from
T-47D cells as standard). The Bcl-G/ALAST transcript ratio is reduced in tumour tissue. *P = 0.0021; paired Student's ¢ test. Inset: scattergram of
data.(d) Expression of Bcl-G was analysed in a cohort of 99 breast carcinoma patients and was correlated with survival data, as previously reported
[27]. Kaplan—Meier survival curve showing no significant correlation between total Bc/-G expression levels and patient survival.
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