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The object of this series of studies is to develop a highly accurate statistical code for describing the planetary
accumulation process. In the present paper, as a first step, we check the validity of the method proposed by
Wetherill and Stewart (1989) by comparing the results obtained by their method with the analytical solution to
the stochastic coagulation equation (or to a well-evaluated numerical solution). As the collisional probability 4;;
between bodies with masses of im and jm (m being the unit mass), we consider the two cases: oneis 4;; & i X j
and another is 4;; o< min(i, j)(i 13 4 j13)(i + j). In both cases, it is known that runaway growth occurs. The
latter case corresponds to a simplified model of the planetesimal accumulation. We assumed that a collision of
two bodies leads to their coalescence. Wetherill and Stewart’s method contains some parameters controlling the
practical numerical computation. Among these, two parameters are important: the mass division parameter 8, which
determines the mass ratio of the adjacent mass batches, and the time division parameter €, which controls the size
of a time step in numerical integration. Through a number of numerical simulations for the case of 4;; =i x j, we
find that when § < 1.6 and € < 0.03 the numerical simulation can reproduce the analytical solution within a certain
level of accuracy independently of the size of the body system. For the case of the planetesimal accumulation,
it is shown that the simulation with § < 1.3 and € < 0.04 can describe precisely runaway growth. Because the
accumulation process is stochastic, in order to obtain reliable mean values it is necessary to take the ensemble
mean of the numerical results obtained with different random number generators. It is also found that the number
of simulations, N, demanded to obtain the reliable mean value is about 500 and does not strongly depend on the
functional form of 4;;. From the viewpoint of the numerical handling, the above value of §(< 1.3) and N.(~ 500)
are reasonable and, hence, we conclude that the numerical method proposed by Wetherill and Stewart is a valid
and useful method for describing the planetary accumulation process. The real planetary accumulation process is
more complex since it is coupled with the velocity evolution of the planetesimals. In the subsequent paper, we
will complete the high-accuracy statistical code which simulate the accumulation process coupled with the velocity

evolution and test the accuracy of the code by comparing with the results of N-body simulation.

1. Introduction

The numerical simulations of the planetary accumulation
process have been so far investigated by two different ways:
the N-body simulation and the statistical approach based
on the Smoluchowski equation. In the N-body simulation
(e.g., Lecar and Aarseth, 1986; Beaugé and Aarseth, 1990;
Aarseth et al., 1993; Kokubo and Ida, 1996) orbits of bodies
are directly integrated by taking into account coalescences
between them. Because of the limitation of computational
ability, the number of the bodies treated in this technique is
limited to only about 10000 bodies at most. However, in the
early stage of the planetesimal accumulation, the number of
planetesimals is inferred to be of the order of 10'° to 10'2
(Greenberg et al., 1978; Hayashi ef al., 1985). Even in the
late stage of planetary accumulation, destructive collisions
between planetesimals would create a large number of frag-
ments. Thus, it is clear that N-body simulation cannot cover
the whole process of the planetary accumulation though it is
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a powerful method under some suitable conditions.

In the stage where a huge number of bodies exist, it is
necessary to introduce a statistical approach of some kind.
In a statistical approach (e.g., Safronov, 1969; Greenberg
et al., 1978; Nakagawa et al., 1983; Ohtsuki ef al., 1988),
we usually describe the body system by the Smoluchowski
equation which is expressed as (Smoluchowski, 1916)

dN;y 1 ad
—- =5 2 AyNiN; = Ne ) AulNi, (1)
i+j=k i=1
where Nj is the number (or the number density) of bodies
with mass km (m; being a unit mass and, from now on, put
to be unity) and 4;; is the collisional probability between
bodies with masses i and j. In a planetesimal accumula-
tion process, the collisional probability 4;; is the function of
the relative random velocity between the planetesimals with
mass i and j and, thus, the velocity evolution of planetes-
imals must be calculated simultaneously with the accumu-
lation process. Since the statistical approach is based on a
number of assumption (e.g., spatially homogeneous distribu-
tion of planetesimals), the validity of the statistical approach

is not clear. Hence, the validity of the statistical approach
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should be investigated, for example, by the comparison with
N-body simulations.

Furthermore, though the Smoluchowski equation seems
to be rational, it is known that the Smoluchowski equation
breaks down in cases of runaway growth (e.g., for a colli-
sional probability 4;; = i x j). Inrunaway growth, relatively
large bodies grow faster than other smaller bodies because
of strong positive dependence of the collisional probability
on masses of bodies (Greenberg ef al., 1978; Wetherill and
Stewart, 1989; Barge and Pellat, 1991; Spaute et al., 1991;
Kokubo and Ida, 1996). Such rapidly growing bodies in the
high mass end of the mass distribution are called runaway
bodies. Even among the runaway bodies, larger bodies grow
faster than smaller ones and finally, one or a few bodies grow
prominently, i.e., runaway growth of a few bodies occurs.
Such a mode of the accumulation process cannot be intrin-
sically described by the Smoluchowski equation because it
stands on the assumption that there exist a sufficiently large
number of bodies in each relevant mass range. Hence, it is
necessary to introduce a new statistical approach if we try to
describe precisely runaway growth.

A more basic equation, which is valid in all types of the
accumulation processes, was derived by Marcus (1968) in
the field of atmospheric sciences. In his formulation, the
accumulation process is regarded as a Markov process and
a set of the body numbers in all mass bins {n;} is consid-
ered as a random variable where n; is the number of bodies
with mass i. His equation is the time development equation
of the probability with which the body system is in a state
{n;}. Bayewitzet al. (1974) and Lushnikov (1978) solved this
equation analytically in the cases of 4;; = land 4;; =i+,
i x j, respectively. On the other hand, in the field of plan-
etary sciences, Tanaka and Nakazawa (1993) independently
derived the same equation (they called it the stochastic coag-
ulation equation) and found analytical solutions in the cases
of 4;; =1,i + j,andi x j. Tanaka and Nakazawa (1994)
also showed that, for the three cases of 4;; mentioned above,
the Smoluchowski equation can approximately describe the
number of bodies in each mass bin as long as the body mass
is much smaller than a certain critical mass which depends on
the functional form of 4;;. Although the stochastic coagula-
tion equation gives an exact picture of the accumulation pro-
cess, it is hopelessly difficult to solve this equation for other
general cases of 4;; even by numerical procedures because
it is quite difficult to cover all possible states {n;} perfectly.
Thus, it is unsuitable to apply this equation to study of the
real accumulation process.

Wetherill and Stewart (1989) developed an alternative nu-
merical approach (this numerical method will be called
WS89 method in the present paper) which supplements the
defects of the Smoluchowski equation. This method were
presented in more detail in Wetherill (1990). In the Smolu-
chowski equation the number of bodies N; becomes a frac-
tional value though the number of bodies should be, of course,
an integer. To avoid this defect, in WS89 method the num-
ber of collisions during each numerical time step is forcely
assigned to be an integer by the Monte Carlo method when
the number of collisions is a fractional value and is smaller
than 2 x 10° (Wetherill and Stewart, 1993). This method has
two merits. One is that WS89 method guarantees the mass

conservation in any cases of 4;; while the Smoluchowski
equation violates it in some cases (e.g., 4;; =i x j). An-
other is that it does not take long computing time to calculate
evolution of the mass distribution compared with the case
where we solve the same problem by means of the stochas-
tic coagulation equation. In order to check whether WS89
method can succeed in describing runaway growth or not,
Wetherill (1990) compared the numerical result with the an-
alytical solution to the Smoluchowski equation for the case of
A;; =i x j where runaway growth occurs and found a fairly
good agreement between them. However, such a compari-
son would be inadequate because the Smoluchowski equation
cannot describe runaway growth of a few bodies mentioned
above. The numerical results should be compared with the
solutions to the stochastic coagulation equation.

Our principal aim in the present paper is to make clear the
validity and usefulness of WS89 method by comparing the
numerical results with the analytical solutions to the stochas-
tic coagulation equation. To do so, we first reconstruct the
algorithm according to Wetherill (1990) and confirm that our
computational algorithm can follow the accumulation pro-
cess within a sufficient accuracy for the cases where runaway
growth does not occur. Next, we simulate the coagulation
process for the case of 4;; = i x j (as well as the case of
the planetesimal accumulation). As a result, we show that
WS89 method can reproduce runaway growth precisely. In
the subsequent paper, we will complete the statistical code to
calculate growth of planetesimals coupled with their velocity
evolution. By comparing the results obtained by our statis-
tical code with those of N-body simulation, we will test the
accuracy of our statistical code. In Section 2, we describe the
stochastic coagulation equation and its analytical solution for
the case of 4;; = i x j. The numerical code is explained
in Section 3. As will be mentioned in Section 3, WS89
method contains two technical parameters to be assigned:
one is the mass division parameter, §, which is the ratio of
masses of adjacent mass batches and another is the time di-
vision parameter, €, which determines the time interval used
in the numerical integration. In Section 4, we compare the
numerical solution obtained by WS89 method with the an-
alytical solution to the stochastic coagulation equation for
the case of 4;; = i x j and show that WS89 method can
reproduce runaway growth precisely if the values of § and €
are chosen appropriately. In Section 5, we repeat the similar
comparison (as in the case of 4;; =i x j) for the case of a
simplified model of the planetesimal accumulation process
and find the appropriate ranges of § and € with which the
numerical simulation can give a precise picture of the plan-
etesimal accumulation. The summary of the results obtained
in the present study are shown in Section 6.

2. Stochastic Coagulation Equation and Its Solu-
tion

As a preparation of the later sections we review briefly the
stochastic coagulation equation and its analytical solutions
according to Tanaka and Nakazawa (1993). We consider a
system which consists of a finite number of bodies with the
total mass N. Since the unit mass m; is put to be unity,
a body mass is given by an integer from 1 to N. A state
of the mass distribution of the body system is expressed by
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an N-dimensional vector n = (ny, - - -, ny), called the state
vector, where n; is the number of bodies with mass i. Let a
function f(n; ¢) be a probability that the system is in a state
n at time ¢#. The time development of f'(n; #) is described by
the following equation:
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The first two terms of the right hand side of Eq. (2) represent
the probabilities of transitions from other states into a state n
by the coalescence between bodies with masses i and j and
between bodies with the same mass i. The remaining two
terms represent the probabilities of transitions from the state
n to other states. An expectation of the random variable 7
is given by

() =y mif (5 1), 3)

which corresponds to N for the case of the Smoluchowski
equation. Multiplying both sides of Eq. (2) by n;, and taking
a sum over all states, we obtain

d R
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where the bracket ( ) denotes the same meaning as that of
Eq. (3) and §;; is the Kronecker delta. If (n;(n; — J;;))
can be replaced by (n;)(n;), this equation coincides with the
Smoluchowski equation (1) (Lushnikov, 1978; Tanaka and
Nakazawa, 1993).

Analytical solutions to the stochastic coagulation equation
have been obtained for the special three cases of 4;;: 4;; =
1,i +j, andi x j (Bayewitz et al., 1974; Lushnikov, 1978;
Tanaka and Nakazawa, 1993). For the later convenience, we
present here the analytical solution for the case of 4;; =i x j:

(ny) =nCre " N0 £(1), (5)

where yCy is the binomial coefficients. Furthermore, f; ()
is a function which can be obtained by solving successively
the following equation,

() 1K _ij
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under the initial condition of f; (0) = §;; (note that all bodies
are assumed to have a unit mass initially, i.e., at t = 0). By
the detailed analysis of solution (5), it is known that only the
largest body grows prominently afterz = 1/N, i.e., runaway
growth of one body begins to occurs.

In the present study we pay especially attention to the
growth of the runaway body (i.e., the largest body) as well as
the second largest body because we are interested in precise
description of runaway growth. According to Tanaka and
Nakazawa (1994), the expectation values of the masses of
the largest body, M;, and the second largest body, M,, are
approximately given by

N ki—1
My =Y king) and  My=Y k(ng). (7)
k=ky k=k,

where masses k; and &, are defined, respectively, by

N N
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Using Egs. (5), (7), and (8), Tanaka and Nakazawa (1994)
evaluated M, and M, (for the case of N = 500) as a function
of the normalized time 1 defined by

n = Nt, )

where 7 is the time normalized by the mean coalescent time
at the initial stage. They also showed that the time develop-
ments of M and M, become almost independent of N if the
mass is normalized by N?/3 and the time is measured by the
renormalized time u defined by

N2/ 1

=—[n—14+ —= 10
RV TI ) (n " N2/3) 1o
(Note that u is the time normalized by the characteristic time
during which the mass of the largest body increases by a
factor of e just when runaway growth starts). Thus, in order
to see the detailed behaviors of M| and M, around the stage
of n = 1, we will frequently use the M/N?/?> — u diagram in
the later section.

3. Preparation of the Numerical Code
We reconstruct the numerical code, which enables us to
simulate the accumulation process, as closely as possible af-
ter WS89 code (Wetherill and Stewart, 1989, 1993; Wetherill,
1990). Let N (m, n) be the mass distribution function of bod-
ies at time 1 where 7 is the normalized time defined by Eq.
(9). In order to calculate numerically the time variation of the
mass distribution function N (m, n), we divide the mass co-
ordinate discretely into a number of batches in a logarithmic
way:
m,-+1=8m,-, i:l,---,}’lb—l

(In

where m; is the representative mass of batch i and ny, is the
total number of batches. Furthermore, § (>1) is a constant
of the order of unity which will be called the mass division
parameter from now on. If the value of § is too large, physi-
cally realistic description of the accumulation process might
fail. If it is very close to 1, on the other hand, we are forced
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to prepare a large number of numerical batches and spend
long computing time though the simulation would describe
the accumulation process precisely. Thus, we have to choose
the value of § appropriately in the numerical simulations.

Numerically, the mass distribution function is expressed
by a set of the numbers of bodies contained within batch
i, N(m;,n) (which, from now on, will be abbreviated as
N;). The growth of bodies belonging to batch i is treated
in two ways. If the mass of the merged body, m; + m, is
smaller than (m; + m;,1)/2, the body still belongs to batch
i; the number of bodies in batch j is decreased by v;; and
the number of bodies in batch i remains unchanged whereas
the total mass in batch i is increased by v;;m ; and the total
mass in batch j is decreased by v;;m ;. In the above, v;; is
the number of collisions during the (numerical) time interval
At(= An/N) between bodies belonging to a target batch i
and a projectile batch j (i > j) and is given by

_ Ni(N; = &)

Vi = AlAt
J 1+8U J

(12)
On the other hand, when the combined mass, m; + m, is
greater than (m; + m;4+1)/2, the merged body should be
placed to a higher batch (say, batch k); the numbers of bod-
ies in both batches i and j are decreased by v;; and the total
masses in batches i and j are decreased by v;;m; and v;;m ,
respectively. Furthermore, the number of bodies in batch &
is increased by v;; and its mass is increased by (m; +m ;)v;;.

In the Smoluchowski equation, at least mathematically, N;
is not prevented from having an unphysical fractional value.
Especially, for the case where V; is relatively small, N; needs
to be an integer. In order to guarantee this, Wetherill and
Stewart (1993) introduce the following device. When v;; is
equal to or greater than 2 x 10°*, we permit v; ; has a fractional
value. But, when v;; is smaller than 2 x 10°, we reevaluate
v;; so that v;; becomes an integer, that is,

v, =[]+ B. (13)

where v/ ;18 the reevaluated value we use, [v;;] is integer part
of v;; and B is given by

I, vij — [vij] =2 ¢,

0, vi; — [vij] < ¢.

(14)

In the above ¢ is a random number between 0 and 1 generated
by the random number generator.

In cases of runaway growth, spaces between batches be-
comes wide as the accumulation process proceeds. When the
mass ratio between two batches is larger than a certain value,
we create empty batches. Furthermore, another device is in-
troduced to describe properly runaway growth. If the mass
of the runaway body exceeds the half of the total mass, we
regard the runaway body as an independent body and pick it
off from the mass distribution. From Eq. (1), we can readily
derive the growth equation of the independent body (i.e., the
runaway body) expressed as

er nzb
=S idi, N,
dt i=1

(15)

*the maximum integer expressed by 32-bit computer memory, i.e., 23!.

where M, is the mass of the runaway body.

Wetherill (1990) did not describe in detail how to choose
arelevant size of a time step in the numerical simulations. In
our study, the time step An is determined by the following
way. According to the general rule of numerical integrations,
An must be chosen so that during An the change of the par-
ticle number A N; is much smaller than the particle number
itself, V;, in any batches. Furthermore, the increment of the
mass AM,; of the runaway body must be also much smaller
than its mass M, during An. Thus, in the present study,
we choose the time step An so as to satisfy the following

condition:
. Ni Mr
An=e¢ xmin| —, —,0.1]),

i r

(16)

where dot denotes the derivative with respect to the normal-
ized time 1 and € is a parameter, called the time division
parameter, to be assigned before the numerical simulation.
Note that min(N; /N;) < 0.1 atp ~ 1.

In order to check whether our code can reproduce WS89
code or not, we simulate the same problem under the same
condition as that of Wetherill (1990), that is,

and N =1 x 10%.
(17)
As for § and €, we put to be § = 1.1 and € = 0.01 (8
is the same value as that adapted by Wetherill (1990) but,
as mentioned above, the value of € is taken independently).
For the case of 4;; = i + j, the analytical solution to the
Smoluchowski equation is found as (Trubnikov, 1971)

Ajj=i+j, N(m;0)=Ng;,

k—1

k
Ny =N——e (1 —e M exp[—k(1 —e™™M)].

0 (18)

Note that, in this case, comparison between our numerical
solution and the analytical solution to the Smoluchowski
equation is meaningful because the Smoluchowski equation

I
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Fig. 1. Comparison between the analytical solution (curves) and the numer-
ical solution (circles) for the case of 4;; =i + j. The mass distribution
functions N (M, ) multiplied by M? are shown for typical evolutionary
times 7. Parameters are puttobe § = 1.1, € = 0.01,and N = 1 x 10%.
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gives the precise solution of the accumulation process for
A;; =i + j aslong as the mass of the largest body is much
smaller than the total mass (Tanaka and Nakazawa, 1994). In
Fig. 1, we illustrate the mass distribution functions obtained
numerically at typical epochs as well as the corresponding
analytical solutions. From this figure, we can see that the nu-
merical simulation can reproduce the analytical solution and
find the almost same accuracy of the numerical simulation
as that of Wetherill (1990)**.

4. Comparison between Numerical and Analytical
Solutions for the Case of 4;; =i x j
4.1 Method of comparison
In order to check the validity of WS89 method, we perform
numerical simulations using our numerical code for the case
of A;; =i x j where runaway growth inevitably occurs. The
initial condition is taken as

N = Ny, (19)

where N is the total number of bodies with unit mass. Analyt-
ical solution to the stochastic coagulation equation is already
presented in Section 2. We also mentioned runaway growth
of one body starts at n >~ 1 (i.e., t =~ 1/N).

We compare the time evolution of the masses of the largest
and the second largest bodies, M| and M,, obtained from the
numerical simulation with those obtained from the solution
to the stochastic coagulation equation. In the early stage
(i.e., n < 1), there exist a large number of bodies in any
relevant mass batches and, then, the Smoluchowski equation
is still valid (Tanaka and Nakazawa, 1994). Wetherill (1990)
showed that their numerical result agrees with the solution
to the Smoluchowski equation. Thus, in the early stage, we
can use WS89 method as long as we choose appropriately
the technical parameters § and €. In runaway growth, as
the accumulation process proceeds, the number of runaway
bodies becomes a few or one. Generally, because of its sta-
tistical property, the Smoluchowski equation cannot describe
the subsequent stage where a few bodies grow prominently.
Thus, to check validity of WS89 method, we compare the re-
sult of WS89 method with the analytic solution to the stochas-
tic coagulation equation in the case of 4;; = i x j which
is the only case where the solution is known and runaway
growth occurs. In order to check whether WS89 method
reproduces the solution to the stochastic coagulation equa-
tion, the check should be done in the late stage, where the
Smoluchowski equation breaks down. Note that the case of
A;; = i x j has a special property that, for a sufficiently
small mass k, the solution (nj) to the stochastic coagula-
tion equation agrees with that to the Smoluchowski equation
even in the late stage (Tanaka and Nakazawa, 1994). As
runaway growth of one body proceeds, except for the largest
one, there exist only sufficient small bodies of which num-
bers is well described by the Smoluchowski equation in the
case of 4;; =i x j. Then, by subtracting the total mass of
the small bodies from the total mass in the system, we also
obtain the precise value of the runaway body’s mass from
the Smoluchowski equation in this case. In this way, for

**Wetherill (1990) seems to mislabel values of the abscissa in Fig. 4. The
values should be from 0 to 13, not from 2 to 15.

A4;; =i x j, the Smoluchowski equation also can describe
the stage where runaway growth of one body proceeds suf-
ficiently, though it cannot describe the stage where runaway
growth of one body starts (i.e., around n = 1). Hence, we
make a comparison between the results of WS89 method and
the analytic solution to the stochastic coagulation equation
especially in the stage where runaway growth of one body
starts.

In the comparison, we pay attention to the time develop-
ment of the masses of the largest and the second largest bod-
ies, M, and M,. For the stage where runaway growth starts,
it is meaningless to compare the numerical result obtained
from a single run with the analytical solution because M,
and M, obtained from the stochastic coagulation equation
are expectation values. In Fig. 2a, we show the time varia-
tion of M, (circles) and M, (triangles), which are obtained
from a single run, for the case of N = 1 x 103, § = 1.3, and
€ = 0.01 as a function of the renormalized time u defined
by Eq. (10). In this figure two solutions are quite differ-
ent from each other: both M, and M, obtained from the
numerical simulation change discontinuously owing to the
coalescence with other bodies whereas those obtained from
the stochastic coagulation equation change smoothly since
they are expectation values. Hence, the analytical solution
should be compared with the ensemble mean obtained from
a large number of independent runs with different random
number generators. The ensemble mean of a body mass at
time 1 (or u), M, is given by

| O
M:ﬁ;M’,

c =

(20)

where N, is the number of independent runs and M’ is the
body mass at time 7 obtained by the i-th run. In Fig. 2b,
we show the ensemble means of M and M, obtained by per-
forming 1000 runs (i.e., N, = 1000). The ensemble means of
M, and M, calculated from the numerical simulation agree
with the analytical solutions to the stochastic coagulation
equation even in the stage where runaway growth of one
body starts. The comparison between the numerical and an-
alytical solutions in general view is also shown in Fig. 2c.
In both early and late stages, two solutions agree with each
other. This means that WS89 method is able to describe pre-
cisely the accumulation process if we use suitable parameters
§ande.

The technical parameters § and € govern essentially the
degree of accuracy of the numerical solutions. If we can find
their values with which the numerical simulation reproduces
the analytical solution within a certain level of accuracy and
if these values are suitable for actual computational runs in a
sense of the needed memory size as well as the elapsed com-
puting time, then we can say that WS89 method is valid and
useful. Hence, the present aim is to find a suitable set of § and
€. To find appropriate ranges of § and €, we make a compar-
ison between two solutions in a quantitative manner. We pay
our attention to the following five quantities, which charac-
terize the time development of M| and M, (the five quantities
are illustrated schematically in Fig. 3 in which the abscissa
is measured by u to magnify the picture around n = 1). As
for the largest body, two quantities are picked up: one is the
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M/ N%3

Fig. 2. The growth of the mass of the largest body M (circles) as well as
that of the second largest body M (triangles) for the case of 4;; =i x j
(parameters are puttobe § = 1.3, ¢ = 0.01, and N = 1 x 10°). Panel (a)
shows M| and M, obtained by a single run while panels (b) and (c) show
those evaluated as the ensemble means of 1000 independent runs. The
vertical axis shows the mass normalized by N?/3 and abscissa denotes
the renormalized time u. In each panel, expectation values of M and M
evaluated by the analytical solution are also shown by solid and dashed
curves, respectively.

average growth speed, M, which is defined by the reciprocal
of the time interval between two epochs, M/N?/* = 1 and 2.
Another is the time, 1, (corresponding to u;), at which the
mass of the largest body becomes three times as large as that
of the second one; 1, is introduced to see in detail the con-
nection between masses of the largest and the second largest
bodies. As for the growth of the second largest body, we
consider three quantities, that is, the mass, M; max, the time,
N2max (corresponding to #;max), and the time interval, An,
(corresponding to Aus). Here, Mj . is the maximum mass
of the second largest body (note that, as shown schemati-
cally in Fig. 3, the mass of the second largest body initially

n
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Fig. 2. (continued).
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Fig. 3. Five quantities which are used for the comparison between the

numerical and the analytical solutions in our present study (Note that
as the abscissa we use u in place of 7 in order to magnify the picture
around the stage of beginning of the runaway growth). In the figure, M,
is the average growth speed of the mass of the largest body and u; is
the time when the mass of the largest body, M, becomes three times as
large as that of the second largest body, M,. Furthermore, M3 pm,x and
U7 max are the maximum value of M, and the instant when My = M yax,
respectively, and Au; is the period, during which M, > %Mz max. Note
that 11, 72 max, and Any correspond to u, U2 max, and Auz, respectively,
through Eq. (10) or (31).

increases and afterward tends to decrease), 17, max 1S the time
at which the mass of the second largest body attains the max-
imum value, and An, is the time interval during which it
stays with mass greater than M5 nax /2.

The degree of accuracy of these quantities is measured by
the relative errors defined by (X, — X,)/ X, where X}, and X,
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Table 1. Relative errors of the five quantities in typical two cases, § = 1.3 and 3.0. In both cases, N and ¢ are put to be 1000 and 0.01, respectively.

P M,

MZ max A 2 m 112 max

1.3 0.057 —0.066 —0.011 0.0070 —0.022

3.0 0.61 0.0037 —0.33 0.24 0.21
are the quantities obtained from the numerical and analytical a
solutions, respectively. As a level of accuracy, we demand 1
the following condition:

—a— M
2max
X, n - X, a
A <é (21) g 0.5F —F—An,

‘ x
where -

. 3 o

0.3, for My, M5 ., and Anp, @) o4 0
= [}
0.04, for n; and 13 max. ><=
Usually, the relative errors of 1 and 7, max are small. There- -0.5¢ 4
fore, in Eq. (22), we demand a high level of accuracy for -0.01
these relative errors. g=U.
4.2 Validity check of Wetherill and Stewart’s method -1 ,
According to the method of comparison mentioned in the 0.1 1 2

last Subsection, we investigate in detail the validity of WS89
method by simulating the accumulation process for the case
of 4;; = i x j where runaway growth inevitably occurs in the
course of accumulation. We adopt N. = 1000, which will be
justified later in Subsection 4.3. We first show the typical two
examples of numerical simulations with N = 1000, i.e., the
cases of (8, ¢) = (1.3,0.01) and (3.0, 0.01). In the former
case, the simulation satisfies the demanded level of accuracy
mentioned above and the latter is the case where we cannot
obtain precise numerical results. Numerical errors in the two
cases are tabulated in Table 1. For the case of § = 1.3, the
errors of all quantities are suppressed sufficiently under the
level of accuracy demanded by inequality (21). For the case
of § = 3.0, however, the errors are too large: especially, the
relative errors of n; and 77 max, are 0.24 and 0.21, respec-
tively. Thus, we cannot accept the result of this simulation
as a solution though the error of M5 .« happens to be small.
For the case of § = 3, the mass distribution is described
by only 6 batches. Hence, it is hard to express the exact
accumulation process by such a small number of batches.
We see from these two examples that, as a reasonable result,
the simulations with small § could describe accurately the
accumulation process.

In order to see in detail how the relative errors depend on
the adapted value of §, we have made 10 simulations with
various values of § (N and € are fixed to be 1000 and 0.01,
respectively). As illustrated in Fig. 4a, when § is smaller
than 2.9, the relative errors of M, and An, are within the
demanded level. When § becomes large beyond 2.9, the
relative errors increase suddenly and, at the same time, the
results of the simulation do not satisfy the condition (21). On
the other hand, the errors of 1, nax and 1, are at a low level
as long as we are concerned with the case of § < 1.5. For
8 > 1.5, they begin to increase almost monotonously and
rapidly with an increase in § (see Fig. 4b). When § exceeds

(X -X) /X,

o-1

Fig. 4. The behaviors of the relative errors of M1, M>max, An, (panel (a)),
N1, and N2 max (panel (b)) against § — 1 for the case of N = 1000 (e
is fixed to be 0.01). The shaded region denotes the admissible range of
errors demanded by condition (21).

1.9, the errors of 1, max and 7, go out of the admissible range
given by the inequality (21). Thus, it is ascertained that,
for the case of € = 0.01, the numerical simulation is valid
because it can reproduce approximately the accumulation
process (but within the demanded level of accuracy) when
8 is equal to or less than 1.9. Such a value of 4, beyond
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which the simulation fails, is called the critical value of §
and denoted by . For the case of ¢ = 0.01 and N = 1000,
we have §. = 1.9. In general, the value of §. is determined
in Fig. 4b instead of Fig. 4a.

The accuracy of the numerical simulation depends not only
on the mass division parameter § but also on the time division
parameter € which determines the time increment A7 (see
Eq.(16)). Asseen from Fig. 4, if we choose a very large value
of &, the numerical solution departs far from the analytic one
even if € is chosen appropriately. The same would be true
for €: for the value of € larger than a certain critical value €.,
the error of the numerical solution is beyond the demanded
level of accuracy even if § is properly chosen. The numerical
solution would reproduce accurately the analytical one if both
6 and € are put to be sufficiently small. Hence, there exists
a certain curve on the § — € plane such that the error of the
numerical solution is suppressed within the demanded level
of accuracy as long as a set of § and ¢ is inside the region
enclosed by the critical curve (which from now on is called
the §. — €. curve). In order to find the §. — €. curve, we
have made numerical simulations for the various values of
8 (from 1.1 to 2.0) and € (from 0.01 to 1.0). The 5, — €.
curve obtained from the simulations is shown in Fig. 5 for
the case of N = 1000. From Fig. 5, we see that, if § is
smaller than 1.5, the maximum admissible value of € (i.e.,
€.) 1s 0.1 and that €. decreases suddenly with an increase in
8 when § > 1.5.

The §. —e, curve depends on the total number of the system
N. Inorder to see the dependence of the curve on N, we made
two kinds of simulations: one is simulations to find §; as a
function of N under the fixed value of € (= 0.01) and another
is those to find €, under the fixed value of § (= 1.5). The
results of the former and the latter simulations are shown in
Figs. 6a and b, respectively. Both §. and €. decrease with an
increase in N and tend to converge to certain values, . = 1.6

10+
o
w
102
0.1
Fig. 5. The §; — €. curve for the case of N = 1000 (solid curve). The

numerical simulation with § and €, which are chosen from the region
enclosed by this curve, could describe the accumulation process within
the demanded level of accuracy as long as N < 1 x 10%. The same curve
is also drawn for the limiting case of large N (dashed line).

>~
1
O
0
€=0.01
01 ) 1 FTTI r 1
10 10¢ 105 10s 107 108
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o
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0.01 : b :
108 10+ 105 108 107  10s
N

Fig. 6. The behaviors of §; (panel (a)) and €. (panel (b)) against the total
body number of the system N. In panels (a) and (b), the other parameters
are fixed to be € = 0.01 and § = 1.5, respectively.

and €, = 0.03. This convergence means that we can find an
appropriate set of § and € irrespective of the size of the body
system if it is large enough. In Fig. 5 we also show the
8. — €. curve in the limit of large N presumed from the above
results. Though it is difficult to understand quantitatively the
behaviors of €, and §, shown in Fig. 6, we say in a qualitative
sense that their behaviors are natural: for the case of small V,
a numerical simulation is accomplished with the relatively
small number of time steps so that large values of § and € are
admitted.
4.3 Sample number for evaluating the ensemble mean
As seen in Fig. 2a, the numerical solution obtained by a
single run is quite different from the analytic solution (or
more exactly, the expectation value obtained from the solu-
tion to the stochastic coagulation equation) because of the
large dispersion. In order to see the average behavior of the
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particle growth by the numerical simulation, we take the en-
semble mean, performing many runs with different random
number generators. We examine here a suitable choice of
the number of independent runs for evaluating the ensem-
ble mean. For various numbers of the runs (N, = 10, 100,
500, 1000, 2000, and 4000), we have calculated the ensemble
means of the five quantities introduced in Subsection 4.1 and
evaluated their relative errors (§ and € are fixed as § = 1.3
and € = 0.01). Figure 7 shows the dependence of the rela-
tive errors of M 1, Mymax, and An, (Fig. 7a) and of 1, and
N2 max (Fig. 7b) as a function of the number of simulations N..
From this figure, we can see that the relative errors converge
if we average the quantities over 100 (or 1000) simulations
for the case of M|, My max, and Any (or n; and 9y max). All

n2ma\x
—E—n
 0.05 ! ]
X
~~
.
>< 0' .
IC
S
-0.05} §5=13
€=0.01
-0.1 L L
10 102 10° 10

Fig. 7. The dependences of the relative errors of Mi, My max, A2 (panel
(a)), n1, and Namax (panel (b)) on the number of independent simula-
tions, Nc. The other parameters are put to be § = 1.3, ¢ = 0.01 and
N=1x10%.

of the numerical results in Subsection 4.2, are evaluated by
the ensemble means averaged over 1000 independent runs,
which is justified by the above result.

Strictly speaking, the number of samples N, should be
determined on the basis of the ratio of the dispersion to the
mean value. As an example, we consider the averaged value
of the mass of the largest body, M; (given by Eq. (20)), and
its standard deviation, M, s, which is defined by

1 &y
Mig= | =Y (M — M) (23)
Ne i=1

In Fig. 8, we show the ratio of the standard deviation to the
averaged value evaluated from 1000 numerical simulations
(i.e., N = 1000) in which N, 8, and € are put to 1 x 10°,
1.2, and 0.01, respectively. Just before the start of runaway
growth (i.e., M, /N?/3 is about 0.1 and the renormalized time
u is about —5 (see also Fig. 2a)), M 5/ M| is relatively small.
But in the vicinity of M;/N%3 ~ 1 (u ~ 0), the ratio rises
almost to 0.6. Afterwards, the ratio decreases gradually and
becomes smaller than 0.1 after M;/N?® > 7 (u = 3). As
conjectured from Fig. 2a, this behavior of M| /M| means
that the stochastic property becomes distinct around the stage
of the beginning of runaway growth.

From the above results, we can evaluate the number of
simulations N, demanded for obtaining the reliable mean
value M, (within an accuracy of, say, 3 percent) as

1 M\
Ne=|—=—-] .
0.03 M,
Equation (24) yields N. = 400 and 11 when M;/N?3 =1
and 7, respectively. Therefore, 1000 simulations used in

Subsection 4.2 is sufficient. It is worthwhile to note that, as
readily conjectured, the behavior of M, s/ M; shown in Fig. 8

24

1 T T T
08¢ 1
s  06f -
o
s 04} .
0.2¢ 1
0 _2. .....1-1. IO |1 5
10 10 10 10 10
M1/ N 2/3
Fig. 8. The ratio of the standard deviation to the expectation value of

the mass of the largest body as a function of M;/N?/3 (for the case of
Aij =1 x j). The other parameters are put to be § = 1.2 and € = 0.01.
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would not be general but depends on the functional form of
adopted 4;;. As to this point, we will discuss in Section 5.

5. The Case of Planetesimal Accumulation

In the previous section, we considered the case where the
collisional probability 4;; is proportional to the square of
mass, i.e., 4;; =i x j (note that we say, for example, A4;; is
proportional to mass when 4;; =i + j). In this section, we
derive a suitable set of § and € for describing the planetesimal
accumulation process. As readily conjectured, when 4;;
is proportional to a power of mass with a large exponent,
runaway growth of one body starts early (Wetherill, 1990)
and the mass of the runaway body increases rapidly. In such
cases, the numerical simulation becomes hard and strong
conditions would be needed for obtaining a precise numerical
solution (speaking in our present language, 8. and €. would
become small). In order to confirm the validity of Wetherill
and Stewart’s method for the planetary accumulation process,
we examine appropriate ranges of § and € for the collisional
probability in the planetesimal accumulation.

If we neglect the effects of the solar gravity and assume a
uniform distribution of planetesimals, we describe the plan-
etesimal accumulation process in terms of the surface number
density of planetesimals instead of the number density and
then A4;; is approximately given by (Makino et al., 1998)

UCZSC
vz vij ) (25)

ij

T
Aij=———i+r)*{1
j max(H,»,Hj)(r + 7)) { +

where 7; is the radius of a planetesimal with mass i, v;; is
the relative velocity between bodies with masses i and j, and
Vese 18 the escape velocity given by (note that the unit mass

is 1)
o — 2GGA + )
€sc — ]"i +rj .

The scale height of planetesimal swarm with mass i, H;, is
proportional to the mean random velocity v; of bodies with
mass i. We consider the low velocity case (i.e., v;; <K Vesc)
where gravitational focusing is effective. It is assumed that
the mean random velocities of planetesimals are determined
by the energy equipartition between them, i.e., v; oc i~!/?
(Kokubo and Ida, 1996) and that the relative velocity v;; is
determined by the larger mean random velocity as v;; =
max(v;, v;). From the above assumptions, we have for 4;;

(26)

Ai; = o minG, )G+ j'P)G0 + ), 27)
where « is a certain constant independent of mass. The
above collisional probability has the mass dependence as
A;; o (mass)’? if bodies mainly captures the others with
comparable masses to itself, which is satisfied for runaway
bodies in this case.

As in the case of 4;; = i x j, we scale the mass and
time to describe the stage when runaway growth of one body
starts. Makino et al. (1998) approximately solved the Smolu-
chowski equation for the collisional probability given by Eq.
(27). Their approximate mass distribution is given by

(ne) = %Nk*w (28)

for masses k smaller than the high mass end of the distribu-
tion. The above mass distribution agrees well with the results
of N-body simulation (Kokubo and Ida, 1996) and the sta-
tistical simulation (Wetherill and Stewart, 1989, 1993) for
the case that collisional fragmentation is not considered. As
the accumulation process proceeds, the high mass end of
the mass distribution becomes large and the number of plan-
etesimals in the high mass end decreases. As a result, the
mass ratio of the largest planetesimal to the second largest
one increases and runaway growth starts. We consider that
runaway growth of one body starts when the largest body be-
comes twice massive as the second largest one. Using Eqgs.
(7) and (28), we roughly evaluate the mass of the largest
body at the starting time as M| ~ N3/, The starting time is
also evaluated as n = Nt ~ 0.2«~' from the Smoluchowski
equation. Using Eq. (15), we obtain the growth rate of the
largest body as

dM, 26 —1a71/5 3 44/3
— =" _a 'NM.

dy 57 @)

As readily seen from the above estimation, it is convenient
to introduce the following scaled mass M and time u:

(30)
€2))

If we use M and u, the scaled growth rate of the largest body,
dM /du, does not depend on the total mass N and «. That
is, the growth curve of the largest and second largest bodies
in the u — M/N?3/3 plane is almost independent of N.
InFig. 9, we show the growth curves of the runaway bodies
which are obtained from numerical simulations with various
8 (8 =12,1.5,and 2.0) and € = 0.01 (N being put to be

M = M/N35,
u = N*an - 0.2).

1()25"‘I"'I"'I"'I

Fig. 9. The growth of the largest and the second largest bodies numerically
found for the case of 4;; = a xmin(i, j)(i'/>+;/3)(i+ /). The vertical
axis shows the mass normalized by N3/3. The masses are obtained by
ensemble means of 1000 runs and the abscissa is the renormalized time,
u, given by Eq. (31). Solid, dashed, and dotted curves present the solu-
tions obtained by the numerical simulations with § = 1.2, 1.5, and 2.0,
respectively. Other parameters are put to be € = 0.01 and N = 1 x 10,
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1000). The simulations with § = 1.2 and 1.5 give almost the
same growth curves of the largest and the second largest bod-
ies. Hence we presume the precise solution to the stochastic
coagulation equation. For the case of § = 2, the starting time
of runaway growth of one body delays compared with that of
the simulation with § = 1.2: the time at which the mass of
the largest body becomes N3/3 and the time at which the sec-
ond largest body experiences its maximum mass are shifted
toward positive u by a factor of 0.5. In the previous case
(where 4;; =i x j), we frequently observed the time delay
due to large § and, hence, such a feature would be general.

Now, we make a quantitative comparison by the same way
as Section 4. Instead of X, calculated from the analytical
solution, we use the values X, which is obtained from the
simulation with § = 1.1 and € = 0.01. Since we know that
the simulations with § smaller than 1.5 give the almost same
solutions and that the simulation with small § can describe
the accumulation process precisely, it would be proper to
replace X, by X.. Demanding the level of accuracy given by
inequality (21) and Eq. (22), we obtain the 6. —€, curve for the
caseof N = 1000 whichis showninFig. 10. The §.—e. curve
behaves similarly with that of the case of 4;; = i x j (Fig. 5),
though the values of §. and €., become small: especially, the
value of €, becomes very small (¢, = 0.07) compared with
the previous case even when § is as small as 1.1 or 1.2 and,
furthermore, decreases suddenly with an increase in § when
6> 1.3.

In Fig. 11, we illustrate how &, depends on the total mass
of the body system N (e being fixed to be 0.01) as well as for
the case of €. (8 is fixed to be 1.2). As seen from the figures,
3. and €, decrease with an increase in N and converge to 1.3
and 0.04, respectively, in the limit of large N. The behaviors
of 8. and €. are observed similarly to the case of 4;; =i x j.
However, compared with the limiting values of §. and €. for
the case of 4;; =i x j (6 = 1.6 and €. = 0.03), 4 is rather
small in this case although €, is almost the same. This is due
to the fact that 4;; depends strongly on the mass in this case.
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Fig. 10. The same as Fig. 5, but for the case of 4;; = a x
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Fig. 11. The same as Fig. 6, but for the case of 4;; = o x

min@, /)G + 713G + j).

Since we assume that the energy equipartition is attained be-
tween planetesimals, the collisional probability we adopted
depends on mass as the power law with the largest exponent
and, as a result, runaway growth becomes fast. On the other
hand, Wetherill and Stewart (1989, 1993) calculate the time
evolution of very broad mass distribution coupled with the
velocity evolution. Their results show that such broad mass
distributions do not evolve toward a simple power law and
that the velocity is much weaker function of the mass than
one would predict from energy equipartition. As a result, the
exponent of the collisional probability in the real accumu-
lation process becomes smaller than that of our simplified
model. Therefore, in order to simulate, with sufficient ac-
curacy, all the stages of the planetesimal accumulation, the
adopted values of § and € must be smaller than 1.3 and 0.03,
respectively.
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Fig. 12. The same as Fig. 8, but for the case of 4;; = o x

minG, /)3 + 713G + j).

The ratio of the standard deviation M| ¢ (given by Eq. (23))
to the mean value M, (given by Eq. (20)) of the mass of the
largest body is illustrated in Fig. 12 as a function of M,/ N3/3.
In a qualitative sense this figure is quite similar to Fig. 8: the
ratio has a maximum value in the vicinity of M; /N3 =1
which corresponds to # = 0 and decreases toward the di-
rection of large |u|. However, the peak value of M, s/ M, is
as large as 0.75 in this case (in the case of 4;; =i x j the
peak value is about 0.6). As mentioned in the Subsection
4.3, My s/ M| becomes large when 4;; is given by the power
law of the mass with a high exponent. Thus, in the numerical
simulation of the planetary accumulation by the use of WS89
method we must take the ensemble mean over about 500 in-
dependent simulations if we are interested, especially, in the
planetary growth around the stage of beginning of runaway
growth.

6. Conclusion and Discussion

In the present study we checked the validity and usefulness
of the numerical method, proposed by Wetherill and Stewart
(1989), for describing the late stage of planetary accumula-
tion by comparing the numerical solution of WS89 method
(or more exactly, the ensemble mean of a sufficiently large
number of simulations) with the analytical solution (or the
well-evaluated numerical solution). As mentioned in Sec-
tion 3, our numerical code, which was reconstructed on the
basis of WS89 method, is optimized by the two technical
parameters § and €: § is the ratio of the masses of adjacent
mass batches and € is the parameter determining the time
interval in the numerical time integration.

We considered the two cases, 4;; = i x j and o x
min(i, j)(i'/? 4+ j'3) (i + j), as for the collisional proba-
bility. The latter case corresponds to the simplified model
of the planetesimal accumulation. In the former case the
analytic solutions to the stochastic coagulation equation is
known while in the latter case no analytic solution is found

yet. In both cases runaway growth starts at a certain time.

By the comparison between numerical and analytical so-
lutions for the case of 4;; =i x j, we confirmed that the en-
semble mean obtained from WS89 method reproduces well
the analytical solution when both § and € are sufficiently
small. Furthermore, we found that the numerical simulation
can describe the accumulation process within an admissible
level of accuracy when the values of § and € are smaller than
certain critical values (which are denoted by . and €, re-
spectively). The critical values 8. and €. are given by 1.6 and
0.03, respectively when the initial number of particles N, is
large enough.

We examined the critical values §. and €., in the sim-
plified case of planetesimal accumulation (i.e., 4;; = «a x
min(i, j)(i'/* + j'3)(i + j)). Since no analytical solution
exist in this case, we adopted a numerical solution with suffi-
ciently small § and € as a standard measure. Then, the critical
values were obtained as §. = 1.3 and €. = 0.04, irrelevant
of the initial number of particles. Compared with the case
of 4;; =i x j, 8. is somewhat small while €. is almost the
same. This would be due to strong dependence of 4;; on
mass (4;; o (mass)’/?).

Since WS89 method contains the stochastic procedures,
we examined how large the dispersion of the results is and
how many runs are needed for obtaining a reliable ensem-
ble mean. From the ratio of the standard deviation to the
expectation value, which are obtained by the numerical sim-
ulations, we found that the demanded number of runs is as
large as 400 (or 500) for the case of 4;; =i x j (or 4;; =
axmin(i, j)(i'? + j/3)(i + j)) around the time when run-
away growth starts. But, before that, the demanded number
of runs is rather small (10 or so).

In real planetary accumulation, the dependence of the col-
lisional probability 4;; on masses of colliding particles would
be weaker than that we adopted (4;; (mass)’’?). Gen-
erally, 8. and €. become larger when 4;; depends weakly
on the mass. Hence, we reach the following conclusions:
WS89 method can describe the planetary accumulation pro-
cess within a reasonable level of accuracy if we adopt the
values of § and € smaller than 1.3 and 0.03, respectively, and
if we evaluate the ensemble mean on the basis of 500 nu-
merical simulations. Because Wetherill and Stewart (1989)
and (1993) used the value of § smaller than 1.1 and 1.2, re-
spectively, they used their method correctly and, thus, give
reliable results. On the other hand, since they did not perform
sufficient averaging over an ensemble of similar accumula-
tion process, divergence from the mean value for the growth
of the largest body might be found. From the viewpoint of
the numerical handling, the values of § (= 1.3) is not so
small comparing with those in other numerical simulations.
In fact, when § = 1.3, we can cover the mass coordinate
over 1 x 10?° mass range only with 180 mass batches. Thus,
it is concluded that the new method proposed by Wetherill
and Stewart is the valid and useful method for pursuing the
planetary accumulation process.

In the present study, we showed that WS89 method can
describe the time evolution of the mass distribution precisely.
However, the real planetesimal accumulation process is more
complex since the time evolution of the velocity distribution
and the mass distribution should be calculated simultane-
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Fig. 13. The preliminary result of comparison between the statistical sim-
ulation and N-body simulation (solid curve). The dotted and dashed
curves indicate the evolution of the largest body’s mass calculated by
WS89 method with § = 1.1 and 2.5, respectively.

ously. In the subsequent paper, we will complete our statis-
tical code which simulate the accumulation process coupled
with the velocity evolution and examine the accuracy of our
statistical code, by comparing the results of the statistical
code with those of N-body direct simulations. In Fig. 13,
we show a preliminary comparison of our statistical code
with N-body simulation by Kokubo and Ida (1998). As to
the time evolution of the random velocity (i.e., eccentricities
and inclinations), we adopted the formulation by Stewart and
Ida (1998). The results of Greenzweig and Lissauer (1992)
is used for the collisional probability between planetesimals.
Initially the masses of all bodies are 1 x 10>} g and the total
number of bodies is 3000. The dotted and dashed curves in-
dicate the evolution of the largest body’s mass calculated by
the statistical code with § = 1.1 and 2.5, respectively, and the
solid curve gives the result of N-body simulation. The mass
of the largest body obtained by our statistical code changes
smoothly since we take the ensemble mean and, while, N-
body simulation gives the discontinuous growth because it is
a single calculation. Except for the statistical fluctuations in
the N-body simulation, our statistical code well reproduces
the results of the N-body simulation in the case of § = 1.1.
On the other hand, in our statistical simulation with § = 2.5,
the growth of the largest body delays as shown in the previ-
ous cases. Therefore, even if we consider the accumulation
process coupled with the velocity evolution, the criterion de-
rived in this paper is available. The detail of our statistical
code and the comparison with N-body simulations will be
described in the subsequent paper.
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