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Re-estimation of tsunami source of the 1952 Tokachi-oki earthquake
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Previous studies indicate that the source area of the 2003 Tokachi-oki earthquake (M 8.0) was smaller than
the comparable 1952 Tokachi-oki earthquake (M 8.2) source. We reinverted the 1952 tsunami waveforms, by
adopting higher-resolution tsunami simulation method, and estimating and correcting for clock errors of tide
gauges from comparison of the 1952 and 2003 tsunami waveforms. The estimated slip distribution indicates
that the 1952 tsunami source area was indeed larger than the 2003 source. The distributions of measured and
computed coastal tsunami heights also support this conclusion.
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1. Introduction

The southern Kuril trench, where the Pacific plate
subducts beneath Hokkaido at a rate of ~8 cm/yr, has a his-
tory of recurring large earthquakes and tsunamis (Fig. 1). In
the Tokachi-oki region, at the southwestern end of the Kuril
trench, earthquakes have been documented in 1843 (M 8.0)
and 1952 (M 8.2). In the Nemuro-oki region, to the east,
large earthquakes occurred in 1894 (M 8.2) and in 1973 M
7.8).

In March 2003, the Japanese government released long-
term forecast of earthquakes along the Kuril trench (Earth-
quake Research Committee, 2004). They estimated that
the probability of large (M ~ 8) earthquakes in the next
30 years (starting March 2003) would be 60% in Tokachi-
oki and 20-30% in Nemuro-oki. The forecast was based
on the past recurrence of large earthquakes. The boundary
between Tokachi-oki and Nemuro-oki was drawn from the
slip distribution of the 1952 Tokachi-oki earthquake (Hirata
et al., 2003).

A large (M 8.0) earthquake occurred in Tokachi-oki on
September 26 (JST), 2003. The source region, estimated
from seismic waves (e.g., Yamanaka and Kikuchi, 2003),
aftershock distribution (Hamada and Suzuki, 2004) and
tsunami first arrivals (Hirata et al., 2004), was smaller than
that of the 1952 Tokachi-oki earthquake and forecasted area
(Fig. 1). Tanioka et al. (2004a) made an inversion of the
2003 tsunami waveforms and showed that the slip distri-
bution on the fault is significantly different from that of
the 1952 Tokachi-oki earthquake, which was also estimated
from tsunami waveform inversion by Hirata et al. (2003).

In this paper, we reanalyze the 1952 tsunami waveform
data. The two inversion results, 1952 Tokachi-oki (Hirata
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et al., 2003) and 2003 Tokachi-oki (Tanioka et al., 2004a),
are not directly comparable, because of different resolution
of tsunami simulation and different subfault size. In addi-
tion, timing accuracy of tide gauge records is different in
1952 and 2003. We first compare the tide gauge records
from the two events, estimate and correct for the clock er-
rors of 1952, compute tsunami waveforms using fine grids
similar to those of Tanioka et al. (2004a), and re-perform
the waveform inversion.

2. Tide Gauge Records

The 1952 tsunami waveform was recorded at 13 tide
gauge stations in Hokkaido and northern Honshu (Fig. 1).
Among them, seven stations also recorded the 2003
tsunami. We first compare the waveforms recorded at the
common stations (Fig. 2). The waveforms are in general
very similar to each other. At Kushiro, the tide gauge
did not follow the actual sea level change of the 1952
tsunami, because of floating ice (Central Meteorological
Agency, 1953). Hence we followed Hirata et al. (2003) to
use only the initial part of the waveform. At Hachinohe
and Ayukawa, the 1952 amplitudes are larger than those
of 2003, but the waveforms are similar. The tsunami ar-
rival times are different for the 1952 and 2003 records. We
shift the waveforms and align them at the first peak (Fig. 2).
The time adjustments are up to 10 min. At Hachinohe,
Ayukawa, and Choshi, the 1952 waveforms are delayed for
8 min, 5 min and 10 min, respectively, while at Kushiro and
Miyako, the 1952 waveforms are advanced for 8 min and
5 min, respectively. The time shifts seem to be randomly
distributed, without any systematic or regional tendency.

We assume that the above time shifts are due to the clock
errors of the 1952 tide gauges, and apply the corrections
to the observed waveforms. This is a reasonable assump-
tion, because the 1952 tide gauges were recorded on pa-
per drums, with a typical speed of 2 cm per hour, while
the 2003 gauges were digitally recorded. If the 1952 and
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Fig. 1. Source regions of the 1952 and 2003 Tokachi-oki earthquakes
(Hirata et al., 2003, 2004). Solid triangles show the tide gauge stations
where the 1952 tsunami waveforms were recorded. Tsunami numerical
simulation was made in the map region and bathymetry.

2003 sources were the same, we expect the above correc-
tion would remove the clock error. If, on the other hand,
the two sources are different, then the above correction may
remove the source effect, as well as clock errors, and would
also map the two sources in a similar location.

We test our assumption by examining the Kushiro tide
gauge records. On the 2003 Kushiro record, the first arrival
and first peak are at 16 min and 28 min after the earthquake,
respectively. By aligning the 1952 and 2003 records at the
first peak, we obtain the clock correction of 8 min (Fig. 2).
The 1952 tide gauge record (on a copy of the original tide
gauge record archived at the Earthquake Research Institute,
University of Tokyo) shows a disturbance of water level
caused by ground shaking at 10:29 AM (Japan Standard
Time). Because the origin time of the 1952 Tokachi-oki
earthquake was 10:22, this indicates that the actual clock
delay was 7 min, very similar to what we estimated from the
comparison with the 2003 record. Unfortunately, ground
shaking was not recorded at any other tide gauge stations.

We have not corrected for tide gauge response to
tsunamis. Satake ef al. (1988) measured the tide gauge
response to tsunamis and applied the corrections to the
tsunami waveforms from the 1983 Japan Sea earthquake.
At some stations, mostly on the Japan Sea coasts, intake
pipes are narrow to filter out winter wind waves and the
measured response was not very good for short period (<10
min) components of tsunamis. While we do not know the
actual response of tide gauges in 1952, the observed periods
are mostly 20 min or longer, hence we anticipate that the ef-
fect of tide gauge response is minimum except for Kushiro.

K. SATAKE et al.: RE-ESTIMATION OF TSUNAMI SOURCE OF THE 1952 TOKACHI-OKI EARTHQUAKE

im 2003

Kushiro

1952
Murora

Hakodate

Hachinohe ‘, i

Miyako

Choshi

2 0 2 4
Time (hour)

Fig. 2. Comparison of tsunami waveforms from the 1952 (dashed curves)
and 2003 (solid curves) Tokachi-oki earthquakes. The origin of time
axis is at the tsunami arrival time at each station. The 1952 waveforms
are aligned to the 2003 waveforms at the first peak. The time shifts are
as follows (positive means 1952 is advanced while negative is delayed).
Kushiro: 8 min, Muroran: —1 min, Hakodate: 0 min, Hachinohe: —8
min, Miyako: 5 min, Ayukawa: —5 min, Choshi: —10 min.

3. Tsunami Simulation and Inversion

We compute tsunami waveforms by using a finite-
difference method for the linear long-wave momentum and
continuity equations (e.g., Satake, 2002). The grid size is
30” of the arc (about 925 m along the meridian) for deep
ocean, and 6” (about 185 m) near the six tide gauge sta-
tions (Kushiro, Hachinohe, Miyako, Tsukuhama, Onagawa
and Ayukawa). Finer grid system is not adopted around the
other tide gauge stations, because the records are charac-
terized by longer period and smaller amplitude. The grid
sizes are similar to those used by Tanioka e al. (2004a)
for the 2003 Tokachi-oki earthquake tsunami (20” for deep
ocean and 4” around tide gauge stations), but much smaller
than 60" (about 1850 m) used by Hirata et al. (2003) for
the 1952 tsunami. We used bathymetry and topography in
1952; extensive breakwater has been constructed in Kushiro
and Hachinohe since 1952 (Fig. 3). In Hachinohe area, the
location of tide gauge station is different (Same for the 1952
tsunami and Minato for the 2003 tsunami). The time step
for the finite-difference computation is set to 1.5 s to satisfy
the stability condition.

Tsunami waveforms computed on different grids are of-
ten very different. At Miyako, Onagawa and Ayukawa, the
arrival times become early by several minutes and the am-
plitudes become nearly double when the finer grid system
is used (Fig. 4). Tsunami waveforms computed on even
smaller grid size (as small as 75 m) indicates that no further
improvement is obtained for tsunami waveforms in northern
Honshu.
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Fig. 3. Detailed topography and bathymetry around tide gauge stations
at Kushiro, Hachinohe and Miyako. Gray color indicates land. Left
column for 1’ grid (1850 m along meridian) and right column for 6”
grid (185 m).

We divide the fault into smaller subfaults. Two sets of
subfault systems, 10 block model and 18 block model, are
used. The 10 block model has the same configuration as
Hirata et al. (2003). The 18 block model is the same as
Tanioka et al. (2004a) except that four additional faults with
the same size (40 km x40 km) are added at the southwestern
end of the 2003 Tokachi-oki source. The fault parameters
are compiled in Tables 1 and 2.

The slip amount on each subfault is then estimated by
non-negative least-squares method. The error associated
with the slip estimate is computed by the delete-half jack-
knife method, a resampling method in which inversion is re-
peated 100 times by randomly eliminating a half of the data
points (waveforms) to estimate standard error (e.g., Tichlaar
and Ruff, 1989).

4. Slip Distribution

We compare the slip distributions on the fault, both the 10
and 18 block models, with those from the previous models
of the 1952 event (Hirata et al., 2003) and the 2003 event
(Tanioka et al., 2004a) (Figs. 5 and 6). We also compute
vertical deformation of seafloor, which is the actual source
of tsunami.

For the 10 block model, the maximum slip is smaller
than that of Hirata et al. (2003). The large slips estimated
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Fig. 4. Comparison of computed tsunami waveforms with different gird
sizes. The dashed curves are computed on 1’ grid, while the solid curves
are on finer grids (6” for Kushiro, Hachinohe, Miyako, Tsukihama, On-
agawa and Ayukawa, and 30" for other stations), from the slip distri-
bution of Hirata et al. (2003). The numbers next to the station names
indicate the time window (in minutes from the earthquake origin time).

by Hirata et al. (2003) were on subfault E, a deeper part
of Tokachi-oki, and subfaults F and I, located off Akkeshi.
The slip amount on subfault E is similar (5.6 m in Hirata
et al. becomes 4.6 m), but those on subfaults F and I be-
come substantially smaller, from 4.2 to 2.8 m on subfault F
and from 7.2 m to 2.8 m on subfault I. The seafloor defor-
mation patterns are similar; two peaks near the trench axis
off Akkeshi and deeper part of Tokachi-oki, although the
amount and the locations are slightly different. The large
subsidence area off Akkeshi computed from the Hirata et
al. (2003) model disappears.

The observed and computed waveforms are very similar
at most stations (Fig. 7). In addition to the case in which all
the 12 stations are used, we also make two additional cases
in which we use (1) only seven stations (Kushiro, Muro-
ran, Hakodate, Hachinohe, Miyako, Ayukawa and Choshi)
where the clock corrections was estimated and corrected;
and (2) only six stations (Kushiro, Hachinohe, Miyako,
Tsukihama, Ongawa and Ayukawa) where finest (6”) girds
were employed for computing waveforms (Tables 1 and 2).
As can be seen in the table, the estimated slips for the three
cases agree within the range of estimation errors.

A careful inspection of Fig. 7 reveals that the computed
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Table 1. Fault parameters and estimated slip distribution on the 10 block model.

12 sta 7 sta 6 sta 4 sta Hirata*

No length width strike dip rake depth lat lon slip error slip error slip error slip error slip error

km km deg deg deg km degN  degE m m m m m m m m m m

A 47 55 238 13 117 125 41539 14425 | 054 029 0.19 027 04 029 0 032 154 037
B 47 45 238 26 115 244 41946 14391 | 0.00 0.06 O 025 0 0.00 127 131 0 0.72
C 47 55 238 6 117 100 41516 14493 |0.83 037 0.83 04 1.02 040 095 049 123 0.70
D 47 55 238 19 116 158 41932 14459 | 192 045 1.65 046 179 051 216 0.58 253 0.70
E 47 45 238 33 113 337 42333 14427 | 455 147 489 142 485 144 064 2 5.63 144
F 47 55 238 6 117 100 41.731 14542 | 276 0.73 259 071 342 0.77 44 093 424 1.18
G 47 55 238 19 116 158 42.152 145.08 | 3.17 0.71 281 0.75 346 0.73 522 0.81 136 1.16
H 47 45 238 33 113 337 42556 14476 | 1.70 130 1.04 127 172 132 582 182 0 1.23
I 69 55 238 6 117 100 42.044 146.13 279 1.10 229 097 363 1.00 513 182 7.16 1.60
J 69 55 238 19 116 158 42472 1458 |229 045 176 053 255 057 455 077 174 0.63

Depth, lat and lon are for the southeastern edge of each subfault. *After Hirata et al. (2003).
Table 2. Fault parameters and estimated slip distribution on the 18 block model.
12 sta 7 sta 6 sta 4 sta 2003*

No length width strike dip rake depth lat lon slip error slip error slip error slip error slip error

km km deg deg deg km degN degE m m m m m m m m m m
1 40 40 230 20 109 39 42,62 14482 | 089 171 128 123 034 121 0.18 171 210 0.10
2 40 40 230 20 109 39 4238 14445 | 674 154 585 165 7.61 128 721 230 150 0.20
3 40 40 230 20 109 39 42.15 144.08 | 0.00 032 0.00 091 0.00 0.02 0.00 3.09 430 0.10
4 40 40 230 20 109 39 4192 14372 | 040 051 0.72 045 000 0.86 1021 253 0.00 0.00
5 40 40 230 20 109 25 4235 14512 | 348 1.12 277 1.09 391 110 378 148 0.10 0.10
[§ 40 40 230 20 109 25 42,12 14475 | 1.82 121 110 1.07 161 112 0.00 1.03 0.00 0.00
7 40 40 230 20 109 25 41.88 14438 | 0.00 043 0.00 021 000 0.26 0.00 026 120 0.10
8 40 40 230 20 109 25 41.65 144.02 | 0.12 037 0.00 0.15 0.00 0.20 0.00 0.00 0.00 0.00
9 40 40 230 6 110 12 42.19 14589 | 163 1.14 074 131 170 135 187 236 0.00 0.10
10 40 40 230 16 109 14 42.08 14538 | 232 1.00 2.09 094 276 1.03 327 130 030 0.10
11 40 40 230 16 109 14 41.85 14502 | 1.63 073 124 070 181 0.73 159 1.05 0.00 0.00
12 40 40 230 110 8 4192 14620 | 0.00 133 0.19 241 0.00 195 289 459 0.00 0.00
13 40 40 230 110 10 41.82 14570 | 1.34 158 279 240 165 213 476 349 0.00 0.00
14 40 40 230 6 110 10 4158 14533 | 149 098 291 133 190 134 273 169 0.00 0.00

15 40 40 230 16 109 14 41.62 14465 | 0.89 045 023 038 09 047 019 041 — —

16 40 40 230 16 109 14 4138 14428 | 0.02 0.14 0.00 0.19 000 0.13 000 023 — —

17 40 40 230 109 10 4135 14497 | 0.00 029 090 0.70 006 036 0.16 063 — —

18 40 40 230 6 109 10 41.12  144.60 | 0.00 0.10 0.11 028 000 0.10 0.00 026 — —

* After Tanioka et al. (2004a).

amplitudes are smaller at Hachinohe, Tsukihama and Ona-
gawa. In order to seek for a better agreement at these sta-
tions, we make another case in which we use only 4 sta-
tions (the above three plus Kushiro). For Tsukihama and
Onagawa, we only use the first half cycle of the waveform.
The computed waveforms from this case reproduce the ob-
served ones (Fig. 7). The slip distribution estimated from
these 4 stations is slightly different from the above esti-
mates, but all the slips on subfaults F through J off Akkeshi
are more than 4 m (Table 1). This indicates that a solution
that can reproduce the amplitudes at Hachinohe, Tsukihama
and Onagawa, where the inversion using 12 stations cannot
reproduce the first amplitudes, still requires large slip off
Akkeshi. In the following, we only consider the solution
from 12 stations.

The 10 block and 18 block models have common features
that they both have large slip in Tokachi-oki and the slip ex-
tend off Akkeshi, to the east of Kushiro submarine canyon.
The details of the slip distribution are different, probably re-
flecting the spatial resolution of the subfaults. In any case,
both the slip distribution and seafloor deformation are very
different for the 1952 and 2003 Tokachi-oki earthquakes.

For the 18 block model, two uplift peaks exist off
Akkeshi and Tokachi-oki. For the 2003 Tokachi-oki earth-
quake, the peak appears only in Tokachi-oki (Fig. 6). The
waveforms computed from the 18 block model also repro-
duce the observed waveforms (Fig. 8). In order to examine
the effects of slip distribution on the waveforms, we also
compute tsunami waveforms from the model of the 2003
Tokachi-oki earthquake (Tanioka et al., 2004a). The com-
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Fig. 5. Slip distribution on 10 blocks (upper panels) and computed seafloor displacement (lower panels) for the 1952 Tokachi-oki earthquake. Right
panels are those by Hirata et al. (2003) and left panels are reanalyzed in this study. The contour interval for seafloor displacement is 0.2 m for uplift
(solid curves) and 0.1 m for subsidence (dashed curves).
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Fig. 6. Slip distribution on 18 blocks (upper panels) and computed seafloor displacement (lower panels) for the 1952 Tokachi-oki earthquake (left) and
the 2003 Tokachi-oki earthquake (right: Tanioka et al., 2004a). The contour interval for seafloor displacement is 0.2 m for uplift (solid curves) and
0.1 m for subsidence (dashed curves). In the upper-right figure, slip distribution estimated from seismic waves (Yamanaka and Kikuchi, 2003) are

also shown (contour interval: 1 m).
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Fig. 7. Comparison of observed (black curve) and computed (red curves)
waveforms for the 10 block model of the 1952 Tokachi-oki earthquake.
The blue curves for Kushiro, Hachinohe, Tsukihama and Onagawa are
the computed waveforms from the slip distribution estimated from these
four stations only (4 sta in Table 1). The numbers next to the station
names indicate the time window (in minutes from the earthquake origin
time).

puted amplitudes from the 2003 source are smaller than the
1952 tsunami, both observed and computed, particularly at
Hachinohe, Tsukihama and Onagawa.

The seismic moment of the 1952 earthquake can be com-
puted as 1.7x 10?! Nm (corresponding to Mw 8.1) for the 10
block model, while 1.1x 102! Nm (Mw 8.0) for the 18 block
model, assuming that the rigidity near the fault is 3 x 107!
N/m2. These amounts are slightly smaller than the esti-
mate (1.87 x 10?! Nm) by Hirata er al. (2003). Tanioka et
al. (2004a) estimated the total seismic moment of the 2003
earthquake as 1.0 x 10?! Nm, by assuming a larger rigid-
ity (6.5 x 10?! N/m?). If such a large rigidity is assumed,
the seismic moment of the 1952 earthquake becomes larger
(24 x 10*! Nm or Mw 8.2-8.3).

5. Comparison with Coastal Heights
In addition to the tsunami waveforms recorded on tide
gauges, coastal tsunami heights were measured for both
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Fig. 8. Comparison of observed (black curve) and computed (red curves)
waveforms for the 18 block model of the 1952 Tokachi-oki earthquake.
The blue curves are the computed waveforms from the slip distribution
for the 2003 Tokachi-oki earthquake (Tanioka et al., 2004a). The num-
bers next to the station names indicate the time window (in minutes from
the earthquake origin time).

the 1952 and 2003 earthquakes (Central Meteorological
Agency, 1953; Kusunoki and Asada, 1954; Tanioka et al.,
2004b). On the Tokachi coast, the tsunami heights were 2—
4 m and almost uniform for the both events. To the east of
Kushiro, they are very different. The 2003 heights were less
than 2 m except for one locality (Mabiro), while the 1952
heights were 2—7 m and varied from place to place. The
largest tsunami height in 1952 was measured at Senpoushi,
around the Akkeshi Bay. The 1952 tsunami caused signifi-
cant damage in Akkeshi and Kiritappu, partly because off-
shore floating ice was carried ashore during tsunami inun-
dation.

We compute coastal tsunami heights from the 1952 and
2003 source models estimated from the tsunami waveform
inversions and compare them with the measured heights.
For this computation, we use the nonlinear shallow-water
(long-wave) equations with the finest grid size of 225 m
along the coast. Runup on land or moving boundary is not
included.
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Fig. 9. The tsunami heights along the Pacific coast of Hokkaido. Red and blue dots are the measured heights for the 1952 and 2003 Tokachi-oki
earthquakes (Tanioka et al., 2004b; Central Meteorological Agency, 1953; Kusunoki and Asada, 1954). Green curve is computed height for the 2003
Tokachi-oki earthquake from the slip distribution of Tanioka et al. (2004a). Black and orange curves are computed for 10 block and 18 block models,
respectively, of the 1952 earthquake. The gray curve is computed for the slip distribution of Hirata et al. (2003). Note that the measured height (left
axis) and computed heights (right axis) are in different scale.
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The coastal tsunami heights computed from the 2003
Tokachi-oki source model (Tanioka et al., 2004a) repro-
duce the general pattern that tsunami heights are larger to
the west of Kushiro compared to the east (Fig. 9). However,
the amplitudes are smaller than the measured heights. Com-
parison of the computed and measured heights (Fig. 10) in-
dicates that the computed heights are on the average about
a half of the measured heights. For the comparison of ob-
served and computed tsunami heights, geometric average K
and geometric standard deviation «, which can be consid-
ered as error factor, are often used (Aida, 1978). For 77
measurements made for the 2003 tsunami, K = 2.26 and
k = 1.46, indicating that measured heights are on the aver-
age more than twice larger than the computed.

There are several possible reasons for this discrepancy
between the measured and computed tsunami heights. Our
computation does not include tsunami runup to land, while
some of the measurements were made on land. The grid
size of our coastal computation (225 m) may not be small
enough to reproduce the local variation of tsunami heights;
Satake and Tanioka (1995) showed that the amplification
factor is up to 2 for 6” grid (140 m by 190 m) and up to
3 for 20” (450 m by 620 m) grid. In addition to these
computational aspects, the tsunami source estimated from
the waveform inversion might not be able to reproduce the
maximum tsunami heights. The measured coastal heights
are the maximum heights while the tsunami inversion fits
the waveforms for the first cycle or two. The maximum
tsunami heights are often due to edge waves, later phase
propagating on shallow shelf, whose characteristics depend
on the source heterogeneity. Unknown tide gauge response
might have affected short period components of the tsunami
waveforms. We therefore employ different axes for the
measured and computed heights in Fig. 9.

Computed coastal heights for the two models, 10 and
18 block models, of the 1952 earthquake are very similar
(Fig. 9). They reproduce the general pattern that tsunamis
heights were relatively uniform west of Kushiro but variable
to the east. The amplitudes are again much smaller than
the measured. The 10 block model yields K = 1.63 and
k = 1.51 while the 18 block model yields K = 1.64
and k = 1.63 (for 41 points), indicating that the measured
heights are on the average 1.6 times of the computed. The
k value, error factor, is slightly smaller for the 10 block
model, indicating that the 10 block model is better to fit the
coastal measurements. The computed heights from Hirata
et al. (2003) model is similar to the measured heights, but
the above comparison of the 2003 heights indicates that the
computed heights may be overestimated. If we compare the
computed heights from the 2003 Tokachi-oki earthquake
model with the 1952 measured heights, the error factor «
becomes the largest (1.66). This indicates that the 2003
source model, which has slips located only to the west of
Kushiro submarine canyon, cannot reproduce the measured
tsunami heights in 1952. The 1952 tsunami heights can be
better reproduced by a source model with slips extending to
the east of Kushiro submarine canyon.
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6. Conclusion

We reanalyzed the tsunami waveforms from the 1952
Tokachi-oki earthquake. From the comparison and align-
ment of the 1952 and 2003 waveforms, we estimated the
clock errors of the 1952 tide gauges and applied the cor-
rections. We adopted high-resolution tsunami simulation,
similar to that used by Tanioaka et al. (2004a) for the 2003
tsunami. The results indicated that for both 10 and 18 block
models, the slip extended to the east of Kushiro subma-
rine canyon. Comparison of the coastal tsunami heights
and computed coastal heights also supports this slip off
Akkeshi.

Acknowledgments. We are grateful to Dr. Kunihiko Shimazaki
and the members of subduction-zone earthquakes group of sub-
committee for long-term evaluation, Earthquake Research Com-
mittee, for their stimulating discussion. Comments by two refer-
ees, Drs. Eric Geist and Shingo Yoshida, were helpful to improve
the presentation. This work was partially supported by Special
Coordination Funds for Promoting Science and Technology, from
Ministry of Education, Sports, Culture, Science and Technology.

References

Aida, 1., Reliability of a tsunami source model derived from fault parame-
ters, J. Phys. Earth, 26, 57-73, 1978.

Central Meteorological Agency, Reports of the Tokachi-oki earthquake of
March 4, 1952, Quarterly J. Seismology, 17(1-2), 1-135, 1953.

Earthquake Research Committee, Long-term evaluation of seismicity
along the Kuril Trench, Publications of Earthquake Research Commit-
tee, II, 1-74, 2004.

Hamada, N. and Y. Suzuki, Re-examination of aftershocks of the 1952
Tokachi-oki earthquake and a comparison with those of the 2003
Tokachi-oki earthquake, Earth Planets Space, 56, 341-345, 2004.

Hirata, K., E. Geist, K. Satake, Y. Tanioka, and S. Yamaki, Slip distribution
of the 1952 Tokachi-oki earthquake (M 8.1) along the Kuril trench
deduced from tsunami waveform inversion, J. Geophys. Res., 108, 2196
doi:10.1029/2002JB001976, 2003.

Hirata, K., Y. Tanioka, K. Satake, S. Yamaki, and E. L. Geist, The tsunami
source area of the 2003 Tokachi-oki earthquake estimated from tsunami
travel times and its relationship to the 1952 Tokachi-oki earthquake,
Earth Planets Space, 56, 367-372, 2004.

Kusunoki, K. and H. Asada, Report on the survey of the “tsunami” in
Hokkaido caused by the Tokachi earthquake, Report in the Tokachi Oki
earthquake, Special Committee for the Investigation of the Tokachi-oki
earthquake, Sapporo, 1018 pp., 273-285, 1954 (in Japanese).

Satake, K., Tsunamis, in International Handbook of Earthquake and En-
gineering Seismology, edited by W. H. K. Lee, H. Kanamori, P. C. Jen-
nings, and C. Kisslinger, 81A, 437451, 2002.

Satake, K. and Y. Tanioka, Tsunami generation of the 1993 Hokkaido
Nansei-Oki earthquake, Pure Appl. Geophys., 145, 803-821, 1995.

Satake, K., M. Okada, and K. Abe, Tide gauge response to tsunamis:
Measurements at 40 tide gauge stations in Japan, J. Marine Res., 46,
557-571, 1988.

Tanioka, Y., K. Hirata, R. Hino, and T. Kanazawa, Slip distribution of
the 2003 Tokachi-oki earthquake estimated from tsunami waveform
inversion, Earth Planets Space, 56, 373-376, 2004a.

Tanioka, Y. and 26 coauthors, Tsunami run-up heights of the 2003 Tokachi-
oki earthquake, Earth Planets Space, 56, 359-365, 2004b.

Tichelaar, B. W. and L. J. Ruff, How good are our best models? Jackknif-
ing, Bootstrapping, and earthquake depth, Eos Trans. AGU, 70, 593 and
605-606, 1989.

Yamanaka, K. and M. Kikuchi, Source processes of the Tokachi-oki earth-
quake on September 26, 2003 inferred from teleseismic body waves,
Earth Planets Space, 55, e21—e24, 2003.

K. Satake (e-mail: kenji.satake@aist.go.jp), K. Hirata, S. Yamaki, and
Y. Tanioka



	1. Introduction
	2. Tide Gauge Records
	3. Tsunami Simulation and Inversion
	4. Slip Distribution
	5. Comparison with Coastal Heights
	6. Conclusion
	References


