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A representation function for a distribution of points on the unit sphere—with
applications to analyses of the distribution of virtual geomagnetic poles
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An arbitrary point distribution consisting of a finite number of points on a unit sphere may be completely and
uniquely represented by an analytic function in the form of a spherical harmonic expansion. The applications of
this representation function are illustrated in an analysis of the symmetries in the virtual geomagnetic pole (VGP)
distribution of the polarity reversal records of the past 10 million years. We find that the longitudinal confinements
in the VGP distribution are (a) persistent only in the equatorially symmetric part (of the non-zonal symmetries)
of the VGP distribution and (b) strong along the east coast of the North American continent and weak along the
longitudes of East Asia-Australia. We also find that the equatorially symmetric patterns in the VGP distribution
appear to extend preferentially into the Pacific Ocean and are relatively depleted in the longitude band associated
with Africa.
Key words: Virtual geomagnetic pole, geomagnetic reversal, representation function.

1. Introduction
The problem of analyzing the spatial distribution of a set

of points on the unit sphere arises in many fields of physi-
cal and natural science (Fisher et al., 1987). Frequently the
points represent the orientation of vectors (e.g. arrival direc-
tions) or of undirected lines (e.g. stress axes). In other cases
the points represent the positions of objects or events (e.g.
VGPs and earthquake epicenters). While spherical data sets
of this kind can be analyzed as point distributions per se,
more typically the analyst assumes that the point set reflects
or samples a population or a statistical distribution charac-
terized by a continuous probability density function (PDF).
In some cases, it is possible to model the point set using a
standard statistical distribution, such as the Fisher, Watson
or Bingham distribution (Fisher et al., 1987). These distri-
butions have few parameters and fairly simple (often highly
symmetric) density functions. In cases where the density of
points varies in an irregular or complex fashion, and can-
not be represented using standard spherical distributions, an-
alysts may construct a non-parametric PDF by using numer-
ical procedures. In this paper we introduce an alternative
analytical function that can completely and uniquely repre-
sent a point set with arbitrarily complex spatial structure on
the unit sphere. We then demonstrate this function by apply-
ing it to depict various symmetries in the VGP distribution
and to evaluate biases in the VGP distribution of the polarity
reversals of the Earth’s magnetic field for the past 10 million
years.
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2. The Representation Function for a Point Distri-
bution on the Unit Sphere

Our starting point is the Dirac delta function for a point p̂0

on the unit sphere,

δ(p̂0, r̂) = 1

4π

∞∑

l=0

l∑

m=−l

Y m
l (p̂0)Y

m
l (r̂), (1)

where Y m
l (r̂) is the fully normalized surface spherical har-

monic of degree l and order m, and Y m
l (r̂) is the com-

plex conjugate of Y m
l (r̂). The Dirac delta function satisfies

δ(p̂0, r̂) = ∞, if r̂ = p̂0, and δ(p̂0, r̂) = 0, if r̂ 	= p̂0. Next
we define a function T (L)(r̂),

T (L)(r̂) = 1

(L + 1)2

L∑

l=0

l∑

m=−l

Y m
l (p̂0)Y

m
l (r̂). (2)

Using the identity,

L∑

l=0

l∑

m=−l

∣∣Y m
l (p̂0)

∣∣2 =
L∑

l=0

(2l + 1) = (L + 1)2,

We obtain T (L)(p̂0) = 1. We then define the function

T (r̂) = lim
L→∞

T (L)(r̂). (3)

From (1) and (2), the function T (L)(r̂) satisfies T (p̂0) =
1, and T (r̂) = 0 for every r̂ 	= p̂0. T (r̂) represents the
distribution of a single point on the unit sphere. We now
generalize this analysis so as to consider a finite set of points
on the unit sphere. Let P = [p̂1, p̂2, . . . , p̂i , . . . , p̂K ] be a
set of K distinct points on the unit sphere. We allow for
coincident or duplicate points by introducing a set of point
counts N = [n1, n2, . . . , ni , . . . , nK ], where ni represents
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Fig. 1. A set of 12 points are located at centers of the red circles in (a). Truncated representation functions for this point set are shown in (b)–(d). They
are (b) D(5)(r̂), (c) D(20)(r̂), and (d) D(50)(r̂). (The colours in all maps given in this paper are linearly scaled.)

the number of points at p̂i , ni ≥ 1 for any ni ∈ N , and the
total number of points is

n =
K∑

i=1

ni .

We construct a distribution function for the point set P : N
by combining the distribution functions for the individual

points defined in (2). We define

D(L)(r̂) =
K∑

i=1

ni T
(L)

i (r̂).

Substituting for T (L)(r̂) using (2), and defining the coeffi-
cients,

dm
l =

K∑

i=1

ni Y m
l (p̂i ), (4)
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D(L)(r̂) can be expressed as,

D(L)(r̂) = 1

(L + 1)2

L∑

l=0

l∑

m=−l

dm
l Y m

l (r̂). (5)

Finally we can write the representation function for the point
distribution P : N as

D(r̂) = lim
L→∞

D(L)(r̂). (6)

Function D(r̂) satisfies D(p̂i ) = ni for every p̂i ∈ P , and
D(r̂) = 0 elsewhere on the unit sphere. Hence D(r̂) com-
pletely represents the point distribution. The uniqueness of
D(r̂) is obvious from Eq. (4) since for a given point set there
is one and only one set of coefficients dm

l . Each of the coeffi-
cients dm

l is determined independent of the determination of
the other coefficients. Every coefficient dm

l is exact, if the po-
sitions of the points are given exactly. If the positions of the
points contain errors, then a mean and a variance may be as-
sociated with every dm

l . But there is no covariance associated
with dm

l (because each dm
l is determined independently). In

this paper, we always assume that the positions of the points
are exact.

In practice, we can only use D(L)
(
r̂
)

instead of D(r̂) to
represent the point distribution. D(L)

(
r̂
)

is an image of the
point distribution. The spatial resolution of D(L)

(
r̂
)

is given
by 180◦/(L + 0.5) which is the minimum half spatial wave-
length in the spherical harmonic expansion up to degree L
(Backus et al., 1996). D(L)

(
r̂
)

is, in a sense, “a blurred
view (of the point distribution) obtained by a myopic ob-
server who has forgotten his or her glasses” (Backus et al.,
1996). The selection of a proper truncation level L is always
subjective, and there is not an ideal or even optimal L which
may be selected in a purely objective context (perhaps, ex-
cept L = ∞). One of the useful parameters for selecting a
proper L is the power spectrum of dm

l defined by,

pl =
l∑

m=−l

(
dm

l

)2
. (7)

pl is proportional to the contributions from the symmetries
of degree l to the point distribution. L should be chosen such
that D(L)

(
r̂
)

includes the primary symmetries with large pl .
But in some cases, the analyses may require that the point
distribution be approximated at different truncation levels.

Because of the finite spherical harmonic truncation, every
point in the point distribution is represented by a “wavelet”
T (L)(r̂) in (2) to approximate a unit “spike” T (r̂) in (3). This
“wavelet” is symmetrical about that point and is unit at the
point. The propagations of T (L)(r̂) away from the point are
isotropic and oscillatory in all directions with decaying mag-
nitudes. Since D(L)(r̂) is a sum of all T (L)(r̂) on the unit
sphere, it is also oscillatory. The larger positive magnitudes
in D(L)(r̂) (often significantly larger than the others while a
reasonable L is chosen) are associated with the areas where
the points are relatively densely populated. The magnitudes
of the secondary and the high order signals in D(L)(r̂) are
often small, and can be made as small as one pleases by in-
creasing L . They are usually associated with the areas where
the points are relatively less populated and where no point is

distributed. The secondary and the higher order signals can
be either positive or negative, corresponding to the relative
magnitudes of the accretions and the depletions of the points
respectively. If one wishes to analyze only the accretions of
the points in the map of D(L)(r̂), one can then justify to sub-
stitute D(L)(r̂) = 0 for the value of D(L)(r̂) which is less
than a chosen small positive number or zero (so as to remove
all negatives and some of the undesirable small positives).
(Note, the negativity in D(L)

(
r̂
)

is not an unusual situation.
For instance, any positive kernel used in geophysics, such
as the Dirac delta function δ(p̂0, r̂), may not always be pos-
itive everywhere in the numerical computations because of
the finite spherical harmonic truncation.)

We illustrate D(L)
(
r̂
)

by using an artificial example con-
sisting of 12 points on the unit sphere as shown in Fig. 1(a).
This point distribution is progressively approximated by
D(L)

(
r̂
)

with L = 5, 20, 50 shown in Fig. 1(b), 1(c) and
1(d) respectively. D(50)

(
r̂
)

has near zero values except at the
locations near the points where it rises to nearly unit value,
and is recognizably a fuzzy and approximate representation
of D(r̂). All point distributions discussed in this paper are
geometrical objects. Their representation functions have no
units. The colors associated with each figures are linearly
scaled between the maximum and the minimum values of the
representation functions respectively. The scales in Fig. 1(b),
1(c) and 1(d) may be roughly (empirically) read as the spatial
distribution of the number of points in Fig. 1(a) seen in the
images with spatial resolutions defined by L . For instance,
when the point distribution in Fig. 1(a) is observed under
the spatial resolution defined by L = 15, the average num-
ber of points found in the area defined by the red patch in
Fig. 1(b) is roughly 3. As the spatial resolution increasing to
L = 20 (this roughly means that “window size/bandwidth”
decreases), average number of points found in the areas de-
fined by the red patches in Fig. 1(c) is roughly little over
1. As the spatial resolution continuously increasing to in-
finity (as “window size/bandwidth” decreasing to zero), the
number of point found at any location equals to the number
of points being distributed there—that is the representation
function replicates the point distribution (in Fig. 1(a)).

One of the applications of the representation function in
(6) is to separate various symmetries in a point distribution.
According to (6), any point distribution on the unit sphere
consists of an infinite series of geometrical symmetries de-
fined by an infinite series of {dm

l Y m
l (r̂)}. These symmetries

are the intrinsic geometrical properties of the point distribu-
tion in a given spherical coordinate system. They are often
categorized in to various subgroups. Each of the subgroups
consists of the symmetries that share some common geomet-
rical properties. For instance, the symmetries of any point
distribution on the unit sphere can be completely charac-
terized by two subgroups: the zonal symmetries—all terms
in (6) satisfying m = 0, and the non-zonal symmetries—
all terms in (6) satisfying m 	= 0. The subgroup of the
zonal symmetries describes the properties of a point distri-
bution that are only latitudinally dependent. The subgroup
of the non-zonal symmetries describes the properties of a
point distribution that are both latitudinally and longitudi-
nally dependent. We utilize these subgroups to understand
the complex geometrical properties of the point distribu-
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Fig. 2. Distribution of the sites and the transitional VGP (Z (15)
(
r̂
)

and W (15)
(
r̂
)
): (a) The site distribution are divided into sectors, L1 (yellow), L2

(green), L3 (blue) and L4 (red) corresponding to 4 longitudinal sectors, (0, 90), (90,180), (−180, −90) and (−90, 0) respectively. (b) The distributions
of the VGPs are plotted in yellow, green, blue, and red corresponding to the VGPs from the sites within the longitudinal sector L1, L2, L3 and L4
respectively (c) The zonal symmetric part of the VGP distribution in (b). (d) The non-zonal symmetric part of the VGP distribution in (b).

tion. In this paper, we first separate D(L)
(
r̂
)

in terms of
the zonal part Z (L)

(
r̂
)
—a sum of all zonal symmetries and

the non-zonal part W (L)
(
r̂
)
—a sum of all non-zonal sym-

metries. We then separate W (L)
(
r̂
)

in terms of the equa-
torial symmetries Es

(L)
(
r̂
)
—a sum of all terms in W (L)

(
r̂
)

satisfying l-m=even number, and the equatorial asymme-
tries Ea

(L)
(
r̂
)
—a sum of all terms in W (L)

(
r̂
)

satisfying l-
m=odd number, so,

D(L)
(
r̂
) = Z (L)

(
r̂
) + W (L)

(
r̂
)

= Z (L)
(
r̂
) + Es

(L)
(
r̂
) + Ea

(L)
(
r̂
)
. (8)

We shall illustrate the separations in the analyses of the VGP
distribution in the following sections.

3. The Symmetries of the VGP Distribution during
Polarity Reversal of the Earth’s Magnetic Field

Two preferential VGP paths in the polarity reversal
records along the American continents and East Asia-
Australia were suggested over a decade ago (Clement, 1991;
Laj et al., 1991). Numerous studies on the VGP distribu-
tion have been carried out since then. While the statistical
significance of the preferred VGP paths has been debated in
some studies (Laj et al., 1992a, b; Valet et al., 1992; McFad-
den et al., 1993), the effects on the VGP distribution due to
various biases and noises in the paleomagnetic data are dis-
cussed in other studies (e.g. Langereis et al., 1992; Weeks
et al., 1992; Prévot and Camps, 1993; Quidelleur and Valet,

1994; Coe and Liddicoat, 1994). These debates and discus-
sions continue with almost every discovery of new reversal
records (e.g. Channell and Lehman, 1997). The arguments
on the two preferred paths originate from various statistical
tests on the VGP distribution (in which the PDF of the VGP
distribution is often implicit). The tests yielded competing
and sometimes conflicting results (Laj et al., 1992a, b; Valet
et al., 1992; McFadden et al., 1993). While this is not an
uncommon situation in statistical tests (because various as-
sumptions are made in any statistical test), it is rather un-
fortunate that the methods are not themselves tested on the
same set of points (e.g. an artificial set of points) so as to
determine if these methods are suitable for the tasks and are
self-consistent. In this paper, we illustrate some applications
of the representation function in the analyses of the VGP dis-
tribution. The data set we use here is “Tran00” from the U.S.
National Geophysical Data Center of NOAA. The ages of
the records are all less than 10 million years and only tran-
sitional VGPs (within 55◦ of the equator) are used. The site
and the VGP distribution are shown in Fig. 2(a) and 2(b).
Our discussions consist of five parts, (1) the representation
function for the VGP distribution in Fig. 2(b), (2) using the
representation function to separate the zonal symmetries and
the non-zonal symmetries in the VGP distribution, (3) eval-
uating biases in the non-zonal part of the VGP distribution,
(4) estimating the persistent features in the non-zonal part of
the VGP distribution and (5) a brief comparison between the
methods we suggest here and the traditional methods used in
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Fig. 3. The normalized power spectra for (a) the VGP distribution in Fig. 2(b), (b) the zonal symmetries in Fig. 2(c) and (c) the non-zonal symmetries in
Fig. 2(d).

evaluating biases in the VGP distribution.
3.1 Representation function of the VGP distribution

Following (4), we obtain the coefficient dm
l for the VGP

distribution in Fig. 2(b) from,

dm
l =

M∑

j=1

N j∑

i=1

Ȳ m
l

(
p̂ j

i

)
, (9)

where p̂ j
i is the i th VGP of the j th record in Fig. 2(b). The

total number of the VGPs in the j th record is N j , and the
total number of records used is M . The set of the coefficients
dm

l obtained from (9) is unique. Using dm
l , we can obtain

the representation function D
(
r̂
)

for VGP from (6). D
(
r̂
)

exactly replicates the VGP distribution in Fig. 2(b) as such,
D

(
r̂
) = 1 at every r̂ = p̂ j

i and D
(
r̂
) = 0 elsewhere. Of

course, in the numerical computations, we can only obtain
D(L)

(
r̂
)

from (5) instead of D
(
r̂
)
.

In all analyses given in this paper, we chose the truncation
level of D(L)

(
r̂
)

at L = 15. This truncation level is obtained
from the normalized power spectra pl (defined in (7)) shown
in Fig. 3(a) up to l = 25. Clearly, the primary signals in the
power spectra are from pl with l < 15. pl for l > 15 tend
to be flat and many of them are less than 10% of the max-
imum, implying randomness in the high order symmetries
(with spatial wavelength less than 10 degrees) of the VGP
distribution. Therefore, using D(15)

(
r̂
)

to represent primary
information in the VGP distribution (Fig. 2(b)) seems ade-
quate, if not very sufficient. Truncating at lower harmonic

degrees such as L = 15 is also intuitively justified because
of the low expectations on the quality of the reversal data set
due to, e.g. grossly inadequate site coverage on the earth’s
surface and various experimental errors. Nonetheless, in or-
der to be sure that the results we present in this paper are not
greatly dependent on the truncation level, we actually carry
out analyses at several truncation levels up to degree L = 50,
and the results are consistent with those we present here.
D(15)

(
r̂
)

is an image of the VGP distribution in Fig. 2(b)
with spatial resolution of 10 degrees minimum half spatial
wavelength. This roughly means that the figures (maps) in
this paper are particularly sensitive to the signals in the VGP
distribution that have a half spatial wavelength longer than
10 degrees.
3.2 Separation of the axial symmetries and the non-

axial symmetries in the VGP distribution
The function D(15)

(
r̂
)

is separated into the zonal and the
non-zonal symmetric parts, Z (15)

(
r̂
)

and W (15)
(
r̂
)

defined
in (8). The maps for Z (15)

(
r̂
)

and W (15)
(
r̂
)

are shown in
Fig. 2(c) and 2(d) respectively. The physical meanings of
the scales in Fig. 2(c) and 2(d) are different from those in
Fig. 1(b), 1(c) and 1(d). The values in Fig. 2(c) repre-
sent the geographic variations of the zonal part of the VGP
distribution, and the values in Fig. 2(d) represent the geo-
graphic variations of the non-zonal part of the VGP distribu-
tion. However, the scale of the sum of the two maps has the
same physical meanings as those of the Fig. 1(b), 1(c) and
1(d), it represents an image D(15)

(
r̂
)

of the VGP distribution
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(Fig. 2(b)) “seen” at truncation level L = 15. As L → ∞,
D(15)

(
r̂
) → D

(
r̂
)

which replicates the VGP distribution in
Fig. 2(b). Geometrically, the zonal part represents the pat-
terns in the VGP distribution that are independent of the lon-
gitudes and the non-zonal part represents the longitudinally
dependent patterns in the VGP distribution. Obviously, this
type separation facilitates the detailed analysis of a particular
class of the symmetries by isolating it from the original VGP
distribution (without affecting the other symmetries whatso-
ever). The contributions to the VGP distribution (Fig. 2(b))
from the zonal and the non-zonal parts may be compared by
using two normalized power spectra for Z (15)

(
r̂
)

(computed
from (7) by using dm

l with m = 0) and W (15)
(
r̂
)

(computed
from (7) by using dm

l with m 	= 0) shown in Fig. 3(b) and
3(c) respectively.

The large signals in the zonal part (Fig. 2(c)) are concen-
trated at the latitudes +/− 55 degrees and are obviously due
to our selection of the VGP latitudes. However, this selec-
tion of the VGPs latitudes does not significantly affect the
non-zonal symmetries in Fig. 2(d) because the longitudinal
distribution of the VGPs at the latitudes higher than +/− 55
degrees is roughly uniform with strong axial symmetries and
very weak non-zonal symmetries (we verified this). Never-
theless, because of the artificial restrictions of the VGP lati-
tudes, all maps we present in this paper are valid only in the
region between 55 and −55 degrees latitudes. The signals in
the non-zonal part (Fig. 2(d)) are concentrated strongly along
the longitudes of the east coast of the North American conti-
nent and relatively weakly along the longitudes of East Asia-
Australia. In view of the fact that the zonal part (Fig. 2(c)) is
unrelated to the paleomagnetic interests concerning the lon-
gitudinally dependent patterns in the VGP distribution, our
analyses in this paper are only on the non-zonal part of the
VGP distribution in Fig. 2(d).
3.3 Evaluation of biases in the VGP distribution

The patterns in the VGP distribution (Fig. 2(b)) and its
non-zonal part (Fig. 2(d)) are contentious because of vari-
ous biases in the paleomagnetic data set. For instance, in the
present data set the maximum of the VGPs contributed by
a reversal record is 274 and minimum is 3, with the mean
and the standard deviation being 37 and 47 respectively. The
number of the VGPs in a reversal record represents the num-
ber of the temporal samplings of the data at the site where
the reversal record is recovered. A reversal record consist-
ing of large number of the VGPs is called a long reversal
record, and a reversal record consisting of small number of
the VGPs is called a short reversal record. Apart from a few
exceptions, the majority of long reversal records are sedi-
mentary records, and the majority of short reversal records
are lava records. The VGP distribution (Fig. 2(b)) consists
of both long and short reversal records and therefore is al-
ways a biased VGP distribution. The effect of the biases is
that the patterns in the VGP distribution may be greatly in-
fluenced by only long reversal records, and the contributions
from short reversal records are relatively reduced. Here, we
propose a method using the representation function to evalu-
ate biases and to estimate the persistent patterns in the VGP
distribution. We first outline the general procedures of the
method. We then illustrate the method in specific examples.

3.3.1 The representation function of the weighted
VGP distribution The notion of bias in a VGP distribution
may be generally stated as: a group of VGPs makes far more
contribution than other VGPs due entirely to some artificial
factors. It follows that the evaluations of biases are to ob-
serve variations of the patterns in the VGP distribution as the
contributions of these dominant VGPs are reduced (or equiv-
alently, the contributions from the less dominant VGPs are
increased). Obviously, these evaluations are possible only if
the contribution of an individual VGP to the VGP distribu-
tion can be arbitrarily adjusted. In order to adjust the contri-
bution of a VGP in Fig. 2(b), we modify dm

l in (9) as,

d̃m
l =

M∑

j=1

N j∑

i=1

k j
i Ȳ m

l

(
p̂ j

i

)
, (10)

where, k j
i ≥ 0 represents the significance of a point p̂ j

i .
Two specific cases are k

j
i = 1 and k

j
i = 0, corresponding

to the original and the removal of a VGP, p̂ j
i respectively.

Using d̃m
l , the corresponding representation function of the

weighted VGP distribution denoted as D̃
(
r̂
)

can then be

obtained from (6). D̃
(
r̂
)

satisfies, D̃
(
r̂
) = k

j
i for every r̂ =

p̂ j
i , and D̃

(
r̂
) = 0 elsewhere. The function D̃

(
r̂
)

represents
a set of the VGPs having the same geographic locations
as those in Fig. 2(b), but a number k

j
i is now attached to

each VGP indicating its significance. The biases in the VGP
distribution can then be evaluated in the following steps:

(A) We first define a relationship k
j
i = F

j
i [α] to adjust the

significance of a VGP, p̂ j
i such that k

j
i of a VGP which

makes a dominant contribution in the original VGP dis-
tribution (e.g. the VGPs from long reversal records) is
gradually reduced and k

j
i of a VGP which makes lit-

tle contribution in the original VGP distribution (e.g.
the VGPs from short reversal records) is gradually in-
creased in progressive steps marked by increasing value
of α.

(B) At each step (at each α), a set of d̃m
l (a “new VGP dis-

tribution”) is obtained from (10). We denote the “new
VGP distribution” as D̃(L)

α (.) for the step α (obtained
from (5)). Following (8), denote W̃ (L)

α (.), Ẽ (L)
sα (.) and

Ẽ (L)
aα (.) as the non-zonal part, the equatorially symmet-

ric part and the equatorially asymmetric part (of the
non-zonal part) of the “new VGP distribution” respec-
tively. The “new VGP distribution” has the exactly the
geographic distribution as the original VGP distribu-
tion, but the contribution of each VGP is changed.

(C) As k
j
i varies (as α increases), the biases in the VGP dis-

tribution vary and are reversed (e.g. the biases in the
original VGP distribution due to the dominant contribu-
tions from long reversal records are gradually reversed
to the biases due to the contributions from short reversal
records.). The effects of biases in the original VGP dis-
tribution can now be evaluated by inspecting the vari-
ations in a series of maps, D̃(L)

α (.), W̃ (L)
α (.), Ẽ (L)

sα (.)

and Ẽ (L)
aα (.). The patterns that are not persistent and un-

stable in the maps are the artifacts due to biases in the
original VGP distribution.



J.-C. SHAO et al.: A REPRESENTATION FUNCTION FOR A DISTRIBUTION OF POINTS 401

Fig. 4. The effects of biases due to uneven temporal samplings of the data W̃ (15)
α

(
r̂
)

and the persistent patterns W̄ (15)
(
r̂
)

in the non-zonal part of the VGP
distribution.

(D) The patterns in the maps that persist throughout the
evaluations (with relatively small variations in its geo-
graphic locations and amplitudes) are unlikely affected
by biases. Obviously, it is not practical to display a se-
ries of maps in the paper. We find that the average func-
tions, denoted as W̄ (L) (.), Ē (L)

s (.) and Ē (L)
a (.), for all

maps of W̃ (L)
α (.), Ẽ (L)

sα (.) and Ẽ (L)
aα (.) adequately illus-

trated (at least in the examples given in this paper) the
persistent patterns “seen” during the evaluations. How-
ever W̄ (L) (.), Ē (L)

s (.) and Ē (L)
a (.) are not the “optimal

estimates” of the persistent patterns in the VGP distri-
bution in any quantitative sense whatsoever.

3.3.2 Evaluating biases due to uneven temporal sam-
pling of the data In this section, we evaluate biases in the
VGP distribution (Fig. 2(b)) due to uneven temporal sam-
pling of the data. Following step (A), we define k j

i as,

k j
i = (

1
/

N j)α
, for α ≥ 0, (11)

for the VGPs in j th reversal record. The relationship be-
tween significance of a VGP and the length of the corre-
sponding reversal record in (11) is reciprocal. As α in-
creases, the contributions from long reversal records are re-
duced more severely relative to those from short reversal
records. For example, the significance of each VGP in a re-
versal record consisting of 100 VGPs is respectively reduced
to 10% for α = 1 and 1% for α = 2 relative to a VGP in
a reversal record consisting of 10 VGPs. For the VGPs in
the same reversal record (or in the reversal records of same

length), the significances are identical throughout the test. In
the test, we use α ranging from 0 to 2 in a step of 0.1. Fol-
lowing step (B), we compute a set of d̃m

l up to l = 25 for
each α (α = 0, 0.1, 0.2, 0.3,. . .,2) by using (10) and (11).
We obtain total 21 sets of d̃m

l . We then compute W̃ (15)
α

(
r̂
)

from each set of d̃m
l (we use d̃m

l with m 	= 0). Following
step (C), we evaluate biases by inspecting a series of maps
W̃ (15)

α

(
r̂
)

shown in Fig. 4 for α = 0.5, 1, 2. The values
in each of these maps represent the geographic variations of
the non-zonal symmetric part of VGP distribution (Fig. 2(b))
with each VGP being weighted according to (11). The maps
themselves represent the changes in the non-zonal symmetric
part of the original VGP distribution (Fig. 2(d)), as the con-
tributions from long reversal records are gradually reduced
relative to the contributions from short reversal records. The
changes in Fig. 4 suggest that the non-zonal part (Fig. 2(d))
of VGP distribution (Fig. 2(b)) is affected by biases due to
uneven temporal samplings of the data. Following step (D),
the patterns, W̄ (15)

(
r̂
)

in Fig. 4, that are persistently seen
throughout the maps W̃α(15)

(
r̂
)

are along the longitudes of
the east coast of the American continents and along the lon-
gitudes of East Asia. As we stated in (D), W̄ (15)

(
r̂
)

is used
only to qualitatively illustrate the persistent patterns and its
relative geographic variations that we saw in a set of maps
W̃ (15)

α

(
r̂
)
.

3.3.3 Evaluating the biases due to uneven temporal
and spatial samplings of the data In this section, we
modify the evaluation in Section 3.3.2 by taking into account
of biases due to uneven geographic distribution of the sites
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Fig. 5. The persistent patterns in the VGP distribution (a) W̄ (15)
(
r̂
)
, (b) Ē (15)

s
(
r̂
)
, (c) Ē (15)

a
(
r̂
)
, (d) the patches of W̄ (15) ([Li ]), (e) the patches of

Ē (15)
s ([Li ]) and (f) the patches of Ē (15)

a ([Li ]).

(Fig. 2(a)). We first divide the site distribution in to four lon-
gitudinal sectors. The sites within each longitudinal sector
and the VGPs contributed by the reversal records obtained
at these sites are designated by the same colour as shown
in Fig. 2(a) and 2(b) respectively. The total number of the
VGPs contributed by the reversal records obtained within
each longitudinal sector of the sites are Nv (L1) = 3092,
Nv (L2) = 878, Nv (L3) = 520 and Nv (L4) = 481 respec-
tively. The differences in Nv (Li ) roughly reflect both the
uneven spatial distribution of the sites and the uneven con-
tributions to the VGP distribution from the reversal records
obtained within different longitudinal sectors. Using the ex-
actly same procedures (and the same range of α = 0, 0.1,
0.2,. . .,2) discussed in Section 3.3.2, we first evaluate bi-
ases in a VGP distribution contributed by the reversal records
obtained at the sites within each of the four longitudinal
sectors (the VGPs are plotted by same colour in Fig. 2(b))
due to uneven temporal samplings of the data. For each
VGP distribution, we obtain 21 sets of the coefficients d̃m

l

and three sets of maps W̃ (15)
α

(
r̂ ∈ Li

)
, Ẽ (15)

sα

(
r̂ ∈ Li

)
and

Ẽ (15)
aα

(
r̂ ∈ Li

)
(21 maps in each set). For each α, we di-

vide W̃ (15)
α

(
r̂ ∈ Li

)
, Ẽ (15)

sα

(
r̂ ∈ Li

)
and Ẽ (15)

aα

(
r̂ ∈ Li

)
by the

corresponding Nv [Li ] and then summarize the functions to
obtain W̃ (15)

α

(
r̂
)
, Ẽ (15)

sα

(
r̂
)

and Ẽ (15)
aα

(
r̂
)

as,

W̃ (15)
α

(
r̂
) =

4∑

i=1
(Nv [Li ])−1 W̃ (15)

α

(
r̂ ∈ Li

)
(12a)

Ẽ (15)
sα

(
r̂
) =

4∑

i=1
(Nv [Li ])−1 Ẽ (15)

sα

(
r̂ ∈ Li

)
(12b)

Ẽ (15)
aα

(
r̂
) =

4∑

i=1
(Nv [Li ])−1 Ẽ (15)

aα

(
r̂ ∈ Li

)
(12c)

Weighting W̃ (15)
α

(
r̂ ∈ Li

)
, Ẽ (15)

sα

(
r̂ ∈ Li

)
and Ẽ (15)

aα

(
r̂ ∈ Li

)

by (Nv [Li ])−1 in (12(a), (b) and (c)) tend to reduce the rel-

ative contributions from the longitudinal sectors containing
large number of the sites and contributing large number of
the VGPs. Following step (C), by inspecting a series of maps
W̃ (15)

α

(
r̂
)
, Ẽ (15)

sα

(
r̂
)

and Ẽ (15)
aα

(
r̂
)

(which we do not show
here), we observed that the variations in these maps are dif-
ferent from those in Fig. 4. This suggests that the non-zonal
part (and its equatorially symmetric and asymmetric parts)
of the VGP distribution are affected by biases not only due
to uneven temporal samplings of the data (discussed in Sec-
tion 3.3.3) but also due to uneven spatial distribution of the
sites and the associated uneven contributions of the VGPs
(the differences in Nv [Li ]). Following step (D), we illus-
trate the persistent patterns seen in the maps of W̃ (15)

α

(
r̂
)
,

Ẽ (15)
sα

(
r̂
)

and Ẽ (15)
aα

(
r̂
)
, as W̄ (15)

(
r̂
)
, Ē (15)

s

(
r̂
)

and Ē (15)
a

(
r̂
)

in Fig. 5(a), 5(b) and 5(c) respectively.
3.4 The persistent features in the VGP distribution

One of the purposes of evaluating biases in the VGP dis-
tribution is to qualitatively estimate the persistent patterns
in the VGP distribution such as those shown in Fig. 5(a),
5(b) and 5(c), because these patterns likely constitute phys-
ical signals of the earth’s magnetic field. In order to il-
lustrate the persistent patterns in the VGP distribution con-
tributed by the reversal records obtained within each of 4
longitudinal sectors respectively, we obtain persistent pat-
terns W̄ (15)

(
r̂ ∈ Li

)
, Ē (15)

s

(
r̂ ∈ Li

)
and Ē (15)

a

(
r̂ ∈ Li

)
from

the maps W̃ (15)
α

(
r̂ ∈ Li

)
, Ẽ (15)

sα

(
r̂ ∈ Li

)
and Ẽ (15)

aα

(
r̂ ∈ Li

)

for each Li obtained in Section 3.3.3. We then plot the
patches of W̄ (15)

(
r̂ ∈ Li

)
, Ē (15)

s

(
r̂ ∈ Li

)
and Ē (15)

a

(
r̂ ∈ Li

)

in Fig. 5(d), 5(e) and 5(f) for each Li . The colours of
the patches correspond to those used in Fig. 2(a) for the
sites. The patches show only positive parts (the accre-
tions of the VGPs) of W̄ (15)

(
r̂ ∈ Li

)
, Ē (15)

s

(
r̂ ∈ Li

)
and

Ē (15)
a

(
r̂ ∈ Li

)
with magnitudes no less than 10% of the max-

imums in W̄ (15)
(
r̂ ∈ Li

)
, Ē (15)

s

(
r̂ ∈ Li

)
and Ē (15)

a

(
r̂ ∈ Li

)

respectively.
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Fig. 6. The persistent patterns in the VGP distribution (a) normal to reverse polarity, Ē (15)
s

(
r̂
)
, (b) reverse to normal polarity, Ē (15)

s
(
r̂
)
, (c) the patches of

Ē (15)
s ([Li ]) for normal to reverse polarity and (d) the patches of Ē (15)

s ([Li ]) for reverse to normal polarity.

We also evaluated biases in the VGP distributions for the
reversals from normal to reversed (N-R) polarity and from
reversed to normal (R-N) polarity due to uneven spatial and
temporal samplings of the data by using the same method de-
scribed in Section 3.3.3, and obtained the persistent patterns
in the VGP distributions for two opposite reversals. For sim-
plicity, we only illustrate the persistent patterns in Ē (15)

s

(
r̂
)

for N-R and for R-N in Fig. 6(a) and Fig. 6(b) respectively.
The patches of Ē (15)

s

(
r̂ ∈ Li

)
are shown in Fig. 6(c) and 6(d)

respectively.
We find that the signals of large-scale concentrations per-

sist in the equatorially symmetric part (of the non-zonal part)
of the VGP distributions (Fig. 5(b), Fig. 6(a) and Fig. 6(b)).
The strong signals broadly concentrate within two longitu-
dinal confinements: one along the longitudes of the east
coast of the North American continent and another (sig-
nals are relatively weak and vague) along the longitudes
of East Asia-Australia. The patches (Fig. 5(e), Fig. 6(c)
and Fig. 6(d)) show the broadly similar longitudinal con-
finements (but there are discrepancies between N-R and R-
N reversals shown in Fig. 6(c) and Fig. 6(d) respectively).
This suggests that the two longitudinal confinements in the
VGP distributions are likely the global signals of the earth’s
magnetic field during the polarity reversals. The patches in
Fig. 5(e), Fig. 6(c) and 6(d) also show preferential extensions
in the Pacific Ocean, but the signals in the area of preferential
extensions are weaker than those in the area of the longitudi-
nal confinements. Whether or not these patterns are the true
signals is an interesting point to be tested by future paleo-

magnetic data. We also found that there are no large-scale
systematic patterns in the equatorial asymmetries of the non-
zonal part of the VGP distribution (Fig. 5(c), we do not show
maps of the equatorial asymmetries for N-R and R-N rever-
sals, the situations are similar to those in Fig. 5(c)). This may
suggest that the equatorial asymmetries in the VGP distribu-
tions are not well defined by the present data set. Whether
or not there are systematic patterns in the equatorially asym-
metric part of the VGP distribution should be reassessed as
more data become available.
3.5 Discussion on the methods of evaluating biases in

the VGP distribution
The data set of the reversal records contains other types of

biases associated with the properties (e.g. the sedimentation
rate) of the paleomagnetic recorders. The methods of eval-
uating biases in the VGP distribution we discussed in this
paper take the advantage offered by the representation func-
tion that every point in the point distribution may be arbi-
trarily weighted. This facilitates the evaluation of any biases
associated with the VGP distribution by modifying the im-
pact of a VGP. The methods described in Section 3.3 are in
many ways more flexible than the traditional methods. For
instance, the biases in the VGP distribution are tradition-
ally evaluated by first removing the “problematic” reversal
records from the original data set to obtain a smaller subset
of the data. The VGP distribution of the subset is then eval-
uated to determine whether or not the patterns in the original
data set also persist in the patterns of the subset. If the pat-
terns persist, then the patterns are robust, if the patterns do
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not persist, then the patterns may be artifacts. The removal of
the “problematic” reversal records would of course remove
biases, but at the same time it would also reduce the site cov-
erage on the earth’s surface (unless of course the deleted data
are nothing but noise). Therefore, if the number of the rever-
sal records in the subset is far fewer than that in the original
data set, then the selected subset of the data set is in fact
more biased due to the inadequate and perhaps more biased
distribution of the sites. Furthermore, reducing the original
data set to a small subset would probably enhance other bi-
ases in the subset. The removal of any data is not required
in the method we discussed, but is also accommodated as an
extreme case by setting the significance of a VGP to zero.

Defining the weighting factor k
j
i in (11) is however not

unique (the weighting factors may be defined by other recip-
rocal relationships). This non-uniqueness is because of the
fact that we can only qualitatively define biases in the VGP
distribution. If we can quantitatively define and evaluate bi-
ases (of any type), it would logically mean that we could
extract an “idea” or estimate an “optimal” VGP distribution
(with the associated error estimates) from a biased VGP dis-
tribution. We did not see how such undertakings for the pa-
leomagnetic data set are logically possible. Nonetheless, in
so long as k

j
i is defined following the basic requirement that

biases in the original VGP distribution are progressively re-
duced (e.g. the weights of long reversal records are progres-
sively reduced relative to short reversal records), we think
that, logically, the outcome of these evaluations should be at
least qualitatively consistent.

4. Conclusion
The primary objective in this paper is to introduce a rep-

resentation function D
(
r̂
)

in (6) that uniquely, completely
and quantitatively represents a geometrical object—a point
distribution on the unit sphere. This representation function
facilitates both evaluation and manipulation of a complex
point distribution analytically. There is a wealth of theorems,
formulas and operators associated with spherical harmonics,
and by examining spherical point distributions in terms of
the infinite series of spherical harmonics, this extensive ma-
chinery can be used to analyze spherical point sets. Two el-
ementary applications of the representation function that we
illustrate in this paper, via the analyses of the VGP distribu-
tion, are (a) separating various symmetries and (b) evaluating
biases in the VGP distribution.

We find that there are two persistent longitudinal confine-
ments in the equatorial symmetries of the non-zonal part of
the transitional VGP distribution of the polarity reversals for
the past 10 million years which are similar to the two pre-
ferred VGP paths suggested by other studies (Clement, 1991;
Laj et al., 1991). We also find that this equatorially symmet-
ric part appears to have preferential extensions in the Pacific
Ocean. This implies a difference between the geometric con-
figurations of the earth’s magnetic field in the Pacific hemi-

sphere and those in the hemisphere of the Prime meridian
during polarity reversal. However, the signals in the areas of
the extensions are weak and need to be tested by new data.

Of course, in order to systematically analyze the physical
signals in the VGP distribution more relevant to the causes
of paleomagntism, a better data set and a more sophisticated
analytic framework is needed to deal with the issues that
we have not addressed. The advanced analytic framework
should include more advanced applications of the represen-
tation function, the existing statistical methods and more in-
put from our physical understanding of the earth’s magnetic
field. We think that the representation function of a point
distribution discussed in this paper is essential to the devel-
opment of such a framework.
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