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Abstract

We obtain an expression for computation of the Riesz angle in weighted Orlicz sequence spaces. We use this
expression to find some estimates of the Riesz angle for large classes of weighted Orlicz sequence spaces.

Introduction
In order to generalize the technique in [1] for c0 to a larger
class of Banach lattices, Borwein and Sims introduced in
[2] the notion of a weakly orthogonal Banach lattice and
Riesz angle a(X). A Banach lattice is weakly orthogonal if
limn→∞ ‖ |xn| ∧ |x| ‖ = 0 for all x ∈ X, whenever {xn}∞n=1
is a weakly null sequence, where |x| ∧ |y| = min(|x|, |y|).
The Riesz angle a(X) of a Banach lattice (X, ‖ · ‖) is

a(X) = sup{‖(|x| ∨ |y|)‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1},
where |x| ∨ |y| = max(|x|, |y|). Clearly 1 ≤ a(X) ≤ 2.
If there exists a weakly orthogonal Banach lattice Y such
that d(X,Y ).a(Y ) < 2, where d(X,Y ) is the Banach-
Mazur distance between the Banach spaces X and Y and
a(Y ) is the Riesz angle of Y, then X has the weak fixed
point property [2]. The coefficient R(X) for a Banach space
X is defined, and a connection between a(X) and R(X)

is found in [3]. If there exists a Banach space Y with
weak Opial condition, such that d(X,Y ).R(Y ) < 2, then
X has the fixed point property [3]. An N-dimensional
Riesz angle for a Banach lattice is introduced and stud-
ied in [4]. A fixed point theorem is proved involving the
N-dimensional Riesz angle of the space [4].
The Riesz angle is an important geometric coefficient

in Banach lattices [5-7]; therefore, the finding of formulas
for its calculation or estimation is an interesting problem.
Estimations of the Riesz angles in Orlicz function spaces
are found in [8]. Some estimations of the Riesz angles in
Orlicz sequence spaces equipped with Luxemburg norm
and Orlicz norm were found in [9]. Later, a formula for
computing the Riesz angle in Orlicz spaces is obtained
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in [10]. We refine the technique in [10] to obtain a for-
mula for the Riesz angle in a wide class of weighted Orlicz
sequence spaces. We apply this formula to find the Riesz
angle in some classes of weighted Orlicz sequence spaces.
An open problem is to find formula for the computation
of the N-dimensional Riesz angle, defined recently in [4],
in Orlicz spaces.

Methods
We use the standard Banach space terminology from [11].
Let X be a real Banach space, SX be the unit sphere of X.
Let �0 stand for the space of all real sequences, i.e. x =
{xi}∞i=1 ∈ �0, N is the set of natural numbers and R is the
set of real numbers.

Definition 1. A Banach space (X, ‖ · ‖) is said to be a
Köthe sequence space if X is a subspace of �0 such that
(i) If x ∈ �0, y ∈ X and |xi| ≤ |yi| for all i ∈ N then

x ∈ X and ‖x‖ ≤ ‖y‖
(ii) There exists an element x ∈ X such that xi > 0 for all

i ∈ N.

We recall thatM is an Orlicz function ifM is even, con-
vex, M(0) = 0, M(t) > 0 for t > 0. The Orlicz function
M(t) is said to have the property �2 if there exists a con-
stant c such thatM(2t) ≤ cM(t) for every t ∈ R. A weight
sequence w = {wi}∞i=1 is a sequence of positive reals. Fol-
lowing [12], we say that w = {wi}∞i=1 is from the class
� if there exists a subsequence w = {wik }∞k=1 such that
limk→∞ wik = 0 and

∑∞
k=1 wik = ∞. A weighted Orlicz

sequence space �M(w) generated by an Orlicz functionM
and a weight sequence w is the set of all sequences x ∈ �0,
such that the inequality M̃(x/λ) = ∑∞

i=1 wiM(xi/λ) < ∞
holds for some λ < ∞.
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It is well known that the space �M(w) is a Banach
space if endowed with Luxemburg’s norm ‖x‖M =
inf

{
r > 0 :

∑∞
i=1 wiM(xi/r) ≤ 1

}
or with Amemiya’s

norm |||x|||M = inf
{ 1
k

(
1 + ∑∞

i=1 wiM(kxi)
)
: k > 0}.

We will write �M(w, ‖ · ‖M) and �M(w, ||| · |||M) for the
weighted Orlicz sequence spaces equipped with Luxem-
burg’s and Amemiya’s norms, respectively. Luxemburg’s
and Amemiya’s norms are connected by the inequalities:

‖ · ‖M ≤ ||| · |||M ≤ 2‖ · ‖M.

We will write �M(w), when the statement holds for
the weighted Orlicz sequence space equipped with both
norms - Luxemburg and Amemiya. The space �M(w),
endowed with Luxemburg’s or Amemiya’s norm is a Köthe
sequence space. In [13], Ruiz proved that the weighted
Orlicz sequence spaces �M(w) are all mutually isomorphic
for the weight sequences w = {wn}∞n=1 ∈ �. Sharp esti-
mates are found in [14] for the cotype of �M(w), which
depends only on the generating Orlicz function, when the
weight sequence verifies the condition w = {wn}∞n=1 ∈ �.
It is proved in [15] that �M(w), endowed with Luxemburg’s
or Amemiya’s norm, has weak uniform normal structure
iff M ∈ �2 at zero, when weight sequence verifies the
condition w = {wn}∞n=1 ∈ �. Weighted Orlicz sequence
spaces were investigated for example in [16-18]. Let us
mention that if the weight sequence is from the class �,
then a lot of the properties of the space �M(w) depend
only on the generating Orlicz function M [14,15], which
is in contrast with the results when w 	∈ � [12,13,15]. All
these inspired us to find the Riesz angle in a wide class of
weighted Orlicz sequence spaces.

Results and discussion
Theorem 1. Let M be an Orlicz function with the �2-
condition and w = {wi}∞i=1 ∈ �. Then, the Riesz angle of
X = (�M(w), ‖ · ‖) can be expressed as follows:

a(X) = sup
{
kx : M̃w

(
x
kx

)
= 1

2
, x ∈ S�M(w)

}
.

Theorem 2. Let M be an Orlicz function with the �2-
condition and w = {wi}∞i=1 ∈ �. Then, the Riesz angle of
X = (�M(w), ||| · |||) can be expressed as follows:

d(X) ≤ a(X) ≤ 3
2
d(X),

where

d(X) = sup
|||x|||=1

inf
k>1

{
dx,k : M̃w

(
kx
dx,k

)
= k − 1

2

}
.

Lemma 1. Let w = {wi}∞i=1 ∈ � and v = {vi}∞i=1 ∈ � be
an arbitrary subsequence of w. Then, there exist sequences
of naturals {m(s)

i }∞i=1, {k(s)
i }∞i=1, s ∈ N, such that

1 ≤ m(1)
1 ≤ k(1)

1

k(1)
n−1 < m(n)

1 , m(s)
i ≤ k(s)

i , k(s)
i < m(s−1)

i+1

for n, i, s ∈ N, n ≥ 2, i + s = n + 1,

and for every i ∈ N, there holds the equality

∞∑
s=1

k(s)
i∑

j=m(s)
i

vj = wi.

Proof. By v ∈ �, it follows that there is a subsequence
{vij}∞j=1, such that limj→∞ vij = 0 and

∑∞
j=1 vij = ∞. For

the simplicity of the notations, let the subsequence {vij}∞j=1
denoted by {vj}∞j=1. We will prove the Lemma by induction
on n:
(i) Let n = 1. We can choosem(1)

1 , k(1)
1 so that

m(1)
1 ≤ k(1)

1

and

w1 − w1
2

≤
k(1)
1∑

j=m(1)
1

vj < w1.

Let us use the notation

f (i, p) =
p∑

s=1

ksi∑
j=ms

i

vj.

(ii) Let n = 2.We will show that we can choosem(s)
i , k(s)

i ,
i + s = 3, so that

k(1)
1 < m(2)

1 ≤ k(2)
1 < m(1)

2 ≤ k(1)
2

and

wi − wi
23−i ≤

3−i∑
s=1

k(s)
i∑

j=m(s)
i

vj < wi, for i = 1, 2.

Indeed, let us choose first m(2)
1 , k(2)

1 ∈ N: k(1)
1 <

m(2)
1 ≤ k(2)

1 , such that

w1 − w1
22

≤ f (1, 1) +
k(2)
1∑

j=m(2)
1

vj < w1.

Then, we choose m(1)
2 , k(1)

2 ∈ N: k(2)
1 < m(1)

2 ≤ k(1)
2 ,

such that

w2 − w2
2

≤
k(1)
2∑

j=m(1)
2

vj < w2.
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(iii) Suppose that for n = p, we have chosen {m(s)
i }∞i=1,

{k(s)
i }∞i=1, i + s = p + 1 with the properties:

k(1)
p−1 < m(p)

1 ,m(s)
i ≤ k(s)

i , k(s)
i < m(s−1)

i+1

for i + s = p + 1 and

wi − wi
2p+1−i ≤

p+1−i∑
s=1

k(s)
i∑

j=m(s)
i

vj < wi, for i ≤ p.

(iv) Let n = p + 1. We will show that we can choose
{m(s)

i }∞i=1, {k(s)
i }∞i=1, i + s = p + 2, so that

k(1)
p < m(p+1)

1 ,m(s)
i ≤ k(s)

i , k(s)
i < m(s−1)

i+1

for i + s = p + 2 and

wi − wi
2p+1−i ≤

p+1−i∑
s=1

k(s)
i∑

j=m(s)
i

vj < wi, (1)

for i ≤ p + 1.
Indeed, let us choose first m(p+1)

1 , k(p+1)
1 ∈ N: k(1)

p <

m(p+1)
1 ≤ k(p+1)

1 , such that

w1 − w1
2p+1 ≤ f (1, p) +

k(p+1)
1∑

j=m(p+1)
1

vj < w1.

Then, we choose m(p)
2 , k(p)

2 ∈ N: k(p+1)
1 < m(p)

2 ≤ k(p)
2 ,

such that

w2 − w2
2p

≤ f (2, p − 1) +
k(p)
2∑

j=m(p)
2

vj < w2.

If for i0 ≤ p − 1 we have chosen m(p−i0+2)
i0 , k(p−i0+2)

i0 ∈
N to satisfy the inequalities k(p−i0+1)

i0 < m(p−i0+2)
i0 ≤

k(p−i0+2)
i0 , such that

wi0 − wi0
2p−i0+2 ≤ f (i0, p− i0 + 1) +

k(p−i0+2)
i0∑

j=m(p−i0+2)
i0

vj < wi0 ,

then for i0 + 1 ≤ p, we choose m(p−i0+1)
i0+1 , k(p−i0+1)

i0+1 ∈ N:
k(p−i0)
i0+1 < m(p−i0+1)

i0+1 ≤ k(p−i0+1)
i0+1 , such that

wi0+1 − wi0+1
2p−i0+1 ≤ f (i0 + 1, p − i0)

+
k(p−i0+1)
i0+1∑

j=m(p−i0+1)
i0+1

vj < wi0+1.

On the last step for i = p + 1, we choosem(1)
p+1, k

(1)
p+1 ∈ N:

k(2)
p < m(1)

p+1 ≤ k(1)
p+1 such that

wp+1 − wp+1
2

≤
k(1)
p+1∑

j=m(1)
p+1

vj = f (p + 1, 1) < wp+1.

By (1), it follows that lim
n→∞

n∑
s=1

k(s)
i∑

j=m(s)
i

vj = wi holds for

every i ∈ N.

Theorem 3. [19] Let the iterated series
∑∞

n=1
∑∞

s=1 asn be
given. If the series

∑∞
n=1

∑∞
s=1 |asn| is convergent, then for

any permutations π , σ : N → N the series
∑

n,s a
σ(s)
π(n) is

convergent and
∑

n,s a
σ(s)
π(n) = ∑∞

n=1
∑∞

s=1 asn.

Lemma 2. Let M be an Orlicz function with the �2-
condition and w = {wi}∞i=1 ∈ �. Let �M(w) be equipped
with Luxemburg’s or Amemiya’s norm. Then,
(1) For every x ∈ �M(w), such that M̃w(λx) < ∞, for every
λ > 0, there are y, z ∈ �M(w), such that |y| ∧ |z| = 0,
M̃w(λy) = M̃w(λz) = M̃w(λx), for any λ > 0
(2) For every x ∈ S(�M(w),‖·‖), there are y, z, such that
|y| ∧ |z| = 0, y, z ∈ S(�M(w),‖·‖)
(3) For every x ∈ S(�M(w),|||·|||), there are y, z, such that
|y| ∧ |z| = 0, y, z ∈ S(�M(w),|||·|||).

Proof. (1) Let x = {xn}∞n=1 ∈ �M(w) be arbitrarily cho-
sen. By M ∈ �2, it follows that M̃w(λx) < ∞ for
every λ > 0. By w ∈ �, it follows that we can choose
two subsequences v = {vi}∞i=1, u = {ui}∞i=1 of w, such
that v,u ∈ �, v ∩ u = ∅, v ∪ u = w.

By Lemma 1, there are sequences of naturals
{m(s)

i }∞i=1, {k(s)
i }∞i=1, {α(s)

i }∞i=1, {β(s)
i }∞i=1, s ∈ N, such

that

1 ≤ m(1)
1 ≤ k(1)

1 , 1 ≤ α
(1)
1 ≤ β

(1)
1

k(1)
n−1 < m(n)

1 , m(s)
i ≤ k(s)

i , k(s)
i < m(s−1)

i+1

for n, i, s ∈ N, n ≥ 2, i + s = n + 1

β
(1)
n−1 < α

(n)
1 ,α(s)

i ≤ β
(s)
i β

(s)
i < α

(s−1)
i+1

for n, i, s ∈ N, n ≥ 2, i + s = n + 1

and there hold the equalities

∞∑
s=1

k(s)
i∑

j=m(s)
i

vj = wi =
∞∑
s=1

β
(s)
i∑

j=α
(s)
i

uj,

for every i ∈ N.
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Put

yn =
∞∑
s=1

k(s)
n∑

j=m(s)
n

xnej, zn =
∞∑
s=1

β
(s)
n∑

j=α
(s)
n

xnej

and y = ∑∞
n=1 yn, z = ∑∞

n=1 zn. We will show that
M̃w(λy) = M̃w(λz) = M̃w(λx), for any λ > 0.

Let λ > 0 and put asn(λ) = M(λxn)
∑k(s)

n
j=m(s)

n
vj for

n, s ∈ N. Let us consider the infinite matrix
a11(λ) a21(λ) a31(λ) . . . as1(λ) . . .

a12(λ) a22(λ) a32(λ) . . . as2(λ) . . .

. . . . . . . . . . . . . . . . . . . . . . . .

a1n(λ) a2n(λ) a3n(λ) . . . asn(λ) . . .

. . . . . . . . . . . . . . . . . . . . . . . .

For every n ∈ N, the equality
∑∞

s=1 asn(λ) =
M(λxn)

∑∞
s=1

∑k(s)
n
j=m(s)

n
vj = wnM(λxn) holds and thus∑∞

n=1
∑∞

s=1 asn(λ) = ∑∞
n=1 wnM(λxn) < ∞ for

every λ > 0. By asn(λ) ≥ 0 for every n, s ∈ N and
Theorem 3, it follows that for any two permutations
π , σ : N → N, the series

∑∞
n,s a

σ(s)
π(n)(λ) is convergent

and there hold the equalities
∞∑
n,s

aσ(s)
π(n)(λ) =

∞∑
n=1

∞∑
s=1

asn(λ) = M̃w(λx).

Consequently, there exist two permutations π , σ :
N → N, such that we can write the chain of equalities

M̃w(λy) =
∞∑
p=2

p−1∑
n=1

ap−n
n (λ)

=
∞∑
p=2

p−1∑
n=1

k(s)
n∑

j=m(s)
n

vjM(λxn)

=
∞∑
n,s

aσ(s)
π(n)(λ)

=
∞∑
n=1

∞∑
s=1

asn(λ) = M̃w(λx).

(2)

Similarly, if we put bsn(λ) = M(λxn)
∑β

(s)
n

j=α
(s)
n
vj for

n, s ∈ N, we get the chain of equalities

M̃w(λz) =
∞∑
p=2

p−1∑
n=1

bp−n
n (λ)

=
∞∑
p=2

p−1∑
n=1

β
(s)
n∑

j=α
(s)
n

ujM(λxn)

=
∞∑
n,s

bσ(s)
π(n)(λ)

=
∞∑
n=1

∞∑
s=1

bsn(λ) = M̃w(λx).

(3)

(2) If λ = 1, then by M̃w(y) = M̃w(z) = M̃w(x) = 1 we
get that if x ∈ S(�M(w),‖·‖) then y, z ∈ S(�M(w),‖·‖).

(3) If x ∈ S(�M(w),|||·|||), then by (1) it follows that 1
λ
(1 +

M̃w(λy)) = 1
λ
(1+ M̃w(λz)) = 1

λ
(1+ M̃w(λx)) for any

λ > 0. Therefore, if |||x||| = 1, then |||y||| = |||z||| =
|||x||| = 1.

Lemma 3. Let M be an Orlicz function with the �2-
condition and w = {wi}∞i=1 ∈ �. Then, for every x ∈
S(�M(w),|||·|||) and k > 1, there exists a unique dx,k > 1, such
that M̃w

(
kx
dx,k

)
= k−1

2 .

Proof. Let x ∈ S(�M(w),|||·|||) and k > 1 be arbitrar-
ily chosen and fixed, then we define the function S(d) :
[ 1,+∞) → R by S(d) = M̃w

(
kx
d

)
= ∑∞

i=1 wiM
(
kxi
d

)
.

By the inequality M
(
kxi
d

)
≤ M(kxi) and the convergence

of the series
∑∞wi

i=1 M(kxi), it follows that
∑∞

i=1 wiM
(
kxi
d

)
is uniformly convergent on [ 1,+∞). Thus, S is a continu-
ous function. It is easy to see that S is a strictly decreasing
function on [ 1,+∞). Therefore, by the inequalities

f (1) = M̃w(kx) ≥ |||kx|||M − 1 = k − 1 >
k − 1
2

and

lim
d→+∞

f (d) = lim
d→+∞

M̃w

(
kx
d

)
= 0 <

k − 1
2

,

we get that there is a unique dx,k > 0, such that f (dx,k) =
M̃w

(
kx
dx,k

)
= k−1

2 .

Lemma 4. ([10]) For a Köthe sequences space (X, ‖ ·‖), the
Riesz angle a(X) can be expressed as

a(X) = sup{‖(|x| ∨ |y|)‖ : x, y ∈ SX , |x| ∧ |y| = 0},
where |x| ∧ |y| = min{|x|, |y|}.
Proof of Theorem 1 (1). Let x = {xn}∞n=1 ∈ S(�M(w),‖·‖) be
arbitrarily chosen. By w = {wi}∞i=1 ∈ �, it follows that we
can choose two subsequences v = {vi}∞i=1, u = {ui}∞i=1 of
w, such that v,u ∈ �, v ∩ u = ∅, v ∪ u = w.
It follows from Lemma 1 that there exist sequences of

naturals {m(s)
i }∞i=1, {k(s)

i }∞i=1, {α(s)
i }∞i=1, {β(s)

i }∞i=1, s ∈ N, such
that

1 ≤ m(1)
1 ≤ k(1)

1 , 1 ≤ α
(1)
1 ≤ β

(1)
1

k(1)
n−1 < m(n)

1 , m(s)
i ≤ k(s)

i , k(s)
i < m(s−1)

i+1

for n, i, s ∈ N, n ≥ 2, i + s = n + 1,

β
(1)
n−1 < α

(n)
1 , α

(s)
i ≤ β

(s)
i , β

(s)
i < α

(s−1)
i+1

for n, i, s ∈ N, n ≥ 2, i + s = n + 1



ZlatanovMathematical Sciences 2013, 7:13 Page 5 of 9
http://www.iaumath.com/content/7/1/13

and there holds the equalities

∞∑
s=1

k(s)
i∑

j=m(s)
i

vj = wi =
∞∑
s=1

β
(s)
i∑

j=α
(s)
i

uj

for every i ∈ N.
We can put

yn =
∞∑
s=1

k(s)
n∑

j=m(s)
n

xnej, zn =
∞∑
s=1

β
(s)
n∑

j=α
(s)
n

xnej

and y = ∑∞
n=1 yn, z = ∑∞

n=1 zn.
Using Lemma 2, we get that y, z ∈ S(�M(w),‖·‖) and

M̃w(λx) = M̃w(λy) = M̃w(λz) for any λ ∈ R.
By the choice of the subsequences v,u ⊂ w, we have that

|y| ∧ |z| = 0 and ‖(|y| ∨ |z|)‖ = ‖y+ z‖. Therefore, we can
write the chain of equalities:

1 = M̃w
(

y+z
‖y+z‖

)
= M̃w

(
y

‖y+z‖
)

+ M̃w
(

z
‖y+z‖

)
= 2M̃w

(
x

‖(|y|∨|z|)‖
)
.

Consequently, it follows that for every x ∈ S(�M(w),‖·‖),
there exists kx = ‖(|y| ∨ |z|)‖, such that M̃w

(
x
kx

)
= 1

2 . By
Lemma 4, we get the inequality

a(X) ≥ sup
{
kx : M̃w

(
x
kx

)
= 1

2
, x ∈ SX

}
,

where X = (�M(w), ‖ · ‖).
On the other hand, let us put

D = sup
{
kx : M̃w

(
x
kx

)
= 1

2
, x ∈ S(�M(w),‖·‖)

}
.

It follows from Lemma 4 that for every ε > 0, there are
x, y ∈ S(�M(w),‖·‖), |x| ∧ |y| = 0, such that ‖(|x| ∨ |y|)‖ >

a(�M(w)) − ε.
Since

M̃w
(

(|x|∨|y|)
d

)
= M̃w

( x
d
) + M̃w

( y
d
)

≤ 1
2 + 1

2 = 1,

we get the inequality ‖(|x| ∨ |y|)‖ ≤ d, which implies
a(�M(w)) ≤ d+ ε. By the arbitrariness of ε > 0, we obtain
that d ≥ a(�M(w)).

Proof of Theorem 2. Let us denote

d = sup
|||x|||=1

inf
k>1

{
dx,k : M̃w

(
kx
dx,k

)
= k − 1

2

}
. (4)

For any ε > 0, there exist x = {xn}∞n=1 ∈ S(�M(w),|||·|||) and
k > 1, such that dx,k ≥ d − ε.

By w = {wi}∞i=1 ∈ �, it follows that we can choose two
subsequences v = {vi}∞i=1, u = {ui}∞i=1 of w, such that
v,u ∈ �, v ∩ u = ∅, v ∪ u = w.
It follows from Lemma 1 that there exist sequences of

naturals {m(s)
i }∞i=1, {k(s)

i }∞i=1, {α(s)
i }∞i=1, {β(s)

i }∞i=1, s ∈ N, such
that

1 ≤ m(1)
1 ≤ k(1)

1 , 1 ≤ α
(1)
1 ≤ β

(1)
1

k(1)
n−1 < m(n)

1 , m(s)
i ≤ k(s)

i , k(s)
i < m(s−1)

i+1
for n, i, s ∈ N, n ≥ 2, i + s = n + 1,
β

(1)
n−1 < α

(n)
1 , α

(s)
i ≤ β

(s)
i , β

(s)
i < α

(s−1)
i+1

for n, i, s ∈ N, n ≥ 2, i + s = n + 1,
and there hold the equalities

∞∑
s=1

k(s)
i∑

j=m(s)
i

vj = wi =
∞∑
s=1

β
(s)
i∑

j=α
(s)
i

uj

for every i ∈ N.
We can put

yn =
∞∑
s=1

k(s)
n∑

j=m(s)
n

xnej, zn =
∞∑
s=1

β
(s)
n∑

j=α
(s)
n

xnej

and y = ∑∞
n=1 yn, z = ∑∞

n=1 zn.
Using Lemma 2, we see that y, z ∈ S(�M(w),|||·|||), and

M̃w(λx) = M̃w(λy) = M̃w(λz) for any λ ∈ R. Let us put

D1 = inf
0<k≤1

1
k

(
1 + M̃w

(
k(y + z)
d − ε

))
and

D2 = inf
k>1

1
k

(
1 + M̃w

(
k(y + z)
d − ε

))
Therefore, by the chain of inequalities

D2 = inf
k>1

1
k

(
1 + M̃w

(
k(y+z)
d−ε

))
= inf

k>1
1
k

(
1 + 2M̃w

(
kx
d−ε

))
≥ inf

k>1
1
k

(
1 + 2M̃w

(
kx
dx,k

))
= inf

k>1
1
k

(
1 + 2 k−1

2

)
= 1

and ∣∣∣∣∣∣∣∣∣ y+z
d−ε

∣∣∣∣∣∣∣∣∣ = min{D1,D2}

≥ min {1,D2} = 1,
we get that |||y + z||| ≥ d − ε. By the arbitrariness of ε >

0 and Lemma 4, we obtain the inequality a((�M(w), ||| ·
|||)) ≥ d.
On the other hand, for any ε > 0, there are x, y ∈

S(�M(w),|||·|||), |x| ∧ |y| = 0, such that there holds the
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inequality |||(|x| ∨ |y|)||| > a((�M(w), ||| · |||)) − ε. It fol-
lows from (4) and Lemma 3 that for every ε > 0, there are
k, h > 1, such that dx,k < d + ε, dy,h < d + ε, where dx,k
and dy,h are the solutions of the equations M̃w

(
kx
dx,k

)
=

k−1
2 and M̃w

(
hy
dy,h

)
= h−1

2 , respectively. WLOG, we may
assume that 1 < h ≤ k. By the chain of inequalities∣∣∣∣∣∣∣∣∣ (|x|∨|y|)

d+ε

∣∣∣∣∣∣∣∣∣ ≤ 1
h

(
1 + M̃w

(
h(|x|∨|y|)

d+ε

))
= 1

h

(
1 + M̃w

(
hx
d+ε

)
+ M̃w

(
hy
d+ε

))
= 1

h + 1
hM̃w

(
hx
dh,x

)
+ 1

hM̃w
(

hy
dk,y

)
≤ 1

h + 1
hM̃w

(
hx
dh,x

)
+ 1

k M̃w
(

ky
dk,y

)
= 1

h + 1
h
h−1
2 + 1

k
k−1
2

= 1 + 1
2h − 1

2k < 3
2 ,

we obtain the inequality |||(|x| ∨ |y|)||| ≤ 3
2 d + 3

2ε and
hence a(�M(w)) < 3

2 d + 5ε
2 . Since ε > 0 is arbitrarily

chosen, it follows that a(�M(w)) ≤ 3
2 d.

For the estimation of the Riesz angle in weighted Orlicz
sequence spaces, we will need some well-known indices.
For an Orlicz function M, we consider the index function
GM(u) = M−1(u)

M−1(2u)
, u ∈ (0,+∞) [20]. Following [10,21], we

define the indices:

α0
M = lim inf

u→0
GM(u),

α+∞
M = lim inf

u→∞ GM(u),

α
0,+∞
M = min{α0

M,α+∞
M },

α̃M = inf
{

M−1(u)

M−1(2u)
: u ∈ (0,+∞)

}
.

(5)

Let us mention that for an Orlicz sequence space �M, only
the behavior of the Orlicz functionM at zero is important,
and therefore, the above indices are defined only at zero in
[10,21].

Theorem 4. Let M be an Orlicz function with the �2-
condition and w = {wi}∞i=1 ∈ �. Then,

1
α
0,∞
M

≤ a((�M(w), ‖ · ‖)) = 1
α̃M

.

Proof. We will prove first that a((�M(w), ‖ · ‖)) = 1
α̃M

.
We chose arbitrary x = {xi}∞i=1 ∈ S(�M(w),‖·‖) and

put ui = 1
2M(xi). It is easy to check the equality

M
(
xi.GM

(
M(xi)
2

))
= 1

2M(xi). For any ui ∈ (0,+∞), the
inequality α̃M ≤ GM(ui) holds. Then,

M̃w(̃αMx) =
∞∑
i=1

wiM(̃αMxi)

≤
∞∑
i=1

wiM(xiGM(ui))

=
∞∑
i=1

wiM
(
xiGM

(
M(xi)
2

))

=
∞∑
i=1

wiM(xi)
2 = 1

2 .

(6)

For every x = {xi}∞i=1 ∈ S(�M(w),‖·‖), there exists kx, such
that M̃w

(
x
kx

)
= 1

2 , and thus by (6), it follows the inequality
kx ≤ 1

α̃M
. Therefore,

a(X) = sup
{
kx : M̃w

(
x
kx

)
= 1

2 , x ∈ SX
}

≤ 1
α̃M

,

where X = (�M(w), ‖ · ‖).
Now, we will prove that a((�M(w), ‖ · ‖)) ≥ 1

α̃M
.

For any u ∈ (0,+∞), there are sequences of naturals
{pn}∞n=1, {qn}∞n=1, such that pn ≤ qn < pn+1, for n ∈ N and∑∞

n=1
∑qn

i=pn wi = 1
u .

Put x = ∑∞
n=1

∑qn
i=pn M

−1(u)ei. It is easy to see that
M̃w(x) = 1 and thus x ∈ S(�M(w),‖·‖). By the equality

M̃w

⎛
⎝ x

M−1(u)

M−1(u/2)

⎞
⎠ = 1

2
,

we get that for any u ∈ (0,+∞), there holds the inequality

M−1(u)

M−1(u/2)
≤ a((�M(w), ‖ · ‖)),

and therefore,
1

α̃M
= sup

{
M−1(u)

M−1(u/2) : u ∈ (0,+∞)
}

≤ a(�M(w)).

Thus, we have proven that

a((�M(w), ‖ · ‖)) = 1
α̃M

. (7)

The proof of the inequality 1
α
0,∞
M

≤ a((�M(w), ‖ · ‖)) fol-
lows directly by equality (7) and the inequality α

0,∞
M ≥

α̃M.

Theorem 5. Let M be an Orlicz function with the �2-
condition and w = {wi}∞i=1 ∈ �. Then,

1
α
0,∞
M

≤ a((�M(w), ||| · |||)) ≤ 3
2 α̃M

.
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Proof. (i) We will prove first that

a((�M(w), ||| · |||)) ≤ 3
2 α̃M

.

Let us choose arbitrary x = {xi}∞i=1 ∈ S(�M(w),|||·|||).
ByM ∈ �2 and the equality

1 = |||x||| = inf
{
1
k

(
1 + M̃w(kx)

)
: k > 0

}
,

it follows that there exists k0 > 0, such that the
equality M̃w(k0x) = k0 − 1 holds [20].

We put ui = 1
2M(k0xi). Then, similarly to (6), we

can write the inequality:

M̃w(k0α̃Mx) =
∞∑
i=1

wiM(k0α̃Mxi)

≤
∞∑
i=1

wiM(k0xiGM(ui))

=
∞∑
i=1

wiM
(
k0xiGM

(
M(k0xi)

2

))

=
∞∑
i=1

wiM(k0xi)
2 = k0−1

2

and consequently we get that dx,k0 < 1
α̃M

, where dx,k
is the solution of the equation M̃w

(
kx
dx,k

)
= k−1

2 , k >

1. Thus, for any k > 1, there holds the inequality

inf{dx,k : k > 1} < dx,k0 <
1
α̃
. (8)

By the arbitrary choice of x = {xi}∞i=1 ∈ S(�M(w),|||·|||)
and (8), we obtain that

a((�M(w), ||| · |||)) ≤ 3
2 sup

|||x|||=1
inf{dx,k : k > 0}

≤ 3
2 α̃M

.

From the inequalities ‖·‖ ≤ |||·||| ≤ 2‖·‖, it follows
that for any x, y ∈ S(�M(w),|||·|||) with |x|∧|y| = 0, there
holds the inequality

a(X) = sup{|||(|x| ∨ |y|)||| : |||x|||, |||y||| = 1}

≥ sup{‖(|x| ∨ |y|)‖ : ‖x‖, ‖y‖ ≤ 1}

= a((�M(w), ‖ · ‖)),
(9)

where X = (�M(w), ||| · |||).
Therefore, we get that

a((�M(w), ||| · |||)) ≥ a((�M(w), ‖ · ‖)) = 1
α̃M

.

(ii) By (9), we obtain the inequality

a((�M(w), ||| · |||)) ≥ a((�M(w), ‖ · ‖)) ≥ 1
α
0,∞
M

.

Definition 2. We say that theOrlicz functionM satisfies
the ∇2 condition if there exists l > 1, such that M(x) ≤
1
2lM(lx), for every x ∈[ 0,+∞), and we denote this byM ∈
∇2.

The function M−1 is a concave function and thus
M−1(t)
M−1(2t) ≥ 1

2 . According to [20] (p. 22), M ∈ ∇2 iff

lim inf
t→+∞

M−1(t)
M−1(2t) > 1

2 and lim inf
t→0

M−1(t)
M−1(2t) > 1

2 , i.e.

M ∈ ∇2 ⇔ α0
M > 1/2 and α+∞

M > 1/2. (10)

Corollary 1. Let M be an Orlicz function with M ∈ �2
and w ∈ � is a weight sequence. Then,

(a) M 	∈ ∇2 iff a((�M(w), ‖ · ‖)) = 2

(b) M ∈ ∇2 iff a((�M(w), ‖ · ‖)) < 2.

Proof. (a) Let M 	∈ ∇2. Then from (10), it follows that
α0
M = 1/2 or α+∞

M = 1/2, and thus by Theorem 4, it
follows that a((�M(w), ‖ · ‖)) ≥ 2. Therefore by the
inequalities 1 ≤ a((�M(w), ‖ · ‖)) ≤ 2, it follows that
a(�M(w), ‖ · ‖) = 2.

Let a((�M(w), ‖ · ‖)) = 2. There are three cases:
α0
M = 1/2, α+∞

M = 1/2 or there exists t0 ∈ (0,+∞),
such that M−1(t0)

M−1(2t0)
= 1/2.

Let α0
M = 1/2 or α+∞

M = 1/2 holds; then by (10),
it follows thatM 	∈ ∇2.

There exists t0 ∈ (0,+∞), such that
M−1(t0)
M−1(2t0)

= 1/2. Then, we can write the equality
M−1(2t0)−M−1(t0)

2t0−t0 = M−1(t0)
t0 , and consequently by the

concavity of the function M−1, it follows that the
points (0, 0), (t0,M−1(t0)) and (2t0,M−1(2t0)) lie
on a line. Thus, the function M−1 is linear on the
segment [ 0, 2t0] and therefore α0

M = 1/2. Therefore
by (10), it follows thatM 	∈ ∇2.

(b) The proof follows directly from (a). Indeed, let M ∈
∇2 holds, but a((�M(w), ‖ · ‖)) < 2 does not hold.
Then a((�M(w), ‖ · ‖)) = 2 and by (a), it follows that
M 	∈ ∇2 which is a contradiction.

Let a((�M(w), ‖ · ‖)) < 2 holds, but M ∈ ∇2 does
not hold. Then M 	∈ ∇2 and by (a), it follows that
a((�M(w), ‖ · ‖)) = 2 which is a contradiction.

For the next Corollary, we will need the indices form
[22].
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We put FM(t) = tp(t)
M(t) , t ∈ (0,+∞), where p is the right

derivative ofM. Let us define

A0
M = lim inf

t→0+ FM(t), B0
M = lim sup

t→0+
FM(t)

A+∞
M = lim inf

t→+∞ FM(t), B+∞
M = lim sup

t→+∞
FM(t)

The above indices are connected by the formulas ([11],
p.149; [20], p.27).

1
A0
M

+ 1
B0
N

= 1
A0
N

+ 1
B0
M

= 1

and
1

A+∞
M

+ 1
B+∞
N

= 1
A+∞
N

+ 1
B+∞
M

= 1,

where N is the complementary function toM.
The inequalities

2−1/A0
M ≤ α0

M ≤ 2−1/B0M (11)

2−1/A+∞
M ≤ α+∞

M ≤ 2−1/B+∞
M (12)

hold [23]. Let us mention that inequalities (11) are proven
in [23]. The proof of inequalities (12) is similar. We are
sure that inequalities (12) are proven somewhere. Just for
completeness, we will prove (12) using the technique from
[23].
If B+∞

M = ∞, then clearly α+∞
M = lim infu→∞ M−1(u)

M−1(2u)
≤

1 = 2−1/B+∞
M . Assume that B+∞

M < ∞. For any ε > 0,
there exists t0 > 0 such that tp(t)

M(t) = FM(t) < B+∞
M + ε for

every t ∈[ t0,+∞). Then for any t0 ≤ t1 < t2 < +∞, we
have

log M(t2)
M(t1) = ∫ t2

t1
p(t)
M(t)dt ≤ ∫ t2

t1
B+∞
M +ε

t dt

= log
(
t2
t1

)B+∞
M +ε

.

We put t1 = M−1(u) and t2 = M−1(2u). Thus for any
u ∈[M(t0),+∞), there holds the inequality

M−1(u)

M−1(2u)
≤ 2−1/B+∞

M +ε .

By the arbitrary choice of ε > 0, it follows the proof of the
right side of the inequality (12). The proof of the left side
is similar.
If limt→0+ FM(t) exists, we denote it by C0

M and if
limt→+∞ FM(t) exists we denote it by C+∞

M . We put
C0,+∞
M = min{C0

M,C+∞
M }.

Corollary 2. Let M be an Orlicz function with the �2-
condition and w ∈ � is a weight sequence. Then,
(a) If FM is an increasing function on (0,+∞), then

a(�M(w), ‖ · ‖) = 21/C0
M

(b) If FM is a decreasing function on (0,+∞), then
a(�M(w), ‖ · ‖) = 21/C

+∞
M

(c) If there is t0 ∈ (0,+∞), such that FM is increasing on
(0,M−1(t0)) and decreasing on (M−1(t0),+∞), then
a(�M(w), ‖ · ‖) = 21/C

0,+∞
M

Proof. (a) If FM is an increasing function in (0,+∞),
C0
M = limt→0+ FM(t) exists and GM(u) = M−1(u)

M−1(2u)
is

increasing in (0,+∞) [21]. Then from (11), we get

α0
M = 2

− 1
C0M = lim

t→0
G(u) = α̃M

and therefore a(�M(w), ‖ · ‖) = 21/C0
M .

(b) If FM is a decreasing function in (0,+∞), then
C+∞
M = limt→+∞ FM(t) exists, and GM(u) =
M−1(u)

M−1(2u)
is decreasing in (0,+∞) [21]. Then by (11),

we obtain

α+∞
M = 2

− 1
C+∞
M = lim

t→+∞G(u) = α̃M

and therefore a(�M(w), ‖ · ‖) = 21/C
+∞
M .

(c) If FM is an increasing function in (0,M−1(t0)), then
C0
M = limt→0+ FM(t) exists, and GM(u) = M−1(u)

M−1(2u)

is increasing in (0, t0/2). If FM is a decreasing func-
tion in (M−1(t0),+∞), then C+∞

M = limt→+∞ FM(t)
exists, and GM(u) = M−1(u)

M−1(2u)
is decreasing in

(t0/2,+∞) [21].

From (11), it follows that α0
M = 2

− 1
C0M , α+∞

M =
2
− 1

C+∞
M and hence α̃M = 2

− 1
C0,+∞
M . By Theorem 4, we

get that a(�M(w), ‖ · ‖) = 21/C
0,+∞
M .

Conclusions
Example 1. LetM1(t) = 2|t|p + |t|2p, p ∈[ 1,+∞). Then,
FM1(t) = 2p

(
1 − 1

tp+2

)
for t ∈[ 0,+∞). The function

FM1 is an increasing function and limt→0 FM1(t) = p. By
Corollary 2, we get that a(�M1(w), ‖ · ‖) = p√2.

Example 2. Let M2(t) = |t|p
log(1+|t|) , p ∈[ 1,+∞). Then,

FM2(t) = p − t
(1+t) log(1+t) for t ∈[ 0,+∞). The function

FM2 is an increasing function and limt→0 FM2(t) = p − 1.
By Corollary 2, we get that a(�M2(w), ‖ · ‖) = 2

1
p−1 .

Example 3. Let M3(t) = |t|p logr(1 + |t|), p ∈[ 1,+∞),
r ∈ (0,+∞). Then,

FM3(t) = p + rt
(1 + t) log(1 + t)

for t ∈[ 0,+∞).
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The function FM3 is a decreasing function and
limt→+∞ FM3(t) = p. By Corollary 2, we get that
a(�M3(w), ‖ · ‖) = 21/p.

Example 4. Let q ≥ 2 and p ∈[ q − 1, 2q − 1]. We define
the function

M4(t) =
⎧⎨
⎩

|t|p(1 + log |t|), |t| ≥ 1

2q−p−1
q |t|q + p−q+1

q |t|2q, |t| ≤ 1.

The functionM4 is an Orlicz function. Then,

FM4(t) =

⎧⎪⎨
⎪⎩

p + 1
1+log t , t ≥ 1

2q
(
1 − a

2(a+btq)

)
, t ∈[ 0, 1] ,

where a = 2q−p−1
q and b = p−q+1

q . The index func-
tion FM4 is increasing on [ 0, 1] and is decreasing on
[ 0,+∞), limt→0 FM4(t) = q and limt→+∞ FM4(t) = p. By
Corollary 2, we get that a(�M4(w), ‖ · ‖) = 2

1
min{p,q} .

Example 5. Let M5(t) = (1 + |t|) log(1 + |t|) − |t|.
Then FM5(t) = t log(1+t)

(1+t) log(1+t)−t is a decreasing function on
(0,+∞) and limt→+∞ FM5(t) = 1. Thus, a(�M5(w), ‖ ·
‖) = 2. By Corollary 1 it follows thatM6 	∈ ∇2.
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