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Abstract

In this paper, we describe the geometry of distributions by their symmetries and present a simplified proof of the
Frobenius theorem and some related corollaries. Then, we study the geometry of solutions of the F-Gordon equation,
a PDE which appears in differential geometry and relativistic field theory.
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Introduction
We begin this paper with the geometry of distributions.
The main idea here is the various notions of symmetry
and their use in solving a given differential equation. In the
‘Tangent and cotangent distribution’ section, we introduce
the basic notions and definitions.
In the ‘Integral manifolds and maximal integral

manifolds’ section, we describe the relation between dif-
ferential equations and distributions. In the ‘Symmetries’
section, we present the geometry of distributions by
their symmetries and find out the symmetries of the
F-Gordon equation by this machinery. In the ‘A proof
of the Frobenius theorem’ section, we introduce a sim-
plified proof of the Frobenius theorem and some related
corollaries. In the ‘Symmetries and solutions’ section, we
describe the relations between symmetries and solutions
of a distribution.
In all steps, we study the F-Gordon equation as an

application and also a partial differential equation which
appears in differential geometry and relativistic field
theory. It is a generalized form of the Klein-Gordon
equation utt − uxx + u = 0 as well as a relativistic version
of the Schrodinger equation, which is used to describe
spinless particles. It was named after Walter Gordon and
Oskar Klein [1,2].
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Tangent and cotangent distribution
Throughout this paper,M denotes an (m+n)-dimensional
smooth manifold.

Definition 2.1. A map D : M → TM is called
an m-dimensional tangent distribution on M, or briefly
Tanm-distribution, if

Dx := D(x) ⊆ TxM (x ∈ M)

is anm-dimensional subspace of TxM. The smoothness of
D means that for each x ∈ M, there exists an open neigh-
borhood U of x and smooth vector fields X1, · · · ,Xm such
that

Dy = 〈
X1(y), · · · ,Xm(y)

〉
:= span R{X1(y), · · · ,Xm(y)} (y ∈ U)

Definition 2.2. A map D : M → T∗M is called an n-
dimension cotangent distribution on M, or briefly Cotn-
distribution, if

Dx := D(x) ⊆ T∗
xM (x ∈ M)

is an n-dimensional subspace of T∗
xM. The smoothness

of D means that for each x ∈ M, there exists an open
neighborhood U of x and smooth 1-forms ω1, · · ·ωn such
that

Dy = 〈
ω1(y), · · · ,ωn(y)

〉
:= span R{ω1(y), · · · ,ωn(y)} (y ∈ U)

In the sequel, without loss of generality, we can assume
that these definitions are globally satisfied.
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There is a correspondence between these two types
of distributions. For Tanm-distribution D, there exist
nowhere zero smooth vector fields X1, · · · ,Xm on M
such that D = 〈X1, · · · ,Xm〉, and similarly, for
Cotn-distribution D, there exist global smooth 1-forms
ω1, · · · ,ωn onM such that D = 〈

ω1, · · · ,ωn〉.
Example 2.3. (Cartan distribution) Let M = Rk+1.

Denote the coordinates inM by x, p0, p1, ..., pk , and given a
function f (x, p0, · · · , pk−1), consider the following differ-
ential 1-forms

ω0 = dp0 − p1 dx, ω2 = dp1 − p2 dx, · · ·
ωk−2 = dpk−2 − pk−1 dx,

ωk−1 = dpk−1 − f (x, p0, · · · , pk−1) dx,

and the distribution D = 〈
ω0, · · · ,ωk−1〉. This is the

1-dimensional distribution, called the Cartan distribu-
tion. This distribution can also be described by a single
vector field X, D = 〈X〉, where

X = ∂x + p1 ∂p0 + p2 ∂p1 + · · · + pk−1 ∂pk−2

+ f (x, p0, · · · , pk−1) ∂pk−1 .

Example 2.4. (F-Gordon equation) Let F : R5 → R
be a differentiable function. The corresponding
F-Gordon PDE is uxy = F(x, y,u,ux,uy). We con-
struct 7-dimensional sub-manifold M defined by
s = F(x, y,u, p, q), of

J2(R2,R)={x, y,u, p=ux, q=uy, r=uxx, s=uxy, t=uyy}.
Consider the 1-forms

ω1 = du − p dx − q dy, ω2 = dp − r dx − F dy,
ω3 = dq − F dx − t dy.

This distribution can also be described by the following
vector fields:

X1 = ∂x + p ∂u + r ∂p + F ∂q,
X2 = ∂y + q ∂u + F ∂p + t ∂q,
X3 = ∂r , X4 = ∂t .

Definition 2.5. Let D : M → TM be a Tanm-distribu-
tion and set

AnnDx := {ωx ∈ T∗
xM | ωx|Dx = 0}.

It is clear that dimAnnDx = n. A 1-form ω ∈ �1(M)

annihilates D on a subset N ⊂ M, if and only if ωx ∈
AnnDx for all x ∈ M.
The set of all differential 1-forms on M which annihi-

lates D, is called annihilator of D and denoted by AnnD.

Therefore, for each Tanm-distribution,

D : M → TM, D : x 	→ Dx,

we can construct a Cotn-distribution

D : M → T∗M, D : x 	→ Dx = AnnDx

and vice versa. In the other words, for each Tanm-
distribution D = 〈X1, · · · ,Xm〉, we can construct a Cotn-
distribution D = AnnD = 〈

ω1, · · · ,ωn〉, and vice versa.

Theorem 2.6. (a) D and its annihilator are modules
over C∞(M).

(b) Let X be a smooth vector field on M and ω ∈ AnnD,
then

LXω ≡ −ω ◦ LX mod D

Proof. (a) is clear, and for (b), if Y belongs to D, then
ω(Y ) = 0 and

(LXω)Y = X.(ω(Y ))−ω[X.Y ]= −ω[X.Y ]= −(ω◦LX)Y .

Integral manifolds andmaximal integral manifolds
Definition 3.1. Let D be a distribution. A bijective

immersed sub-manifold N ⊂ M is called an integral man-
ifold of D if one of the following equivalence conditions is
satisfied:

(1) TxN ⊆ Dx, for all x ∈ N .
(2) N ⊆ ⋂n

i=1 kerωi.

Moreover, N ⊂ M is called maximal integral manifold
if for each x ∈ N , there exists an open neighborhood U
of x such that there is no integral manifold N ′ containing
N ∩ U .

It is clear that the dimension of maximal integral mani-
fold does not exceed the dimension of the distribution.

Definition 3.2. D is called a completely integrable dis-
tribution, or briefly CID, if for all maximal integral man-
ifold N , one of the following equivalence conditions is
satisfied:

(1) dimN = dimD.
(2) TxN = Dx for all x ∈ N
(3) N ⊆ ⋂n

i=1 ker ωi, and if N ′ be an integral manifold
with N ∩ N ′ �= ∅, then N ′ ⊆ N .

In the sequel, the set of all maximal integral manifolds is
denoted by N.
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Theorem 3.3. N = ⋂n
i=1 ker ωi; that is ωi|N = 0 for

i = 1, · · · , n.

Example 3.4. (Continuation of Example 2.3) IfN is an
integral curve of the distribution, then x can be chosen as
a coordinate on N , and therefore,

N = {(x, h0(x), h1(x), · · · , hk−1(x)) | x ∈ R}.

Conditionsω0|N = 0, · · · ,ωk−1|N = 0 imply that h1 = h′
0,

h2 = h′
1, · · · , hk−1 = h′

k−1, or that

N = Jk−1h = {(x, h(x), h′(x), · · · , h(k−1)(x) | x ∈ R}

for some function h : R → R.
The last equation ωk−1|N = 0 gives us an ordi-

nary differential equation h(k)(x) = f (x, h(x), h′(x),
· · · , h(k−1)(x)).
The existence theorem shows us once more that the

integral curves do exist, and therefore, the Cartan distri-
bution is a CID.

Example 3.5. (Continuation of Example 2.4) This dis-
tribution in not a CID because there is no 4-dimensional
integral manifold, and dimD = 4. For, if N be a
4-dimensinal integral manifold of the distribution, then
(x, y,u, p) can be chosen as coordinates on N , and there-
fore,

N :
{
q = h(x, y,u, p), r = l(x, y,u, p),
t = m(x, y,u, p), s = F(x, y,u, p, h).

Condition ω1|N = 0 implies that −p dx − h(x, y,u, p)
dy + du = 0, which is impossible.
By the same reason, we conclude that there is no

3-dimensional integral manifold.
Now, ifN be a 2-dimensinal integral manifold of the dis-

tribution, then (x, y) can be chosen as coordinates on N ,
and therefore,

N :
{

u = h(x, y), p = l(x, y), q = m(x, y),
r = n(x, y), t = o(x, y), s = F(x, y,u, p, q).

Conditions ω1|N = 0 and ω2|N = 0 imply that l = hx,
m = hy, n = lx = hxx and o = my = hyy.
The last equation ω3|N = 0 implies that hxy = F(x, y,

h, hx, hy). This distribution is not a CID.

Symmetries
In this section, we consider a distribution D = 〈X1, · · · ,
Xm〉 = 〈ω1, · · · ,ωn〉 on manifoldMn+m.

Definition 4.1. A diffeomorphism F : M → M is called
a symmetry of D if F∗Dx = DF(x) for all x ∈ M.

Therefore,we have the following theorem.

Theorem 4.2. The following conditions are equivalent:

(1) F is a symmetry of D;
(2) F∗ωis determine the same distribution D; that is

D = 〈
F∗ω1, · · · , F∗ωn〉;

(3) F∗ωi ∧ · · · ∧ ωn = 0 for i = 1, · · · , n;
(4) F∗ωi = ∑n

j=1 aij ωj, where aij ∈ C∞(M);
(5) (F∗Xi|x) ∈ DF(x) for all x ∈ M and i = 1, · · · , n; and
(6) F∗Xi = ∑n

j=1 bij Xj, where bij ∈ C∞(M).

Theorem 4.3. If F be a symmetry of D and N be an
integral manifold, then F(N) is an integral manifold.

Proof. F is a diffeomorphism; therefore, F(N) is a sub-
manifold of M. From other hand, if x ∈ N , then ωi|F(x) =
(F∗ωi)|x = 0 for all i = 1, · · · , n; therefore, F(N) =
{F(x) | x ∈ N} is an integral manifold.

Theorem 4.4. Let N be the set of all maximal integral
manifolds and F : M → Mbe a symmetry, then F(N) = N.

Proof. If x ∈ N, then ωi|F(x) = (F∗ωi)|x = 0 for all i =
1, · · · , n; therefore, F(x) ∈ N and F(N) ⊂ N.

Now, if y ∈ N, then there exists x ∈ M such that F(x) =
y, since F is a diffeomorphism. Therefore, (F∗ωi)|x =
ωi|F(x) = ωi|y = 0 for all i = 1, · · · , n; thus, x ∈ N and
N ⊆ F(N).

Definition 4.5. A vector field X on M is called an
infinitesimal symmetry of distribution D, or briefly a
symmetry ofD, if the flow FlXt of X be a symmetry ofD for
all t.

Theorem 4.6. A vector field X ∈ X(M) is a symmetry if
and only if

LXωi|D = 0 for all i = 1, · · · , n.

Proof. Let X be a symmetry. If � = ω1 ∧ · · · ∧ ωn, then
{(FlX)∗ωi} ∧ � = 0, by condition (3) in Theorem 4.2.
Moreover, by the definition LXωi := d

dt
∣∣
0(Fl

X
t )∗ωi, one

gets

(LXωi) ∧ � = lim
t→0

1
t

(
(FlXt )∗ωi − ωi) ∧ �

= lim
t→0

1
t

({(FlX)∗ωi} ∧ � − ωi ∧ �1) = 0.

Therefore LXωi|D = 0.
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In converse, let LX ωi|D = 0 or LX ωi = ∑n
j=1 bij ωj

for i = 1, · · · , n and bij ∈ C∞(M). Now, if γi(t) :=
{(FlXt )∗ωi} ∧ �, then

γi(0) = {(FlX0 )∗ωi} ∧ � = 0, (1)

and

γ ′
i (t) = d

dt
{(FlXt )∗ωi} ∧ � = ((FlXt )∗LXωi) ∧ �

= (FlXt )∗
(∑

bij ωi
)

∧ � =
∑

Bij {(FlXt )∗ωj} ∧ �

where Bij = (FlXt )∗bij = bij ◦ FlXt and

γ ′
i (t) =

∑
Bij γi(t) , i = 1, · · · , n. (2)

Therefore, γ = (γ1 · · · , γn) is a solution of the lin-
ear homogeneous system of ODEs (2) with the initial
conditions (1), and γ must be identically zero.

Theorem 4.7. X is symmetry if and only if for all Y ∈ D,
then [X,Y ]∈ D.

Proof. By the above theorem,X is a symmetry if and only
if for all ω ∈ AnnD, then LXω ∈ AnnD.
The Theorem comes from the Theorem 2.6 (b): LXω =

−ω ◦ LX on D. In other words, (LXω)Y = −ω[X,Y ] for
all Y ∈ D.

Denote by SymD the set of all symmetries of a distribu-
tion D.

Example 4.8. (Continuation of Example 3.4) Let k =
2. A vector field Y = a ∂x + b ∂p0 + c ∂p1 is an infinitesimal
symmetry ofD if and only if LYωi ≡ 0modD, for i = 1, 2.
These give two equations:

c = Xb − p1 Xa, Xc = f Xa + Yf .

Example 4.9. (Continuation of Example 3.5) We con-
sider the point infinitesimal transformation:

Z = X(x, y,u) ∂x + Y (x, y,u) ∂y + U(x, y,u) ∂u

+P(x, y,u, p, q, r, t) ∂p + Q(x, y,u, p, q, r, t) ∂q

+R(x, y,u, p, q, r, t) ∂r + T(x, y,u, p, q, r, t) ∂t .

Then, Z is an infinitesimal symmetry of D if and only if
LZωi ≡ 0modD, for i = 1, 2, 3. These give ten equations:

Pr =Pt = Qr = Qt = 0,
p2Xy + qpYy + qUx + pQ=pqXx + qP + q2Yx + pUy,
rpXy + FYy + qPx + (qr − pF)Pp + (qF − pt)Pq

+ pXFx + pYFy + pUFu + pPFp + pQFq = qrXx

+ qFYx + pPy + qR,
pFXy + ptYy + (qr−pF)Qp + (qF−pt)Qq + qQx + pT

= qFXx + qtYx + pQy + qPFp + qYFy + qXFx
+ qQFq + qUFu,

Qy+qQu+FQp+tQq= tYy+tqYu+FXy+qFXu+T ,
Uy+qUu = pXy + pqXu + qYy + q2Yu + Q,
Py+qPu + FPp + tPq = rXy + qrXu + FYy + qFYu

+ (XFx + YFy + UFu + PFp + QFq).

Complicated computations using Maple show that

P = −pXx − p2Xu − qYx − pqYu + Ux + pUu,

Q = 1
p

(
pqXx−p2Xy+q2Yx−pqYy−qUx + pUy + qP

)
,

R = 1
q

((
pqXx−p2Xy+q2Yx − pqYy−qUx+pUy+qP

)
.Fq

+ (
(qr − pF).Pp + (qF − pt).Pq + qPx − pPy

+ pXFx + pYFy + pUFu + pPFp + (pYy − qYx).F
−pr.(qXx − pXy)

)
,

T = 1
p3

(
(p2t + q2r − 2pqF)P + p2(pt + q2Fq)Xx

+p2(qr − 2pF − pqFq)Xy + q(q2(r + pFq)
+3p(pt − qF))Yx − p2(q2Fq + 2pt + qF)Yy
−(q2r + pq2Fq + p2t + 2pq)Ux + p2qFqUy

−pq2Px + p2qPy + pq(pF − qr)Pp + pq(pt − qF)Pq
+pq(pXFx + pYFy + pUFu + pPFp + qPFq)
−p2q2Xxx + 2p3qXxy − p4Xyy − pq3Yxx + 2p2q2Yxy
−p3qYyy + pq2Uxx − 2p2qUxy + p3Uyy

)
,

and X = X(x,u − qy), Y = Y (y,u − px), and U(x, y,u)

must satisfy in PDE:

(pFp−F)Xx+p(pFp−2F)Xu+(qFq−F)Yy+q(qFq−2F)Yu
− FpUx − FqUy + (F − pFp − qFq)Uu + Uxy + qUxu

+ pUyu + pqUuu = XFx + YFy + UFu.

A proof of the Frobenius theorem
Theorem 5.1. Let X ∈ SymD ∩ D and N be maximal

integral manifold. Then, X is tangent to N.
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Proof. Let X(x) �∈ TxN . Then, there exists an open
set U of x and sufficiently small ε such that N̄ :=⋃

−ε<t<ε FlXt (N ∩ U) is a smooth sub-manifold ofM.
Since X ∈ D, So N̄ is an integral manifold.
Since X ∈ SymD, so tangent to FlXt (N ∩ U) belongs to

D, for all −ε < t < ε.
On the other hand, tangent spaces to N̄ are sums of tan-

gent spaces to FlXt (N∩U) and the 1-dimensional subspace
generated by X, but both of them belong to D, and their
means are N̄ ⊂ N .

Theorem 5.2. If X ∈ D ∩ SymD and N be a maximal
integral manifold, then FlXt (N) = N for all t.

Theorem 5.3 (Frobenious). A distribution D is com-
pletely integrable, if and only if it is closed under Lie
bracket. In other words, [X,Y ]∈ D for each X,Y ∈ D.

Proof. Let N be a maximal integral manifold with
TxN = Dx. Therefore, for all X,Y ∈ D, X and Y are
tangent to N , and so [X,Y ] is also tangent to N .
On the other hand, let for all X,Y ∈ D, their [X,Y ]∈ D.

By the Theorem, all x ∈ D is a symmetry too, and so all
X ∈ D is tangent to N , and this means Tx N = Dx, for all
x ∈ N .

Theorem 5.4. A distribution D is completely integrable
if and only if D ⊂ SymD.

Theorem 5.5. Let D = 〈
ω1, · · · ,ωn〉 be a completely

integrable distribution and X ∈ D. Then, the differential
1-forms (FlXt )∗ω1, · · · , (FlXt )∗ωn vanish on D for all t.

Proof. If D is completely integrable, then X is a symme-
try. Hence,

(FlXt )∗ωi =
∑
j

aij ωj.

Symmetries and solutions
Definition 6.1. If an (infinitesimal) symmetry X

belongs to the distribution D, then it is called a character-
istic symmetry. Denote by Char(D) := SD ∩ D the set of
all characteristic symmetries [3,4].

It is shown that Char(D) is an ideal of the Lie algebra
SD and is a module on C∞(M). Thus, we can define the
quotient Lie algebra

Shuf(D) := SymD/Char(D).

Definition 6.2. Elements of Shuf (D) are called shuffling
symmetries of D.

Any symmetry X ∈ SymD generates a flow onN (the set
of all maximal integral manifolds of D), and, in fact, the
characteristic symmetries generate trivial flows. In other
words, classes X mod Char(D) mix or ‘shuffle’ the set of
all maximal manifolds.

Example 6.3. (Continuation of Example 4.8) Let
k = 2. In this case,

∂x ≡ −p1 ∂p0 − f ∂p1 mod Char(D).

Therefore, Shuf (D) is spanned by Z = (b − ap1) ∂p0+
(c − af ) ∂p1 , where

c = Xb − p1 Xa, Xc = f Xa + Yf .

Example 6.4. (Continuation of Example 4.9) In this
case, we have

∂x ≡ −p ∂u − r ∂p − F ∂q, ∂r ≡ 0,
∂y ≡ −q ∂u − F ∂p − t ∂q, ∂t ≡ 0,

in Shuf (D). Therefore, Shuf (D) is spanned by

W = (U − pX − qY ) ∂u + (P − rX − FY ) ∂p

+ (Q − FX − tY ) ∂q,

where

P = −pXx − p2Xu − qYx − pqYu + Ux + pUu,

Q = 1
p

(
pqXx−p2Xy + q2Yx−pqYy−qUx + pUy + qP

)
,

and X = X(x,u − qy), Y = Y (y,u − px), and U(x, y,u)

must satisfy in PDE:

(pFp − F)Xx + p(pFp − 2F)Xu + (qFq − F)Yy
+ q(qFq − 2F)Yu,
− FpUx − FqUy + (F − pFp − qFq)Uu + Uxy

+ qUxu + pUyu + pqUuu = XFx + YFy + UFu.
(3)

Example 6.5. (Quasilinear Klein-Gordon Equation)
In this example, we find the shuffling symmetries of the
quasilinear Klein-Gordon equation

utt − α2 uxx + γ 2 u = β u3

as an application of the previous example, where α, β , and
γ are real constants. The equation can be transformed by
defining ξ = 1

2 (x − αt) and η = 1
2 (x + αt). Then, by the

chain rule, we obtain α2 uξη + γ 2 u = β u3. This equation
reduces to

uxy = au + bu3, (4)

by t = y, a = −(γ /α)2, and b = β/α2.
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By solving the PDE (3), we conclude that Shuf (D) is
spanned by the three following vector fields:

X1 = (px − qy) ∂u − (p + yu2(a + bu) − rx) ∂p

+(q + xu2(a + bu) − ty) ∂q,
X2 = q ∂u + u2(a + bu) ∂p + t ∂q,
X3 = p ∂u + r ∂p + u2(a + bu) ∂q.

For example, we have

FlX3
s (x, y,u, p, q, r, t) =

(
x, y,u + sp + s2

2
r, p + sr, q

+ s.u2(a + bu) + s2

40
.up(2a + 3bu) + s3

42
.(14ap2

+ 42bup2 + 14aur + 21bu2r) + s4

4
.p(bp2 + ar

+ 3bur) + s5

20
.r(6bp2 + ar + 3bur) + s6

8
.bpr2

+ s7

56
.br3, r, t

)
,

and if u = h(x, y) be a solution of (4), then
FlX3

s (x, y, h, hx, hy, hxx, hyy) is also a new solution of (4), for
sufficiently small s ∈ R.
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