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Abstract

In this paper, we describe the geometry of distributions by their symmetries and present a simplified proof of the
Frobenius theorem and some related corollaries. Then, we study the geometry of solutions of the F-Gordon equation,
a PDE which appears in differential geometry and relativistic field theory.
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Introduction

We begin this paper with the geometry of distributions.
The main idea here is the various notions of symmetry
and their use in solving a given differential equation. In the
‘Tangent and cotangent distribution’ section, we introduce
the basic notions and definitions.

In the ‘Integral manifolds and maximal integral
manifolds’ section, we describe the relation between dif-
ferential equations and distributions. In the ‘Symmetries’
section, we present the geometry of distributions by
their symmetries and find out the symmetries of the
F-Gordon equation by this machinery. In the ‘A proof
of the Frobenius theorem’ section, we introduce a sim-
plified proof of the Frobenius theorem and some related
corollaries. In the ‘Symmetries and solutions’ section, we
describe the relations between symmetries and solutions
of a distribution.

In all steps, we study the F-Gordon equation as an
application and also a partial differential equation which
appears in differential geometry and relativistic field
theory. It is a generalized form of the Klein-Gordon
equation uy — Uy, + u = 0 as well as a relativistic version
of the Schrodinger equation, which is used to describe
spinless particles. It was named after Walter Gordon and
Oskar Klein [1,2].
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Tangent and cotangent distribution
Throughout this paper, M denotes an (m+n)-dimensional
smooth manifold.

Definition 2.1. A map D M — TM is called
an m-dimensional tangent distribution on M, or briefly
Tan™-distribution, if

D, :=D(x) C T,M (xeM)

is an m-dimensional subspace of T,M. The smoothness of
D means that for each x € M, there exists an open neigh-

borhood U of x and smooth vector fields X3, - - - , X, such
that
D, = (X1, -+, X))
= spanglXi®), - X)) (yel)

Definition 2.2. A map D : M — T*M is called an n-
dimension cotangent distribution on M, or briefly Cot”-
distribution, if

Dy :=D(x) C T*M (x € M)

is an n-dimensional subspace of T;M. The smoothness
of D means that for each x € M, there exists an open

neighborhood U of x and smooth 1-forms w!, - - - " such
that
Dy = ('), 0" )
= spang{o'(y), -, 0" ()} (y el

In the sequel, without loss of generality, we can assume
that these definitions are globally satisfied.
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There is a correspondence between these two types
of distributions. For Tan™-distribution D, there exist
nowhere zero smooth vector fields Xi,---,X,, on M
such that D = (Xj,---,X),), and similarly, for
Cot"-distribution D, there exist global smooth 1-forms
!, -, " on M such that D = <a)1, e ,w”).

Example 2.3. (Cartan distribution) Let M = Rk,
Denote the coordinates in M by x, po, p1, ..., pk, and given a
function f(x, po, - - - , pk—1), consider the following differ-
ential 1-forms

® =dpy — prdx, ©* =dp) — prdx,
k= = dpy_y — pr_1 dx,

wk_l = dpk*l —f(xypo» ©,Pk—1) dx,

and the distribution D = <a)°,--- ,a)k_1>. This is the
1-dimensional distribution, called the Cartan distribu-
tion. This distribution can also be described by a single
vector field X, D = (X), where

X =0x+p1dpy, +p2p, + - +Pk—10p_,
+f(x1p0y e )Pk—l) apk_l'

Example 2.4. (F-Gordon equation) Let F : R°> — R
be a differentiable function. The corresponding
F-Gordon PDE is uy, = F(x,9,u,uyty). We con-
struct 7-dimensional sub-manifold M defined by
s =F(x,y,u,p,q), of

J2(R?,R) =X, Y, thy p=th, G = Uy, T = U, S = ey, L= Uy }.
Consider the 1-forms

o' =du—pdx —qdy, ©*=dp—rdx— Fady,

w® =dq — Fdx — tdy.

This distribution can also be described by the following
vector fields:

X1 =0 +p0y+rdy+Foy
Xy =0y +q0d,+F0p+1tdy
X3 =0y, X4 =0,

Definition 2.5. Let D : M — TM be a Tan™-distribu-
tion and set

AnnDy = {wx € TyM | wylp, = 0}.

It is clear that dim AnuDy, = n. A 1-form w € QL (M)
annihilates D on a subset N C M, if and only if w, €
AnnD, for allx € M.

The set of all differential 1-forms on M which annihi-
lates D, is called annihilator of D and denoted by AnnD.
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Therefore, for each Tan™-distribution,
D:M—TM, D:x+— Dy,
we can construct a Cot”-distribution
D:M— T*M, D:x+ D,=AnnD,

and vice versa. In the other words, for each Tan”-
distribution D = (X3, ---,X,,), we can construct a Cot”-
distribution D = AnnD = (a)l, cee a)”), and vice versa.

Theorem 2.6. (a) D and its annihilator are modules
over C*(M).
(b) Let X be a smooth vector field on M and w € AnnD,
then

Lyw=—-woLy mod D

Proof. (a) is clear, and for (b), if ¥ belongs to D, then
w(Y) =0and

(Lx®)Y = X.(0(Y))—o[X.Y] = —0[ X.Y] = —(woLy)Y.
O

Integral manifolds and maximal integral manifolds

Definition 3.1. Let D be a distribution. A bijective
immersed sub-manifold N C M is called an integral man-
ifold of D if one of the following equivalence conditions is
satisfied:

(1) TyN C Dy, forallx € N.
(2) N € ker o'

Moreover, N C M is called maximal integral manifold
if for each x € N, there exists an open neighborhood U
of x such that there is no integral manifold N’ containing
NNU.

It is clear that the dimension of maximal integral mani-
fold does not exceed the dimension of the distribution.

Definition 3.2. D is called a completely integrable dis-
tribution, or briefly CID, if for all maximal integral man-
ifold N, one of the following equivalence conditions is
satisfied:

(1) dimN = dimD.

(2) TyN =D, forallx e N

(3) N €, ker &, and if N’ be an integral manifold
withN NN’ # (), then N’ C N.

In the sequel, the set of all maximal integral manifolds is
denoted by N.
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Theorem 3.3. N =
i=1,---,n

" ker o'; that is w'|n = 0 for

Example 3.4. (Continuation of Example 2.3) If N is an
integral curve of the distribution, then x can be chosen as
a coordinate on N, and therefore,

N = {(xrho(x)’hl(x)r e rhk—l(x)) |x € R}

Conditions @®|y =0, - -, " |y = 0 imply that /1y =
hy =MWy, -, hx_1 = hy_,, or that

N =7 = {(x, hx), H (%), - -, h5 D () | € R}

for some function # : R — R.

The last equation o*~!|y = 0 gives us an ordi-
nary differential equation #®(x) = f(x, h(x),H (%),
- ,h(k_l)(x)).

The existence theorem shows us once more that the
integral curves do exist, and therefore, the Cartan distri-
bution is a CID.

Example 3.5. (Continuation of Example 2.4) This dis-
tribution in not a CID because there is no 4-dimensional
integral manifold, and dimD = 4. For, if N be a
4-dimensinal integral manifold of the distribution, then
(x,%,u, p) can be chosen as coordinates on N, and there-
fore,

N | a=hyup), r=1Cy,up),
| t=mx,y,u,p), s=F(x,y,up,h).

Condition w!'|y = 0 implies that —pdx — h(x,y, u, p)
dy + du = 0, which is impossible.

By the same reason, we conclude that there is no
3-dimensional integral manifold.

Now, if N be a 2-dimensinal integral manifold of the dis-
tribution, then (x,y) can be chosen as coordinates on N,
and therefore,

u= h(xry)’ p= l(x;)/), q= Wl(x;y),
r=nxy),t=o0y),s=FCyup,q.

Conditions w!|y = 0 and @?|y = 0 imply that [ = h,,
m = hy, n = ly = hyy and 0 = my = hyy.

The last equation 3|y = 0 implies that hyy = F(x,Y,
h, hy, hy). This distribution is not a CID.

Symmetries
In this section, we consider a distribution D = (X1,---,
Xpn) = (@, - -+, ") on manifold M" ",

Definition 4.1. A diffeomorphism F : M — M is called
a symmetry of D if F,Dy = Dp(y) for all x € M.
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Therefore,we have the following theorem.

Theorem 4.2. The following conditions are equivalent:

(1) Fisasymmetry of D;
(2) F*w's determine the same distribution D; that is
D = (Frwl,- -, Fro");
(3) Ffo'A-- A" =0fori=1,---,n;
(4) Frol= Yy i o/, where a;j € C®(M);
(5) (F«Xilx) € Dpy) forallx e Mandi=1,---,n; and
(6) FX;= Z;»q:l bl'/‘X/‘, where b,‘j € C®WM).

Theorem 4.3. If F be a symmetry of D and N be an
integral manifold, then F(N) is an integral manifold.

Proof. F is a diffeomorphism; therefore, F(N) is a sub-
manifold of M. From other hand, if x € N, then | =
(F*o')|y = O foralli = 1,---,n; therefore, F(N) =
{F(x) | x € N} is an integral manifold. O

Theorem 4.4. Let N be the set of all maximal integral
manifolds and F : M — M be a symmetry, then F(N) = N.

Proof. If x € N, then o|p(y) = (F*')|, = Oforalli =
1, .-+, n; therefore, F(x) € N and F(N) C N. O

Now, if y € N, then there exists x € M such that F(x) =
y, since F is a diffeomorphism. Therefore, (F*w')|, =
o'lFw = ]y = 0foralli = 1,---,n; thus, x € N and
N C F(N).

Definition 4.5. A vector field X on M is called an
infinitesimal symmetry of distribution D, or briefly a
symmetry of D, if the flow Flf( of X be a symmetry of D for
all ¢.

Theorem 4.6. A vector field X € X(M) is a symmetry if
and only if

LXa)i|D =0 forall i=1,---,n.

Proof. Let X be a symmetry. If Q = o' A - A", then
{(FIN*0'} A Q = 0, by condition (3) in Theorem 4.2.

Moreover, by the definition Lyw' = %|O(Fl§()*wi, one
gets
(Lxo') A Q = lim 1 (FIH*o' — o) A Q
t—0 t t

N NS :
}Lo p {FM*IAQ -’ AQY) =0.

O

Therefore Lyw'|p = 0.
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In converse, let Ly oil|p = 0 or Ly o' = Zl«”:l b;j o
fori = 1,---,n and b; € C®M). Now, if y;(t) =
{(FEY* @'} A ©, then

710) = {(FI)* o'} AQ =0, 1)

and

d . .
yi(t) = ;{(Fli()*w‘} A Q= ((FI)*Lyo') A Q

(FE5* (Z by a)i) AQ =) By{(FL)* ) A Q

where B;; = (Flf)*bg =bjo Flf and

y/(®) =) Bjvi(t) , i=1,---,n. (2)

Therefore, y = (y1---,yx) is a solution of the lin-
ear homogeneous system of ODEs (2) with the initial
conditions (1), and y must be identically zero.

Theorem 4.7. X is symmetry if and only if forall Y € D,
then [X,Y] e D.

Proof. By the above theorem, X is a symmetry if and only
if for all w € Ann D, then Lyw € AnnD.

The Theorem comes from the Theorem 2.6 (b): Lxyw =
—w o Ly on D. In other words, (Lyw)Y = —w[X, Y] for
allY e D. O

Denote by Symyp, the set of all symmetries of a distribu-
tion D.

Example 4.8. (Continuation of Example 3.4) Let k =
2. A vector field Y = a 9y + b dp, + ¢ 9p, is an infinitesimal
symmetry of D if and only if Lyw' = 0modD, fori =1, 2.
These give two equations:

c=Xb—p1Xa, Xc=fXa+Yf.

Example 4.9. (Continuation of Example 3.5) We con-
sider the point infinitesimal transformation:

Z = X(x,y,u) 0x + Y (x,y,u) 3y + U(x, y, u) 0y
+Px,y,u,p,q, 7, 8) Op + Qx, ¥, U, p, q, 7, £) 3y
+R(x1yy M,P, q’ r, t) 87‘ + T(x;yx u;Pr qy v, t) at'
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Then, Z is an infinitesimal symmetry of D if and only if
Lzo' = 0modD, fori = 1,2, 3. These give ten equations:

P =P =0Qr=Q:=0,
P°Xy + qpYy + qUyx + pQ=pqX. + qP + q° Y + pU,
rpXy + FYy + qPy + (qr — pF)P, + (gF — pt)Py
+ pXFy + pYFy + pUF, + pPF, + pQF,; = qrX,
+qFYy + pPy + qR,

PFXy + ptYy + (qr—pF)Qp + (qF —pt)Qq + qQx + pT
= qFXy + qtYy + pQy + qPF, + qYFy + gXF,
+qQF; + qUFy,

Qy+qQu+FQp+1tQy=1tYy+itqY,+FXy+qFX,+T,

Uy+qUy, = pXy + paXu + q¥y + ¢ Yu + Q

Py+qPy, + FPy + tP; = rXy + qrXy, + FY, + qFY,
+ (XFy + YF, + UF, + PF, + QFy).

Complicated computations using Maple show that

P = —pX, _szu —qYy — pgY, + U, + pU,,

1
Q= (paXa—P*Xy+q"Yo—pqYy—qUy + pU, + qP),

1 2 2

R = ;((qux—p Xy+q°Yx — pqYy—qUx+plU,+qP) .F,
+ ((qr — pF).Py + (qF — pt).P; + qPy — pPy
+ pXFx + pYF, + pUF, + pPF, + (pYy — qYx).F
—pr(qXy _PXy)) ,
L., 2 ) 2

T = }? ((p t+q°r — 2pqF)P + p*“(pt + q°F ) Xy

+p*(qr — 2pF — pqF)Xy + q(q*(r + pFy)

+3p(pt — qF))Yx — p*(q*F; + 2pt + qF)Y,

—(@°r + pq’Fy + Pt + 2pq) Uy + p*qF, U,

—pq°Px + p*qPy + pq(bF — qr)Py + pq(pt — gF)Py
+pq(pXFy + pYF, + pUF, + pPF, + qPFy)

P4 Xex + 20°q Xy — P*Xyy — PG Yo + 2070 Yy
—P*qYyy + pq*Usx — 2p°qUsy + p*Uyy) ,

and X = X(w,u — qy), Y = Y(y,u — px), and U(x,y, u)
must satisfy in PDE:

(pFy—F) X5 +p(pFy—2F) Xy +(qF;—F)Yy+q(qF;—2F)Yy
— FyUy — Fylly + (F — pEy — qF ) Uy + Usy + qUsy
+ pUy, + pqUy,, = XFy + YF, + UF,.

A proof of the Frobenius theorem

Theorem 5.1. Let X € Symp N D and N be maximal
integral manifold. Then, X is tangent to N.
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Proof. Let X(x) ¢ TxN. Then, there exists an open
set U of x and sufficiently small & such that N :=
U_, -, EEX(N' N U) is a smooth sub-manifold of M.

Since X € D, So N is an integral manifold.

Since X € Symy, so tangent to FIX (N N U) belongs to
D, forall —¢ < ¢t < &.

On the other hand, tangent spaces to N are sums of tan-
gent spaces to FIf (NNU) and the 1-dimensional subspace
generated by X, but both of them belong to D, and their
means are N C N. 0

Theorem 5.2. If X € D N Symp, and N be a maximal
integral manifold, then FIX (N) = N for all t.

Theorem 5.3 (Frobenious). A distribution D is com-
pletely integrable, if and only if it is closed under Lie
bracket. In other words, [ X, Y] € D foreach X, Y € D.

Proof. Let N be a maximal integral manifold with
T.N = D,. Therefore, for all X,Y € D, X and Y are
tangent to N, and so [ X, Y] is also tangent to N.

On the other hand, let for all X, Y € D, their [ X, Y] € D.
By the Theorem, all x € D is a symmetry too, and so all
X € D is tangent to N, and this means Tx N = D,, for all
x €N. O

Theorem 5.4. A distribution D is completely integrable
ifand only if D C Symp,.

Theorem 5.5. Let D = <a)1, e ,w”) be a completely
integrable distribution and X € D. Then, the differential
1-forms (Fli()* ..., (Fli()*a)” vanish on D for all t.

Proof. If D is completely integrable, then X is a symme-
try. Hence,

FL)'o' =) ajo.
j

Symmetries and solutions

Definition 6.1. If an (infinitesimal) symmetry X
belongs to the distribution D, then it is called a character-
istic symmetry. Denote by Char(D) := Sp N D the set of
all characteristic symmetries [3,4].

It is shown that Char(D) is an ideal of the Lie algebra
Sp and is a module on C*(M). Thus, we can define the
quotient Lie algebra

Shuf(D) := Symyp,/Char(D).

Definition 6.2. Elements of Shuf (D) are called shuffling
symmetries of D.
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Any symmetry X € Symy, generates a flow on N (the set
of all maximal integral manifolds of D), and, in fact, the
characteristic symmetries generate trivial flows. In other
words, classes X mod Char(D) mix or ‘shuffle’ the set of
all maximal manifolds.

Example 6.3. (Continuation of Example 4.8) Let
k = 2. In this case,

dx = —p1 0y, —f 0p; mod Char(D).

Therefore, Shuf (D) is spanned by Z = (b — ap1) 9p,+
(c — af) 0p,, where

c=Xb—p1Xa, Xc=fXa+Yf.

Example 6.4. (Continuation of Example 4.9) In this

case, we have
ar = 0)
0 =0,

O = —pdy—rdy—Fdy
dy = —q o, —Fdp—

in Shuf (D). Therefore, Shuf (D) is spanned by

W=U-pX—-qY)d,+P—-rX—-FY)0,
+(Q—FX —tY) 9y,

where

P = —pX, — p*Xy — qYx — pq¥u + Uy + pUy,
1
Q= (qux —P*Xy + Yo —pqYy—qll, + pU, + qP),

and X = X(x,u — qy), Y = Y(y,u — px), and U(x,y, u)
must satisfy in PDE:

(PEy — F)Xx + p(pFy — 2F) X, + (qFy — P)Y,
+q(qFy — 2F)Y,,
— FyUy — FyUy + (F — pFy — qF) Uy, + Uy,
+ qUyy + pUyy + pqUy, = XFy + YF, + UF,.
(3)

Example 6.5. (Quasilinear Klein-Gordon Equation)
In this example, we find the shuffling symmetries of the
quasilinear Klein-Gordon equation

2 2 3
Uy — o Upy + Y u=Pu

as an application of the previous example, where «, 8, and
y are real constants. The equation can be transformed by
defining £ = %(x —at)and n = %(x + at). Then, by the
chain rule, we obtain o2 Ugy + y?u = B u®. This equation
reduces to

Uy = au + bu, (4)

byt=y,a=—(y/a)? and b = B/a’.
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By solving the PDE (3), we conclude that Shuf(D) is
spanned by the three following vector fields:

X1 = (px—qy) 0, — (p+yu2(a+bu) —7X) 0p
+(q+xu2(a+bu) — ty) 3y,

Xy = qdy+u*(a+bu)dy, +td,,

X3 =poy+7rdy + u?(a + bu) .

For example, we have

2
X S
Fl3(xy,u,p,q,1,t) = (x,y,u+5p+ Er,p+sr,q

+ s.u(a + bu) + i.up(%z + 3bu) + i.(lémp2
40 42

4
+ 42bup® + l4aur + 21bu’r) + Sz.p(bp2 + ar

5 6
+ 3bur) + ;—0.;"(619192 + ar + 3bur) + %.bprz

S7
+%.bl"3, r, t) ,

and if u = Jh(x,y) be a solution of (4), then
Flﬁ(3 (%9, 1, hy, My, iy, Byy) is also a new solution of (4), for
sufficiently small s € R.
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