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Abstract

of EtBr from aqueous solution.

The adsorption of ethidium bromide (EtBr) by single-walled carbon nanotubes (SWCNTs) and nanoscale of zero
valent iron (NZVI) were investigated to assess its possible use as adsorbents. The effect of various factors, namely
initial adsorbate concentration, adsorbent dosage, and contact time, were studied to identify adsorption capacity of
SWCNTs and NZVI surfaces. The experiment demonstrated the maximum EtBr which was obtained at 5 min to
attain equilibrium for SWCNTs and NZVI surfaces. Adsorption data were modeled with the Langmuir, Freundlichand,
Temkin isotherms. Langmuir adsorption model was used for the mathematical description of the adsorption
equilibrium, and the equilibrium data fitted very well with this model for both surfaces as adsorbents. The study
showed that SWCNTs and NZVI surfaces could be used as new and efficient adsorbent materials for the removal of
EtBr from aqueous solution. Also, the result showed that the SWCNTs were more effective than NZVI in the removal
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Background

Ethidium bromide (EtBr; 3,8-diamino-6-phenyl-5-ethyl-
phenanthridinium bromide), commonly used in research
laboratories as a stain for the visualization of nucleic
acids in electrophoresis gels, is a toxic chemical and a
potent mutagen [1]. When used in nucleic acid staining,
ethidium bromide fluoresces a red-orange to pink color
under ultraviolet light and with increased fluorescence
when bound to double-stranded DNA. While it is not
specifically regulated as a hazardous waste, the muta-
genic properties may present health hazards and disposal
concerns if it is not managed properly in the laboratory
[2]. Adsorption has been found to be an effective and
economical method with high potential for the removal,
recovery, and recycle of pollution from the wastewater
[3]. In this decade, the use of single-walled carbon
nanotubes (SWCNTs) and nanoscale of zero valent iron
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(NZVI) as a reactive medium for the treatment of toxic
chemicals is one of the most significant techniques and
has attracted a lot of attention because the iron metal is
of low cost, low toxicity, is easy to get, and has good
effectiveness and ability to degrading contaminants. La-
boratory studies have demonstrated that SWCNTs and
NZVI surfaces as adsorbents can effectively transform
chlorinated solvents, organochlorine pesticides, organic
dyes and heavy metals [4-11] into nontoxic forms. Nano-
scale of zero valent iron has drawn great attention as an
inexpensive and environmentally friendly strong reducing
agent [12,13]. Addition of NZVI to oxygen-containing
water results in oxidation of organic compounds [14].
Therefore, extensive efforts have been directed to assess
the potential application of NZVI for the decomposition
of organic pollutants in the wastewater. SWCNTs, ever
since their discovery, have attracted extensive attention
due to their unique properties. They have shown potential
applications in many areas, such as conductive and high-
strength composites. With the significant increase in pro-
duction and use of SWCNTs, one major concern is the
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respectively) with EtBr molecules in aqueous solution.

Figure 1 SEM images of SWCNT and NZVI surfaces before and after reaction. Before reaction (a,c, respectively) and after reaction (b,d,

health and environmental risks posed by these nano-
materials once they are released to the environment. Evi-
dences for potential risks of SWCNTs to humans and
ecosystems are accumulating rapidly [15]. Due to their
highly hydrophobic surfaces, SWCNTs exhibit strong
adsorption affinities to synthetic organic chemicals, such
as polycyclic aromatic hydrocarbons. As a consequence,
toxicity of SWCNTs may be further enhanced by ad-
sorption of toxic chemicals. Therefore, understanding of
SWCNT interactions is critical for the environmental of
both SWCNTs and toxic pollutants as well as for the ap-
plications of SWCNTs as potential adsorbents [16].

The objective of this research is to investigate the ad-
sorption kinetics and isotherm models of EtBr removal
by SWCNT and NZVI surfaces. Equilibrium data can be
used to predict the rate at which the target contaminant
is removed from aqueous solutions, and equilibrium ad-
sorption isotherms are used to quantify the adsorptive
capacity of an adsorbent. Results from this study can be
used to assess the utility of SWCNT and NZVI surfaces
for EtBr removal, in particular EtBr adsorption, at the
field scale.

Results and discussion

Characterization of the adsorbent

Figure 1 shows the SEM image of freshly synthesized
SWCNTs (a,b) and iron nanoparticles (c,d). It can be
observed that the iron particles are in the form of
nanospheres, which exist in contact with each other and
form chains having diameters of 50 to 100 nm [17].
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Figure 2 The effect of contact time on removal of EtBr by (a)

SWCNT and (b) NZVI surfaces. (a) Initial concentration, 20 mg/L;

adsorbent dosage, 30 mg; and temperature = 20°C + 0.1°C.

(b) Initial concentration, 20 mg/L; adsorbent dosage, 30mg; and

temperature = 20°C + 0.1°C.
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Figure 3 Effect of initial concentration on removal of EtBr by
(@) SWCNT and (b) NZVI surfaces. (a) Contact time, 5 min;
adsorbent dosage, 30 mg; and temperature = 20°C + 0.1°C.
(b) Contact time, 5 min; adsorbent dosage, 30 mg; and
temperature = 20°C + 0.1°C.
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adsorption capacity of SWCNT and NZVI surfaces were
decreased as there is increasing concentration from 10
to 40 mg/L. At lower EtBr concentration, the available
adsorption sites are relatively high, and consequently,
the EtBr species can easily find the accessible adsorption
sites for both adsorbents (SWCNT and NZVI surfaces).

Effect of adsorbent dosage

From Figure 4 (Figure 4a for the removal of SWCNTs
and Figure 4b for the removal of NZVI), we see that the
optimum dose of SWCNT and NZVI surfaces for the
EtBr were 30 mg/50 mL. Though at 40 mg/50 mL, there
is a slight increase in adsorption value, but if we get
nearly the same result as we get at an adsorbent dosage
of 50 mg/50 mL, then going for 70 mg/50 mL will be ex-
pensive and there will be loss of adsorbent. It is obvious,
with increasing the amount, what the active sites are for
adsorption of three dyes.

Effect of temperature

To study the effect of temperature on the removal of
EtBr, the experiments were carried out at temperatures
varying from 283 to 313 K. It is revealed from Figure 5
(Figure 5a for the removal of SWCNTs and Figure 5b

Figure 1b,d showed that the EtBr molecules removed by
SWCNT and NZVI surfaces were covered in aqueous
solution.

Effect of contact time

In these experiments, initial concentration of EtBr
molecules on SWCNT and NZVI surfaces was 20 mg/L
(Figure 2). The effects of contact time (0 to 10 min)
were investigated at 20 mg/50 mL sample dosage. The
extent of removal of EtBr by SWCNT and NZVI sur-
faces was found to increase and has reached its max-
imum with the increase in contact time. The time at
which the maximum percentage removal of EtBr occurs
is fixed as the contact time (Figure 2a for the removal of
SWCNTs and Figure 2b for the removal of NZVI).

Effect of initial EtBr concentration

The effect of initial concentration (10 to 40 mg/L) of
EtBr adsorption on to SWCNTs and NZVI surfaces are
presented in Figure 3 (Figure 3a for the removal of
SWCNTs and Figure 3b for the removal of NZVI). A
rapid removal is observed at the initial stages, and it
then proceeds slowly until equilibrium is reached. This
may be due to the availability of the number of vacant
adsorption sites at the initial stage. The equilibrium
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Figure 4 Effect of adsorbent dosage on removal of EtBr by
(a) SWCNT and (b) NZVI surfaces. (a) Initial concentration,
20 mg/L; contact time, 5 min; and temperature = 20°C + 0.1°C.
(b) Initial concentration, 20 mg/L; contact time, 5 min; and
temperature = 20°C + 0.1°C.
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Figure 5 Effect of temperature on the removal of EtBr by (a)
SWCNT and (b) NZVI surfaces. (a) Initial concentration, 20 mg/L;
contact time, 5 min; and adsorbent dosage, 30 mg. (b) Initial
concentration, 20 mg/L; contact time, 5 min; and adsorbent
dosage, 30 mg.
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for the removal of NZVI), that the removal of EtBr with
temperatures would increase the mobility of the EtBr
and produce a swelling effect within the internal struc-
ture of adsorbent thus enabling the large molecules of
EtBr to penetrate further. The greater removal of EtBr
due to increasing temperature may have more inter-
action between the adsorbate and adsorbent.

Adsorption isotherms

Equilibrium isotherm equations are used to describe the
experimental adsorption data. In this study, three ad-
sorption models, that is the Langmuir, Freundlich, and
Temkin isotherms, were used to describe the reactive
dye equilibrium. The Langmuir isotherm [18] which is
valid for monolayer sorption onto a completely homoge-
neous surface with a finite number of identical sites and
with negligible interaction between adsorbed molecules
is given by Equation 1:

q,,K.C.
— _dm7lre 1
1 (1+K.C,)’ (1)

where g, (mg/g) and C, (mg/L) are the amount of ad-
sorbed EtBr per unit mass of adsorbent and an adsorbed
EtBr concentration in solution at equilibrium, respectively.
qm is the maximum amount of the EtBr per unit mass of
adsorbent to form a complete monolayer on the surface
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Figure 6 Langmuir plots. (a) Langmuir plots (Type 1A; Type 2B) for EtBr removal by SWCNTs. (b) Langmuir plots (Type 1A; Type 2B) for EtBr

removal by NZVI.
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bound at high C, (mg/g), and K is a constant related to
the affinity of the binding sites (L/mg). The two linear
transformations of the Langmuir isotherm is often
expressed as Equation 2 (Typel) and Equation 3 (Type 2):

C. 1 C.

qe B I(Lqm a7

(2)

L1, o)
9e 9m K1 m Ce ’
The essential characteristics of the Langmuir equation
can be expressed in terms of a dimensionless separation
factor, Ry, defined by [19]:

1

Ro=—
LTI KG

(4)
where Cj is the initial EtBr concentration (mg/L). Ry
values indicate the type of isotherm to be irreversible
(Ry, = 0), favorable (0 < Ry, < 1), linear (R}, = 1), or un-
favorable (R > 1). The empirical Freundlich isotherm
based on sorption on a heterogeneous surface is given
by Equation 5 [20]:

q. = KeC;/", (5)

or can be written in linearized form (Equation 6) as:
1
Ing, = InKg + ;lnCe, (6)

where K¢ and 7 are the Freundlich constants characteristic
of the system. Kt and # are indicators of adsorption cap-
acity and adsorption intensity, respectively. g, is the equi-
librium EtBr concentration in solid phase (mg/g), and C, is
the equilibrium EtBr concentration in liquid phase (mg/L).
Tembkin isotherm contains a factor that explicitly takes into
the account the adsorbing species-adsorbent interactions.
The Temkin equation is given as [21]:
RT

qe = 71}4 K7Ce, (7)

which can be linearized as:
qde = BTanT + BTlﬂCe, (8)

where By = RT/b, T (K) is the absolute temperature, R
(8.314 J/mol) is the universal gas constant, Kr (per milli-
gram) is the equilibrium binding constant, and b (J/mol)
is related to the heat of adsorption. The isotherm con-
stants K and By are calculated from the slope and inter-
cept of the g, versus nC, plot. The plots of linearized
Langmuir, Freundlich, and Temkin isotherms are illus-
trated in Figures 6, 7, and 8, respectively. Parameters of
the three isotherms were calculated and listed in Table 1.
Based on the values of R? it can be concluded that the
Langmuir isotherm best fits the equilibrium data. The
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Figure 7 Freundlich plots. (a) Freundlich plots for EtBr adsorption
by SWCNTs. (b) Freundlich plots for EtBr adsorption by NZVI.
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Figure 8 Temkin plots. (a) Temkin plots for EtBr adsorption by
SWCNTs. (b) Temkin plots for EtBr adsorption by NZVI.
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Table 1 Isotherm parameters for the adsorption of EtBr by SWCNTs

Langmuir (Type 1) Langmuir (Type 2) Freundlich Temkin
K (L/9)  Gm (mg/g) R R K (/9) gm(mg/g) R Ke (ma/g)/(mg/L)'"  n R Kr (m/g) b (/mol)  R?
0.2001 45111 09994 05 01186  42.160 0.9994 54286 1.733 09955 1.1370 270.01 0.9990

maximum adsorption capacity (g,,) of adsorbent calcu-
lated from Langmuir isotherm defines the total capacity of
the adsorbent for EtBr. The values of R; calculated from
Equation 4 are listed in Table 2. The R; values are between
0 and 1, and the adsorption process is favorable. The fact
that the Langmuir isotherm fits the experimental data very
well may be due to the homogeneous distribution of active
sites on the SWCNTs and NZVI surface because applica-
tion of the Langmuir equation involves the assumption
that the surface were homogeneous.

Conclusions

The removal of ethidium bromide by SWCNTs and nano-
particle zero valent iron were studied in a batch system
with respect to the temperature, adsorbent dose, and con-
tact time. Removal of EtBr from aqueous solution was
possible using SWCNTs and NZVI surfaces. It was seen
that maximum adsorption takes place after 5 to 7 min.
The optimum doses of adsorbents were 30 mg for NZVI.
The Langmuir, Freundlich, and Temkin isotherm models
provided the best fits to predict the adsorption for the
EtBr by SWCNTs and NZVI surfaces. From the above re-
sults, we conclude that the adsorbent NZVI was effective
in removing EtBr from aqueous solution. Also, the re-
moval of EtBr by SWCNT surfaces was more effective
than that of NZVI surfaces.

Methods

Materials

Ethidium bromide was supplied by Merck, Darmstadt,
Germany (maximum purity available). All solutions were
prepared with deviations of less than +0.1% from the
desired concentrations. SWCNTs (Armchair (6,6), purity
>95; diameter, 1 to 2 nm; length, 5 to 30 nm; surface
area, 400 m?*/g; and manufacturing method, catalytic
chemical vapor deposition).

Preparation of NZVI particles
NZVI particles were prepared by liquid-phase reduc-
tion method. All solvents were degassed and saturated

for 30 min with N, before use. NZVI was synthesized
by adding 1 M NaBH, solution into 0.5 M FeCl; solu-
tion during vigorous stirring under N, atmosphere. The
mixture's color turned from red brown to light yellow
and then eventually to black. At the same time, the
mixture gradually produced more black grain particles
in the three-neck flask. Ferric iron (Fe*®) was reduced
to elemental iron according to the following reaction:

4Fe*® 4 3BH, + 9H,0—4Fe’(s) + 3H,BO3™(aq)
+ 12H" + 6H,

Then, black NZVI particles were vacuum-filtered and
washed with deionized water and 1:1 (V/V) ethanol/acet-
one; doing so prevented the NZVI from oxidizing, and
then, resulting gray-black solid was dried under nitrogen
atmosphere before use.

Batch equilibrium studies

Adsorption experiments were carried out by agitating
50 mg of SWCNTs and NZVI for each individually in
aqueous solution with 30 ml of EtBr solution of desired
concentration for each surfaces (SWCNTs and NZVI)
and pH at 180 rpm, 25°C in a thermostated mechanical
shaker (ORBITEK, Chennai). Concentration of EtBr was
estimated spectrophotometrically by monitoring the ab-
sorbance at 274 nm using a UV—-vis spectrophotometer
(Hitachi model 8543, Chiyoda-ku, Japan).

The effect of adsorbent dosage was studied by agitating
30 mL of EtBr solutions with different adsorbent doses
(10 to 70 mg) at equilibrium time. The amounts of EtBr
adsorbed by the adsorbent were calculated using the fol-
lowing equation:

(CO_Ct) V ( 9)
W )

where C, is the initial EtBr concentration, C; is the EtBr
concentration (mg/L) at any time, V is the volume of solu-
tion (L), and W is the mass of the adsorbents (g).

Table 2 Isotherm parameters for the adsorption of EtBr by NZVI

Langmuir (Type 1) Langmuir (Type 2) Freundlich Temkin
K (L/9) gm (mg/g) R? R. K (L/9) gm(mg/g) R? Kr (mg/g)/(mg/L)""  n R’ Kr (m/g) b (/mol) R’
0.1106 43.290 09981 04 01186 42.160 0.9991 5.3275 1626 09940 1.1261 264.94 0.9911
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