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Abstract

There are upcoming non-volatile (NV) memory technologies that provide byte addressability and high performance.
PCM, MRAM, and STT-RAM are such examples. Such NV memory can be used as storage because of its data
persistency without power supply while it can be used as main memory because of its high performance that
matches up with DRAM. There are a number of researches that investigated its uses for main memory and storage.
They were, however, conducted independently. This paper presents the methods that enables the integration of the
main memory and file system management for NV memory. Such integration makes NV memory simultaneously
utilized as both main memory and storage. The presented methods use a file system as their basis for the NV memory
management. We implemented the proposed methods in the Linux kernel, and performed the evaluation on the
QEMU system emulator. The evaluation results show that 1) the proposed methods can perform comparably to the
existing DRAM memory allocator and significantly better than the page swapping, 2) their performance is affected by
the internal data structures of a file system, and 3) the data structures appropriate for traditional hard disk drives do
not always work effectively for byte addressable NV memory. We also performed the evaluation of the effects caused
by the longer access latency of NV memory by cycle-accurate full-system simulation. The results show that the effect

on page allocation cost is limited if the increase of latency is moderate.
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1 Introduction

The upcoming non-volatile (NV) memory technologies,
such as phase change memory (PCM), magnetoresistive
RAM (MRAM), and spin-transfer torque RAM (STT-
RAM), achieve high performance that matches up with
dynamic RAM (DRAM) while they provide persistency
for data store. They can be used as main memory because
of their byte addressability and high performance while
they can also be used as secondary storage because of
their persistency. Therefore, the integration of their man-
agement is possible. Such integration enables the memory
allocation for processes and files from the same source,
and user application processes can take advantage of its
large size by removing the necessity of the page swap-
ping between main memory and storage. Therefore, the
integration can improve the system performance. While
the advantage brought by the integration were discussed
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(Bailey et al. 2011; Jung and Cho 2011), there was no
research effort to realize it in an actual operating system
(0S).

This paper presents the integration methods of the main
memory and file system management for NV memory, so
that it can be used as both main memory and storage. The
presented methods use a file system as their basis for the
NV memory management; thus, the internal data man-
agement methods of a file system have impacts upon the
performance of the integration methods. Therefore, this
paper also investigates how these data structures affect the
performance.

This paper describes the three methods, direct, indirect,
and mmap. The direct method directly utilizes the free
blocks of a file system by manipulating its management
data structures. The indirect method indirectly allocates
blocks through a file that was created in advance and is
dedicated for the use of main memory. The mmap method
uses the mmap system call for block allocation though
memory mapped files. These methods have their own
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advantages and disadvantages; thus, each method meets
different requirements. We implemented these methods
in the Linux kernel.

We performed the evaluation of the proposed meth-
ods in three phases. Firstly, we performed the preliminary
experiment that measures the allocation costs of main
memory from a file system. We analyzed the prelimi-
nary experiment results and devised the improvements
from the analysis. Secondly, we implemented the improve-
ments, and performed their evaluation on a system emula-
tor. The evaluation results of the memory allocation show
that 1) the proposed methods can perform comparably
to the existing DRAM memory allocator and significantly
better than the page swapping, 2) their performance is
affected by the internal data structures of a file system,
and 3) the data structures appropriate for traditional hard
disk drives (HDDs) do not always work effectively for byte
addressable NV memory. In the first and second phases,
we disregarded the performance difference between NV
memory and DRAM because our focus was the integra-
tion of the main memory and file system management.
Finally, we performed the evaluation of the effects caused
by the longer access latency of NV memory by cycle-
accurate full-system simulation. The results show that the
effect on page allocation cost is limited if the increase of
latency is moderate. To the best of our knowledge, we
are among the first to design and implement the inte-
gration methods of the main memory and file system
management for NV memory and also to perform their
evaluation. Note that wear leveling is outside the scope
of this paper while it can be performed at the software
or hardware level; thus, the proposed methods do not
consider it.

While this paper is an extension to a previous paper
published at SEUS 2013 (Oikawa 2013), it provides the
detailed description of its background work along with
two new evaluation results, one evaluates the effects
on application performance and the other evaluates the
effects caused by the access latency of NV memory.

The rest of this paper is organized as follows. Section 2
describes the background of the work. Section 3 pro-
poses the integration methods, and presents their design
and implementation. Section 4 shows the preliminary
experiment results, and describes their analysis. Section 5
describes the improvements, and shows their experiment
results. Section 6 evaluates the effects on application per-
formance. Section 7 evaluates the effects caused by the
access latency of NV memory. Section 8 describes the
related work. Finally, Section 9 concludes this paper.

2 Background

This section describes the new NV memory technologies
and the Linux file system infrastructure as the background
of the work.
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2.1 NV Memory

Upcoming NV memory devices enable high performance
along with persistent data store with no power supply.
PCM, MRAM, and STT-RAM are such examples. The
most major memory devices are currently DRAM and
flash memory, which use electrical charge to memorize
binary information. Since the certain capacity for electri-
cal charge needs to be maintained for memorization, there
are the limitations of scaling DRAM and flash memory.
DRAM also has the other power consumption problems,
such as leakage and refresh dynamic power. Therefore,
NV memory is considered to be a candidate to replace or
to be used along with DRAM and flash memory.

The new NV memory devices use resistance values
instead of electrical charge; thus, they can maintain data
without power supply and provide persistency. PCM tech-
nology utilizes a chalcogenide material. Since it takes
the two states, amorphous and crystalline, and they take
different resistance values, it can be used to memorize
binary information. Changing a value means the trans-
formation of the material state; thus, the transformation
takes the time to do so, and also it shortens its lifetime.
MRAM technology utilizes a magnetic tunneling junction
(MTY). Two ferromagnetic layers and one tunnel barrier
layer compose an MT]. One of the two ferromagnetic
layers takes different magnetic directions, and different
directions makes different resistance values; thus, differ-
ent magnetic directions can be used to memorize binary
information. STT-RAM is a newer version of MRAM,
and performs comparably with DRAM. Such high per-
formance makes it possible to use it in the same manner
as DRAM (Park 2012). While MRAM and STT-RAM are
more suitable for main memory than PCM because of
their higher performance and endurance, they are less
dense; thus, PCM is more suitable for the uses that require
large capacity.

When these NV memory technologies emerged, the
active investigations of their use for either main mem-
ory or secondary storage were performed. PCM was first
considered to be a candidate to replace DRAM since its
development was more advanced than MRAM and STT-
RAM. When PCM emerged to be practical as a memory
device, active researches were conducted to utilize it as
main memory by mitigating its limitations (Lee et al.
2009; Qureshi et al. 2009, 2010; Zhou et al. 2009). These
researches investigated the aspect of computer architec-
ture, and there is no or only a minor role of the oper-
ating systems (OSes) (Mogul et al. 2009; Zhang and Li
2009). Independently from these computer architecture
researches, there were some researches that investigated
the aspect of OSes. The investigations on the construction
of file systems on NV memory were conducted in order
to take advantage of its byte addressability and larger
capacity (Condit et al. 2009; Wu and Reddy 2011).



Oikawa SpringerPlus 2014, 3:494
http://www.springerplus.com/content/3/1/494

2.2 Linux file system infrastructure

The file system infrastructure of the Linux kernel is
designed to accommodate various types of file systems
that interact with different kinds of storage devices.
Figure 1 depicts the overview of the Linux file system
infrastructure.

User processes interact with a file system through the
system call interface. There are basically two kinds of
the system call interface to deal with a file. One directly
interacts with a file, and the other one goes through the
virtual memory system. The former includes the tradi-
tional read and write system calls, and the latter includes
the mmap system call. There can be multiple file systems
inside the single Linux kernel. They export the common
interface, and are managed under the virtual file system
(VES) interface. Therefore, the system call interface and
the virtual memory system do not need to take account
of the differences of the internal implementation of file
systems. The page cache mechanism is employed to inter-
act with block devices. Since data on block devices needs
to be transferred to memory for processors to access it,
the mechanism allocates physical memory pages to cache
such data. The mechanism manages them literally at the
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page size, so that they can also be utilized directly by
the virtual memory system. The block device driver is the
common layer to interact with individual device drivers
for storage devices, and individual device drivers deal with
storage devices for their types.

There are memory-based file systems, such as PRAMEFS
(Protected and Persistent RAM Filesystem 2012) in the
figure. Such a file system does not require the page cache
mechanism and device drivers. Because processors can
directly interact with memory used as its storage, its code
simply uses memory access instructions to read and write
data on it. It is also possible for a device driver to interact
with memory used as its storage. A ramdisk driver is such
an example. When a ramdisk driver is used, traditional,
block-based file systems can use memory as their storage.
In this case, however, there is access overhead incurred
by the page cache mechanism and the block device
driver.

A typical scenario to read data from a file system is the
following. When a user process issues the read system
call to access data, the corresponding function in the sys-
tem call interface is invoked. It calls the virtual file system
interface, and then calls the file system that corresponds to

System Call Interface

Virtual Memory
System

File System Infrastructure

.
Virtual File System Interface g
Oth A
ther Ext4 Ext2 PRAMFS 3
FS ®
Page Cache
Block Device Driver
Device Drivers
—
HDD/SDD | NV Memory

Figure 1 Overview of the Linux file system infrastructure.
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the file that is being read. If the file system is a block-based
file system, it accesses its management data structure to
find out the block number where the data resides. If the
management data structure is not in the page cache, it
needs to be read from storage through the device drivers.
Once the file system finds the block number, the data
on it is transferred to the page cache through the device
drivers. The data in the page cache is finally copied to the
buffer of a user process. If the file system that is being
accessed is a memory-based file system, both of the man-
agement data structure and the designated data can be
directly accessed without the interventions of the page
cache and device drivers. Therefore, it is far much simpler
for a memory-based file system to access data on it.

The integration of the virtual memory system and file
systems are described later in Section 3.2.

3 Design and implementation

This section describes the design and implementation of
the integrated main memory and file system management
for NV memory. The implementation is described for the
Linux kernel.

3.1 Target system structure

Computer systems that equip with NV main memory are
not yet available publicly as commercial products. Since
there is no typical architecture that we can model, we
design an architecture that are realistic and practical as a
target system. In this paper, 1) we employ NV memory and
DRAM to form main memory of the target system, and 2)
we place both of them in the same physical address space.
CPUs access DRAM and NV memory though their mem-
ory bus(ses) with appropriate physical addresses; thus,
the same memory access instructions are used to access
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them. Figures 2 and 3 depict the memory architecture and
physical address map of the target system.

Our goal is to establish the integrated management of
main memory and storage. Since NV memory is used as
main memory and storage, it takes the both roles. The
integration methods proposed in this paper utilize a file
system, which is created on NV memory, as a basic man-
agement mechanism. A file system manages data blocks
that store directories and files, and is designed to maintain
the data across the system shut down and start up. The
integration methods have the free blocks of the file system
temporarily used for main memory. Because the kernel
manages NV memory, direct access to it from user appli-
cations is prohibited unless its certain pages are mapped
to their virtual address spaces for the use of main memory.
Therefore, the internal state of the file system is protected
from user applications.

We consider that the architecture described above is
realistic and practical as a target system. Because we pri-
marily target mobile devices, such as note PCs, tablets,
and smart phones, to apply the proposed methods, NV
memory can meet the requirements of storage capac-
ity and also take more advantage of its power efficiency.
While NV memory can constitute the whole main mem-
ory of a system, DRAM is also useful to hold data regions,
which are known to be volatile and overwritten soon.
Examples of such regions include stacks and buffers used
for data transfer. Therefore, it should be reasonable to
consider that a target system’s memory consists of both
DRAM and NV memory.

We employ the QEMU system emulator and the
MARSSx86 cycle-accurate simulator (Patel et al. 2011) to
construct the target system described above and to exe-
cute Linux on it. The more details of the emulation and
simulation environments are described in Section 4.1 and
7.1, respectively.

CPU

DRAM

NV Memory

Figure 2 Target system memory structure.
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DRAM

NV Memory

Figure 3 Physical address space of the target system.

3.2 Virtual memory system

This section describes the virtual memory system archi-
tecture of the Linux kernel. The virtual memory system
is constructed on the memory allocator, which manages
DRAM, and file systems, which manage storage. They
work together to make the virtual memory system effi-
cient and flexible. Figure 4 depicts the virtual memory
system architecture. Since storage is NV memory for
our target system, a file system manages NV memory.
When physical memory pages need to be allocated from
DRAM, the virtual memory system consults the mem-
ory allocator. After the allocation is successful, it inserts
the allocated pages in a page table to map them in a vir-
tual address space. The allocated pages finally become
accessible.

XIP?-enabled file systems, such as Ext2 and PRAMFS
(Protected and Persistent RAM Filesystem 2012), make it
possible to directly map their files in user process address
spaces. In this case, allocated file system blocks are used as
physical memory pages, and they are directly mapped into
a virtual memory address space. Since direct access to the
physical memory pages of files is possible, no copying of
pages between DRAM and NV memory is necessary. Ext2
and PRAMES are the only XIP-enabled file systems that
support both read and write. We chose PRAMES as our
target file system to implement the integrated memory
management methods because it was literally designed for
the use on NV memory and does not require the block
device driver.

3.3 Integrating main memory and file system
management

This section describes the integrated memory manage-
ment methods, by which NV memory can be used for the
memory allocation for both processes and files. Since NV
memory is managed by a file system, its physical mem-
ory pages that will be used as main memory also need to
be allocated from a file system. Such pages are, however,
usually allocated from the memory allocator; thus, there
needs to be a path for the memory allocator to allocate
pages from a file system. Therefore, in Figure 4, the mem-
ory allocator and a file system need to be connected to
create a link between them. Such a link was originally not
connected. The memory allocator could only allocate the
pages of DRAM without connecting the missing link, but
it worked just fine because DRAM was only memory that
could be used as main memory. When NV memory can
be used as main memory and is under the management of
a file system, connecting this missing link is necessary for
the memory allocator to allocate the pages of NV memory
and to use them as main memory.

In the Linux kernel, alloc pages nodemask ()
is the function that the memory allocator calls to allo-
cate pages, and free hot cold page () is called to
free allocated pages. The existing implementation only
deals with DRAM,; thus, they were modified to call the
page allocation and freeing functions of a file system.
The three methods described in the next section imple-
ment these functions for the page allocation and freeing.

Virtual Memory System

Memory Allocator

DRAM

Figure 4 Virtual memory system architecture and its relationships with the memory allocator and a file system.

File System

NV Memory
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After the modification, when the kernel tries to allocate
pages, alloc pages nodemask () first consults
a file system by calling the allocation function pro-
vided by the one selected among the proposed meth-
ods. It searches available free pages of a file system
and returns them for the use of main memory. The
returned pages were removed from the pool of free pages
in order to avoid them to be used in a file system.
When pages allocated from NV memory are being freed,
free hot cold page () return them to a file system
by calling the freeing function of the proposed method. It
returns them to the pool of free pages in order to make
them available for future use.

There are a few implementation issues that should be
considered. First, the granularity of memory pages allo-
cated by alloc pages nodemask () needs to be
the same as the native page size of the processor archi-
tecture. If the block size of a file system is different from
the native page size, it is necessary to find consecutive free
blocks, of which size and alignment match the native page
size. Therefore, the native page size of the processor archi-
tecture needs to be used as the block size of the file system
for efficiency and simplicity.

Second, alloc pages nodemask () takes gfp
mask as one of its arguments, and gfp mask speci-
fies the attributes that allocated pages need to satisfy. If
GFP_KERNEL is specified, the allocated pages can be used
within the kernel. Although there is no problem with using
the pages, which were allocated from a file system, within
the kernel, some of these pages can be still in use when
a system halts because such an allocation policy does not
cause any problems when only DRAM, which is volatile,
is used as main memory. Depending upon the method
used for the page allocation from a file system, such pages
that are not freed can make a file system inconsistent.
If GFP_HIGHUSER MOVABLE is specified, the allocated
pages are used only for user processes. In this case, a file
system will not be left inconsistent since all processes are
killed and all of the pages allocated for them are returned
when a system halts. Therefore, the usage of the pages
from a file system needs to be adjusted depending upon
the used page allocation method.

The third issue is the identification of the pages allo-
cated from a file system. The pages allocated from DRAM
need to be returned to the DRAM memory allocator,
and those from a file system need to be returned to it.
When free_hot cold page () is called to free pages,
however, there is no distinction between those from
DRAM and a file system. free hot cold page ()
has to identity where they are allocated from; thus, there
must be a means to realize it. Therefore, a new attribute
NVmemory is added to identify the pages allocated from a
file system. When the pages with NVmemory attribute are
freed, they are returned to a file system.
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3.4 Proposed methods for integration

This section describes the three methods, direct, indi-
rect and mmabp, for the integrated memory management.
These methods connect the missing link between the
memory allocator and a file system since they use a file
system as their basis for the NV memory management.
The direct method directly utilizes the free blocks of a
file system by manipulating its management data. The
indirect method indirectly allocates blocks through a file
that was created in advance and is dedicated for the use
of main memory. The mmap method uses a memory
mapped file for the block allocation of a specific mem-
ory region. These methods have their own advantages
and disadvantages; thus, each method meets different
requirements. The details of these methods are described
below.

3.4.1 Direct method

The direct method takes free blocks that are managed
by a file system for files, and allocate them for the use
of main memory. This method consults the management
data structures of a file system in order to find and remove
free blocks; thus, this method requires the direct manipu-
lation of the internal data structures of a file system. The
manipulation requires the implementation of additional
code.

The advantage of the direct method is the tight integra-
tion of main memory and file system management. Any
of the free blocks of a file system can be used for both
main memory and files. The use of the free blocks is not
determined and they are remained free until their alloca-
tion; thus, this method does not waste the free blocks. The
disadvantages are the dependency on the implementation
of a file system and the crash recovery. The dependency
issue involves two aspects, the effect of the internal data
structures to the performance and the implementation
cost of the additional code. The crash recovery is required
because the allocated blocks for the use of main memory
do not belong to any file and there can be no reference to
them from anywhere; thus, these blocks cause the incon-
sistency of a file system when a system abnormally crashes
and they are not correctly freed. By maintaining the infor-
mation of the pages allocated for the use of main memory,
these pages can be reclaimed correctly on the next start
up. It is our future work, though.

3.4.2 Indirect method

The indirect method utilizes the blocks of a file that was
created in advance and is dedicated for the use of main
memory. This method does not need to consult the man-
agement data structures of a file system, but indirectly uses
the blocks that were allocated for a file. When a system
boots up, the content of the file is initialized by creating
a linked list of its blocks; thus, all of the blocks of the file
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need to be allocated when created. The block allocation
for main memory is done by simply taking blocks out of
the linked list. When they are freed, they are added to the
linked list.

The advantages of the indirect method are contrary to
the direct method. The indirect method does not depend
on the implementation of a file system. The provision
of the XIP feature of a file system requires the imple-
mentation of get _xip mem() interface. This interface
converts a file offset to its virtual address in the ker-
nel and its page frame number. By using this interface,
it is possible to access all of the blocks of a file used for
main memory, and its initialization can be done indepen-
dently from the internal implementation of a file system.
The linked list of the free blocks also makes the alloca-
tion cost independent from the internal implementation.
Moreover, since the blocks used for main memory are
allocated for a file, they do not cause the inconsistency of
a file system when a system crashes. The disadvantage is
that the blocks of a file used for main memory are pre-
allocated; thus, their use is fixed for main memory. It is
desirable to adjust the size of the preallocated file. While
it is easy to extend the file size as more blocks need to
be allocated for main memory, more work is necessary to
shrink it.

3.4.3 Mmap method

The mmap method uses the mmap system call to cre-
ate the mapping of a file in the virtual address space of a
user process. While this method is not new in terms of
the mechanism, it is provided as an alternative method to
access files. This paper proposes the mmap method as a
mechanism to allocate blocks from a file system for the
use of main memory. By employing XIP-enabled file sys-
tems, the allocated blocks can be directly mapped in the
virtual address space of a process. The allocation is done
by mapping a file of a necessary size in the virtual address
space of a process. The actual allocation of blocks for the
file is done by writing data in the mapped region. If there
is no block allocated at the address where data is written,
a new block is allocated. Before mapping a newly created
file, its size must be set by using the truncate or ftruncate
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system call. Otherwise, accessing the mapped region
causes an error.

The advantages of the mmap method are no necessity
of modification to the kernel and its concrete integration
of a single memory region and a single file. Linux and also
other modern operating systems implement the mmap
system call natively; thus, the mmap method does not
require any modifications to the kernel, nor the file system
driver. Date written to memory is directly reflected in the
mapped file, and no synchronization is needed to make
memory and the mapped files coherent; thus, a user pro-
cess can always persistently store data in the mapped file.
This means that the mmap method can be a basis to facil-
itate the access to NV memory and potentially persistent
storage by providing a simple library. The mmap method
also provides the advantages of the indirect method, no
dependency on the implementation of a file system and
the consistent file system state when crashed. The dis-
advantages are its page allocation performance and less
transparent usage. As shown later in Section 4 and 5,
the allocation cost of the mmap method is worse than
the direct and indirect methods. Even after the improve-
ments described in Section 5, the allocation cost of the
mmap method is more than two times as much as those
of the direct and indirect methods. The allocation cost
has, however, a limited impact on the overall performance
of a system when the mmap method is desired. If a pro-
cess needs to store data persistently in a mapped file, it
is very likely that the file is kept mapped during its exe-
cution; thus, the allocation of a certain block happens
only once. The mmap method is less transparent to appli-
cations because it requires them to specifically use the
mmap system call or the malloc library function needs to
be modified to use it.

3.5 Comparison of proposed methods

This section compares the proposed methods for the
integrated memory management. Table 1 summarizes
their advantages and disadvantages. It is apparent that
the advantage and disadvantages of the direct method
are contrary to the indirect method. The only essential
disadvantage of the direct method is, however, its high

Table 1 Comparison of the proposed methods for the integrated memory management

Methods Advantages Disadvantages
Direct Maximum and flexible utilization of free space of a file system. 1) High implementation cost (implementation is necessary for
each file system). 2) File system dependent performance.
3) Possible inconsistency of a file system when crashed.
Indirect 1) Low implementation cost (implementation is independent Inflexible allocation of file system spaces used for main
from file systems). 2) File system independent performance. memory.
3) Consistency of a file system when crashed.
mmap 1) Flexible utilization of free space of a file system. 2) Low 1) File system dependent performance. 2) Less transparent

implementation cost (no modification is necessary for the
kernel). 3) Consistency of a file system when crashed.

usage for memory allocation.




Oikawa SpringerPlus 2014, 3:494
http://www.springerplus.com/content/3/1/494

implementation cost. The performance and inconsistency
issues can disappear if a file system that are optimized for
the integrated memory management is used. Therefore,
the choice between the direct and indirect method can be
made based on the trade-off between the utilization of free
space of a file system and implementation cost, of which
importance can be further affected by the capacity of NV
memory storage. If the capacity of NV memory storage is
limited, the maximum and flexible utilization of free space
of a file system is more important than the implementa-
tion cost; thus, the direct method is better for this case.
In contrast, if the capacity of NV memory storage is large
and there is plenty of free space, it is possible to opt for the
indirect method because the maximum utilization of free
space is not necessary.

The mmap method has the characteristic that is a mix-
ture of the direct and indirect methods. Even if a file
system is optimized for the integrated memory manage-
ment, it is difficult for the mmap method to match the
direct and indirect methods for memory allocation per-
formance because a page fault is an only means for page
allocation. Furthermore, the mmap method is not trans-
parent to applications because they need to be modified to
directly use it. This issue can be resolved by employing a
modified malloc library function as described in Section 6.

4 Preliminary evaluation and analysis

This section first describes the evaluation method, and
then shows the preliminary experiment results that mea-
sure the allocation costs of main memory from a file
system.

4.1 Evaluation method
We developed the target system architecture described
in Section 3.1 based on the QEMU system emulator. The
QEMU version 1.0.1 was used for the measurements of
the evaluation, and QEMU emulates the x86_64 instruc-
tion set architecture. We modified QEMU to incorporate
the emulation of NV memory that persistently maintains
its contents across the shut down and start up of the emu-
lator. The contents of emulated NV memory are stored
in a file to maintain its persistency. QEMU maps the file
into its emulated physical address space. When QEMU
emulates NV memory, the following option is specified:
% gemu -nvmemory \

file=nvm.img, physaddr=0x100000000

QEMU invoked with the above option maps the file
emulating NV memory (nvm. img) from 0x100000000 of
the physical address. The size of NV memory is the same
as the file emulating NV memory. The file size used for
the evaluation is 4 GB. The experiments described in this
section were performed with 128 MB DRAM along with
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the NV memory; thus, the -m 128 option is also speci-
fied. QEMU passes the DRAM size to BIOS, and the Linux
kernel recognizes it. The information of NV memory is,
however, not passed in order to have the Linux kernel
manage it separately from DRAM. The modified QEMU
executes the Linux kernel that includes the modifications
of the proposed methods. The version of the Linux kernel
modified and used for the experiments is 3.4.

We use the number of instructions executed as the mea-
sure of execution costs instead of execution times since
times counted by interval timer interrupts from a clock
device are not reliable on system emulators. When QEMU
is invoked with the -icount 0 option, it enables the
time stamp counter (TSC) register to count the number of
instructions executed. The RDTSC instruction is used to
read the TSC value.

The following evaluation results presented in this
section do not take into account the difference of access
latencies between DRAM and NV memory, and they are
treated the same.

4.2 Page allocation costs

This section shows the preliminary measurement results
of the allocation costs of main memory pages from a file
system and compares them with those that use the mem-
ory allocator and the page swapping mechanism. Integrat-
ing the main memory and file system management on NV
memory brings a large amount of physical memory to user
processes; thus, such integration should be able to remove
the necessity of the paging swapping and to achieve the
performance improvement to allocate a large amount of
memory. In order to verify the effectiveness of the inte-
gration, we executed a program that allocates a memory
region by using malloc () and performs writes to the
beginning of the page boundaries for the actual allocation
of physical memory pages. These writes are necessary for
the actual allocation of pages. For the mmap method, the
mmap system call is used to allocate a memory region,
instead.

The measurements were performed for several cases
including the three proposed methods. Figure 5 shows
the results. In the figure, DRAM (w/o0 swap) and DRAM
(w/ swap) are the cases that only DRAM is used as
main memory without and with a swap device, respec-
tively. For DRAM (w/ swap), a swap device is a ramdisk
created on NV memory. PRAMFS (direct w/o cache),
PRAMEFS (indirect), and PRAMFS (mmap) are the cases that
PRAMES is constructed on NV memory and the direct,
indirect, and mmap methods are used for main mem-
ory allocation from the file system, respectively. PRAMFS
swap file is the case that only DRAM is used as main
memory, and a swap file created on PRAMES is used as
a swap device. The all blocks of the swap file is allocated
in advance.
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Figure 5 Preliminary comparison of page allocation costs.

Allocation size [MB]

256 512

Firstly, the measurement results apparently show the
efficiency of the memory allocation from NV memory and
the inefficiency of the memory allocation that involves
page swapping. DRAM (w/ swap) and PRAMFS swap file
are approximately 7.8 and 8.1 times as much as the indi-
rect method, respectively. Although it is slightly faster to
use a ramdisk than PRAMFS, paging swapping adds a
significant amount of overheads for memory allocation.
Therefore, integrating the main memory and file system
management can improve their performance when they
require a large amount of physical memory.

Among the three proposed methods, the indirect
method performs the best. The direct method comes next
to the indirect method with 98% overhead for the alloca-
tion of 512 MB of memory. The cost of the mmap method
is approximately 4.2 times as much as that of the indirect
method. The indirect method is different from the direct
and mmap methods because it creates the linked list of the
free blocks, which makes the allocation cost independent
from the internal implementation of the file system. Both
the direct and mmap methods depend on the internal
implementation for block allocation; thus, their allocation
costs also depend on it. Therefore, there must be the inter-
relationship of the the block allocation costs between the
file system’s native operations and the proposed methods
except for the indirect method.

4.3 Comparison of file system performance

This section investigates the interrelationship of the the
block allocation costs between the file system’s native
operations and the proposed methods. Blocks on a file
system are allocated by creating a file and writing data in
it; thus, we executed a program that performs these oper-
ations. We executed the program also on Ext2 constructed
on NV memory for comparison. Since Ext2 cannot

directly access NV memory, a block device driver of NV
memory was implemented and is used as its base device.
The device driver implements the necessary function to
enable the XIP feature of Ext2.

Figure 6 shows the measurement results along with
those of the proposed methods. PRAMFS file system and
Ext2 file system are the cases that the program creates a
file and writes a byte at the beginning of each page bound-
ary to allocate the specified amount of blocks. These are
basically the same operations performed to measure the
page allocation costs of the proposed methods except that
they use different system calls.

The measurement results show the direct interrelation-
ship between the mmap method and writing to a file since
their allocation costs are very close. They basically use the
same set of the internal functions that PRAMEFS imple-
ments for the block allocation of a file. The results also
show the deficiencies of PRAMES in terms of allocating
blocks since the result of Ext2 is much better.

Both PRAMES and Ext2 employ the bitmap data struc-
ture to distinguish allocated and free blocks. The bitmap
structure can be a good solution to manage free blocks for
HDDs because it makes it easy to find a free block that
is close to another one and helps to make the allocated
blocks of a file as contiguous as possible. While contiguous
block allocation is important for rotating HDDs to effi-
ciently access files, it adds too much cost for NV memory
because bitwise operations to find a clear bit in the bitmap
structure are significantly time consuming. Therefore, the
free block management of a file system on NV memory
requires an alternative mechanism.

One of the reasons why Ext2 performs better for block
allocation than PRAMEFS can be because of its block pre-
allocation feature. When a new block is allocated, Ext2
internally preallocates several blocks adjacent to the block
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Figure 6 Comparison of page allocation costs of file systems.
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just allocated. Such preallocation helps to make the blocks
of a file more contiguous and also to make the subse-
quent block allocation much more efficient; thus, Ext2 can
perform better for block allocation than PRAMES.

These analysis results give us hints for the improve-
ments that can be made to PRAMFS.

5 Improving a file system for non-volatile main
memory

This section describes the two improvements of a file sys-

tem devised from the analysis results described in the pre-

vious section. The improvements are applied to PRAMES,

and their evaluation results are shown below.

5.1 Block preallocation cache

The first improvement is the block preallocation cache,
which is hinted by the preallocation feature of Ext2. Ext2
preallocates blocks to reduce the overhead to search a
clear bit in the free block bitmap that manages free blocks.
It uses a preallocated block for the subsequent block allo-
cation, and avoids searching a free block for each block
request. If bitwise operations can be totally avoided, the
overhead can be further reduced.

The block preallocation cache is a linked list of the free
blocks preallocated from a file system. In response to a
block allocation request, a block is taken out from the
linked list instead of searching a clear bit in the free block
bitmap. When the list is empty, 64 blocks are allocated
together from a file system and added to the list. Searching
64 free blocks in the bitmap can avoid bitwise operations.
Since our target CPU is x86_64, its word size is 64-bit.
By considering the bitmap as an array of 64-bit elements,
searching 64 free blocks is simply searching an array ele-
ment of which content is 0. When a block is freed, it is
returned to the block preallocation cache. If there is an

enough number of blocks in the cache, the freed block is
returned to a file system.

The block preallocation cache is introduced to the direct
method in order to find out its effectiveness. Figure 7
shows the measurement result along with those found
in Figure 6 for comparison. PRAMFS (direct w/ cache) is
the case that the block preallocation cache is applied to
the direct method. We can see that the block prealloca-
tion cache can significantly reduce the block allocation
cost. The block allocation cost of the direct method with
the block preallocation cache is approximately 55% of the
cost without the cache, and is only 9.8% more than the
cost of the indirect method. While the same amount of
the reduction can be expected for the mmap method, the
expected result is still not enough to make the mmap
method comparable with the direct and indirect methods.

5.2 Modification to free block management structure
The first improvement is only effective for the direct
method but not enough for the mmap method. In order
to further reduce the block allocation costs, we modi-
fied the free block management structure of PRAMES. It
originally employs the bitmap data structure to manage
its free blocks. As described in Section 4.3, the bitmap
data structure works effectively for HDDs while there is
no benefit for NV memory because it does not have to
take the seek time of HDDs into consideration. Therefore,
memory based data structures should work better for NV
memory to take advantage of its byte addressability.

In order to verify the above notion, we modified
PRAMES to use a linked list for the free block manage-
ment. We chose a linked list because of its stability and
the least implementation cost. It is well known that a
linked list can be used for the free block management
of a file system (Bach 1986). Since our objective for this
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Figure 7 Comparison of page allocation costs before and after the improvement to the file system by employing the block preallocation

work is to investigate how the management data struc-
tures of file systems affect the memory allocation costs,
the implementation cost should be saved. Once we find
a linked list works effectively, we should consider other
more functional data structures for the free block man-
agement, such as the buddy system. The Linux kernel
provides the standard operations for basic data structures,
and the operations for a linked list are included. We used
these operations to add and delete a block to the linked
list of the free blocks. The region used for the free block
bitmap was removed, and is now used for data blocks.
Figure 8 shows the measurement results along with
the previous results for comparison. In the figure,
PRAMFS2 represents the modified PRAMES that employs

a linked list for the free block management. The modified
PRAMES considerably performs better than the original
PRAMES for all of the measurement results. The indirect
method remains the best, and the direct method of the
modified PRAMES comes next with 8.6% overhead. The
cost of the mmap method is still 1.8 times as much as that
of the indirect method, but is reduced to 21% of the orig-
inal PRAMES. Writing to PRAMES becomes 2.9 times as
efficient as Ext2.

The results described above show that the use of a linked
list enables the efficient free block management of a file
system on NV memory. The bitmap data structure for the
free block management is apparently not suitable for a
file system on NV memory, and should be avoided. Other
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Figure 8 Comparison of page allocation costs before and after the improvement to the file system by modifying the free block

management structure.
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more functional data structures are worth consideration.
Especially, the buddy system is used for the memory allo-
cator in the Linux kernel, and can handle the memory
allocation requests of variable sizes; thus, its applicability
to a file system should be investigated.

6 Effects on application performance

This section evaluates the effects of the proposed meth-
ods on application performance in order to investigate the
normal execution behavior of a program.

6.1 Evaluation method

Since there are various kinds of applications, there is
no single application program that represents all of
their workloads. Therefore, a mixed application workload
needs to be used for the evaluation. One such example
is kernel build of which process involves different kinds
of programs, such as a compiler, a linker, and so on, that
are executed for numerous times. Therefore, we measured
the execution cost of Linux kernel build for each of the
proposed method.

The execution environment for the evaluation employs
QEMU as the previous sections. The user land programs
of CentOS 6.4 are installed on PRAMEFS constructed on
NV memory. Application programs normally use the mal-
loc library function for memory allocation, and allocated
memory spaces are internally managed and reused for
future allocation. The direct and indirect methods require
no modification to these programs since they are trans-
parent to application programs. The mmap method, how-
ever, requires applications to use the mmap system call.
In order to avoid the modifications to them, the malloc
library function needs to be modified. We modified the
malloc library function provided by jemalloc (Evans 2006)

Page 12 of 17

because of its excellent performance and clean implemen-
tation. In order to make a fair comparison, the unmodified
version of jemalloc is used for the measurements of the
direct and indirect methods, and the modified version
is used for the mmap method. For both of the cases,
setting the LD PRELOAD environment variable enables
application programs to use the malloc library function
of jemalloc instead of the one provided in the standard
library.

6.2 Experiment results

Figure 9 shows the results of building the Linux kernel by
employing the proposed methods. The cost of building the
Linux kernel is divided in the two phases, compiling and
linking. The compiling phase mostly consists of compiling
C and assembly files to object files. The linking phase basi-
cally consists of linking object files to create the bootable
Linux kernel. The indirect method performs the best as
shown in the previous experiments although its advantage
is much smaller. The direct and mmap methods pose 0.4%
and 5.0% overheads, respectively, for the total execution
times. Because the linking phase requires more memory
allocation, the direct and mmap methods pose 0.5% and
10.7% overheads, respectively, that are larger than the total
overheads.

The overheads of the direct and mmap methods over the
indirect method are much smaller than those measured
only for memory allocation. This is because 1) memory
allocation is only a part of the processes of compiling
and linking files, and 2) the malloc library function usu-
ally utilizes allocated memory by recycling freed regions.
Therefore, the allocation of main memory pages does not
happen so often, so that the performance differences of
the proposed methods are mitigated.

direct

indirect

mmap

0 100,000 200,000 300,000 400,000 500,000 600,000
Number of instructions [1/1,000,000]

Figure 9 Performance comparison of the proposed methods by building the Linux kernel.
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7 Effects of the access latency of non-volatile
main memory

This section evaluates the effects caused by the access

latency of NV memory.

7.1 Evaluation method

In order to evaluate the effects caused by the longer access
latency of NV memory, we performed cycle-accurate
full-system simulation by employing MARSSx86 (Patel
et al. 2011). MARSSx86 accurately simulates CPU micro
architectures and also the latencies of memory hierarchy
including cache and main memory. MARSSx86 supports
the two micro architectures, Intel Atom and Intel Xeon
Westmere. The latencies of DRAM are configured to be
80ns and 55ns for Atom and Xeon, respectively. Table 2
shows the configurations of the target CPUs used for the
simulation.

We modified the memory controller module of MARS
Sx86 to take into account the different access latency
of NV memory. Because MARSSx86 employs QEMU in
order to emulate devices, we ported our modifications for
QEMU to support NV memory also to MARSSx86, so that
the data written in NV memory persist across shutdown
and reboot of MARSSx86.

There are different NV memory technologies that have
been researched and developed. We use PCM since it is
the most popular and closest to mass production. There
are several different numbers available as the access laten-
cies of PCM. A number of literatures including (Lee et al.
2009; Qureshi et al. 2009) use 150ns as an estimated write
latency. A more recent literature (Jiang et al. 2013) uses
1000ns as the write latency realized by an actual product
of PCM from Numonyx. Since there is the significant dif-
ference between these latencies, we use both of them and
investigate the effects of the different latencies. The all lit-
eratures claim that the read latency of PCM is comparable
to DRAM,; thus, we used the same read latency as DRAM.
We also use the same latency as DRAM for comparison.

7.2 Experiment results

We performed the same experiments that measure the
page allocation costs by the three proposed methods,
direct, indirect, and mmap, along with the standard file

Table 2 Configurations of target CPU micro architectures
used for the experiments

CPU Intel Atom Intel Xeon Westmere
Clock 213 GHz 340 GHz
L1l cache 32KB 32KB
L1D cache 24 KB 32KB
L2 cache 512KB 256 KB
L3 cache N/A 8 MB
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access API. We used the modified file system named
PRAMES2 described in Section 5.2 for the measurements.

Figures 10 and 11 show the measurements results
including the different write latencies of NV memory for
Atom and Xeon, respectively, in order to see the over-
all differences caused by the different latencies. From the
results, we see the results of the 150ns and DRAM laten-
cies do not make remarkable difference on both of the
CPUs. While there are slightly larger differences on Xeon,
there is approximately no difference on Atom. The inte-
gration methods are rather the major causes of the differ-
ences. We also see the results of the 1000ns latency are the
same for the all methods on both of the CPUs. The 1000ns
latency is considered to be long enough to absorb the dif-
ferences of access methods and CPUs. Moreover, we see
that the effects of the different latencies are moderate on
Atom while they are much more significant on Xeon. The
1000ns latency does not make the page allocation cost sig-
nificantly larger on Atom. Its results is only 1.3 times as
large as the mmap method and 2.2 times as large as the
indirect method. On Xeon, however, the 1000ns latency
makes the cost much larger. The results of the 1000ns
latency is 5.2 times as large as the mmap method and
8.1 times as large as the indirect method. Although these
results are too limited to evaluate the whole performance
effects caused by longer write latencies, we estimate that
the effects of the 150ns write latency can be amortized
within memory hierarchy. The 1000ns write latency, how-
ever, causes the apparent effect on performance; thus, it
requires aid to cover long latency.

Figures 12 and 13 show the measurements results only
including the 80ns and 150ns write latencies of NV mem-
ory for Atom, respectively, in order to see the differ-
ences caused by the different latencies and integration
methods more precisely. As described above, the def-
erence between the 80ns and 150ns latencies is very
small. The largest difference is 0.15% for the direct
method. As the results show almost no difference between
the 80ns and 150ns latencies, the differences between
the integration methods are also negligible. Interesting
information we could obtain from these results is the rel-
evance of the results we can obtain from QEMU. The in-
direct method performs 9.6% and 7.9% faster than the
direct method on Atom and QEMU, respectively. The
mmap method performs 54.5% and 62.6% slower than
the direct method on Atom and QEMU, respectively.
Although the difference is slightly larger for the mmap
method, they do not differ completely. Therefore, we
should be able to use QEMU in order to estimate the
performance on Atom.

Figures 14 and 15 show the measurements results only
including the 50ns and 150ns write latencies of NV
memory for Xeon, respectively. The results between the
50ns and 150ns latencies are much more remarkable on
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Figure 10 Page allocation costs measured on the Intel Atom micro architecture simulating the different write latencies of NV memory.

Xeon than Atom. The direct and indirect methods make
considerable differences between the 50ns and 150ns
latencies while the mmap method and file access API
make no difference. The direct and indirect methods per-
form 17.4% and 30.0% slower, respectively, with the 150ns
latency than the 55ns latency. Since the 150ns latency
makes the indirect method much slower, it makes the indi-
rect method slower than the direct method. These results
are contrary to the inference based on the cache config-
urations of Atom and Xeon. The sizes of the last level
cache (LLC) on Atom and Xeon are 512 KB and 8 MB,
respectively. Since Xeon’s LLC is much larger than Atom’s,
it is more reasonable that the 150ns latency affects the
performance of Xeon less than Atom. It is possible that
the out-of-order execution on Xeon is more sensitive to

longer latency than the in-order execution on Atom. We
need more investigation in detail to understand the effects
of longer latency on Xeon.

8 Related work

There are only a few papers that describe the integration
of main memory and storage. Bailey, et al. (Bailey et al.
2011) discusses various possibilities, including the inte-
gration of main memory and storage, made possible by
employing NV memory as main memory. Jung, et al. (Jung
and Cho 2011) describes the policy and possible effect
of the integration. Neither of them, however, realized the
integration. This paper describes the methods to realize
it and presents their design and implementation in the
Linux kernel.
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Figure 11 Page allocation costs measured on the Intel Xeon Westmere micro architecture simulating the different write latencies of NV
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There are a number of researches conducted to enable
NV memory to be used as main memory (Lee et al. 2009;
Mogul et al. 2009; Qureshi et al. 2009, 2010; Zhang and Li
2009; Zhou et al. 2009). Since these are the researches of
the computer architecture to integrate NV memory into
main memory by overcoming its limitations, there is no
consideration to integrate main memory and storage. On
the other side, there are the researches that construct file
systems on NV memory by taking advantage of its byte
addressability (Condit et al. 2009; Wu and Reddy 2011).
Although these researches utilize the feature that enables
NV memory to be used as main memory, they do not
consider NV memory as main memory at all.

FlashVM (Saxena and Swift 2010) and SSDAlloc (Badam
and Pai 2011) propose the methods to extend usable

memory spaces virtually larger by utilizing SSDs and mak-
ing page swapping faster than the existing mechanism.
While these improve the virtual memory system of the OS
kernel, main memory and storage remain separated.
NV-Heaps (Coburn et al. 2011) introduces a persis-
tent object system that specifically targets NV memory.
Application programs use them to persistently maintain
objects safely and consistently on NV memory. Whole-
system persistence (WSP) (Narayanan and Hodson 2012)
proposes a system, of which memory is NV memory
only. The paper categorizes systems with NV memory as
block-based, persistent heaps, and WSP. WSP provides
applications with a view that all objects are persistent, and
it employs a transparent mechanism to continue its oper-
ation on power failure. While these papers propose novel
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Figure 13 Page allocation costs measured on the Intel Atom micro architecture simulating the 150ns write latencies of NV memory.
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Figure 14 Page allocation costs measured on the Intel Xeon Westmere micro architecture simulating the 55ns write latencies of NV

approaches to use NV memory from applications, they do
not discuss a means for the kernel to manage NV mem-
ory where persistent objects are stored. Our approach,
which uses a file system as a base to manage NV mem-
ory, addresses the memory management within the OS
kernel. It is orthogonal to them; thus, it can be used to
store persistent objects on a file system and to enable their
protection and sharing.

Byte-addressable persistent RAM APIs (Febiansyah and
Kwon 2013) discusses the APIs that address wear leveling,
which is required by some types of NV memory. While
wear leveling is an important issue to support NV mem-
ory, it is outside the scope of this paper since our focus of
this paper is to propose the methods that can integrate the

management of main memory and storage. It is possible
for a file system to support a certain level of wear leveling
as we can find it in YAFFS (ALEPH ONE 2006), it is one
of our future work.

9 Summary and future work

This paper presented the integration methods of the main
memory and file system management for NV memory, so
that it can be used as both main memory and storage.
The presented methods use a file system as their basis
for the NV memory management; thus, the internal data
structures of a file system have impacts upon the perfor-
mance of the integration methods. We implemented the
proposed methods in the Linux kernel, and performed the
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evaluation on a system emulator. We performed the eval-
uation in three phases. We analyzed the first preliminary
experiment results and devised the improvements. The
second experiment results showed that 1) the proposed
methods can perform comparably to the existing DRAM
memory allocator and significantly better than the page
swapping, 2) their performance is affected by the internal
data structures of a file system, and 3) the data struc-
tures appropriate for traditional HDDs do not always work
effectively for NV memory. These results were shown
by concrete experiments with the implementation in the
Linux kernel. Finally, we performed the evaluation of the
effects caused by the longer access latency of NV mem-
ory by cycle-accurate full-system simulation. The results
showed that the effect on page allocation cost is limited if
the increase of latency is moderate.

Although we performed simulation by employing a
cycle-accurate full-system simulator that were modified to
take into account the different access latency of NV mem-
ory, the results are rather contrary to the inference based
on the configurations of simulated CPUs. We need more
investigation in detail to understand the effects of longer
latency.
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