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Abstract

This paper presents an effective procedure for solving the job shop problem. Synergistically combining small and large
neighborhood schemes, the procedure consists of four components, namely (i) a construction method for generating
semi-active schedules by a forward-backward mechanism, (ii) a local search for manipulating a small neighborhood
structure guided by a tabu list, (iii) a feedback-based mechanism for perturbing the solutions generated, and (iv) a very
large-neighborhood local search guided by a forward-backward shifting bottleneck method. The combination of shifting
bottleneck mechanism and tabu list is used as a means of the manipulation of neighborhood structures, and the
perturbation mechanism employed diversifies the search. A feedback mechanism, called repeat-check, detects consequent
repeats and ignites a perturbation when the total number of consecutive repeats for two identical makespan values reaches
a given threshold. The results of extensive computational experiments on the benchmark instances indicate that the
combination of these four components is synergetic, in the sense that they collectively make the procedure fast and robust.
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Introduction
As an integrated component of computerized and flexible
manufacturing systems, the Job-Shop Scheduling Problem
(JSP) is encountered in many industrial contexts. The
importance of this problem is two-fold. First, it has a wide-
spread applicability in manufacturing, and second, despite
its easy-to-state description, it is a notoriously difficult and
intractable problem which provides an ideal framework to
evaluate innovative algorithmic approaches. Successful ap-
proaches for this easy-to-state problem can be later modi-
fied to cope with hard-to-state scheduling circumstances.
Among many different procedures developed to cope with

the JSP, those which employ local searches have the most ro-
bust and effective aspects. A local search differs from a sys-
tematic tree search in that systematic tree search expands a
graph of partial solutions, whereas a local search explores a
virtual graph connecting each complete solution to its neigh-
boring complete solutions. The number of arcs in this virtual
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reproduction in any medium, provided the orig
graph is affected by the neighborhood scheme employed by
the local search, with the larger size of neighborhood leading
to higher number of arcs and consequently larger or even
impractical required computational times. That is why the
endeavor of defining a proper neighborhood scheme highly
determines the success of any local search algorithm.
Defining a proper neighborhood scheme for a local search

is, however, involved with highly conflicting factors, in the
sense that despite the fact that many neighborhood schemes
seem to be only superficial variation of one another, they can
easily demonstrate entirely different results. The reason of
this phenomenon has been partly described by the notion of
fitness landscape (Forrest and Mitchell 1993), and it seems
that successful neighborhood schemes have the capability of
effectively managing a trade-off between computational time
and the number of arcs in their virtual graphs.
In tackling the JSP, this paper presents a procedure that

combines small and large neighborhood structures. The
procedure, called SLENP (Small-Large Embedded Neigh-
borhood Search), has four synergetic characteristics of (i)
making use of a forward-backward construction method
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for generating initial solutions, (ii) employing a small
neighborhood search, (iii) using a feedback-based mechan-
ism in generating perturbation for improving the result of
the small neighborhood search, and (iv) using a large-
neighborhood search for improving the overall result of
the combination of the small-neighborhood search and the
perturbation mechanism employed.
The feedback process employed for igniting solution per-

turbation is based on memorizing the values of solutions
generated, and is aimed at minimizing the chance of exist-
ing any redundancy in the search. The rationale behind the
use of this feedback process in performing perturbation is
that any perturbation contributes to exploration but spoils
any exploitation aspect of the search and hence it should be
performed by extreme care. Memory undeniably is a vital
constituent of any successful search, and here it has been
used for igniting perturbation to avoid the same area of the
virtual graph to be visited repeatedly.
Mixing different neighborhood structures is one of the

building blocks of the variable neighborhood search (Hansen
and Mladenović 2003), and it seems that combining small
and large neighborhood schemes can have dual benefits. On
the one hand, the poor decision made in a small neighbor-
hood, which is the natural consequent of its limited scope,
may be rectified, and on the other hand, because of the com-
paratively high quality of its initial solution, the employed
large neighborhood search may require less computational
effort in producing its final result.
The SLENP performs its large neighborhood search

through a variant of the shifting bottleneck procedure
which works both in the forwards and backward direc-
tions. By performing in the backward direction, the
ordinary operations of the shifting bottleneck procedure
are executed on an inverted network, called mirror net-
work. The term mirror best reflects how, by reversing
the precedence relations of the initial network, this
modified network is created and why the overall solution
based on this modified network can be mirrored to show
a solution to the original network.
The outline of the paper is as follows. The next section

starts with presenting the formulation of the job shop
problem and providing a brief literature survey on the
problem. Section Related works presents the related work.
In Section The SLENP, the SLENP is discussed and a step-
wise description is provided that describes how the pro-
cedure operates and clarifies how its different components
interact with one another. Section Computational experi-
ments presents the results of computational experiments.
A summary of the results as well as the suggestions for fu-
ture work are discussed in Section Concluding remarks.

Problem formulation
The JSP consists of n jobs and m machines, with each
job having a specific processing order on the machines.
A typical schedule for the JSP is the allocation of jobs to
the time slots of the machines to minimize the makespan.
In other words, each job is comprised of a sequence of m
operations, each to be processed on a specified machine
within a particular time. The goal is to minimize the finish
time of the last activity completed subject to the con-
straint that, once started, an operation cannot be inter-
rupted and should continue until it has been completed. It
is worth noting that makespan is a regular criterion and
any method capable of handing this criterion has the po-
tential of being modified to handle other regular criteria
like total weighted flow time, weighted tardiness, weighted
sum of tardy jobs, and maximum tardiness (Mati et al.
2011). The reverse is also true with the procedures hand-
ling other regular criteria, like weighted tardiness (Bülbül
2011; Kreipl 2000).
As an NP-hard problem (Lawler et al. 1982), the JSP is

a notoriously difficult and an intractable combinatorial
optimization problem. An evidence for its intractability
is that finding the optimal solution of a relatively small
problem instance presented in (Fisher and Thompson
1963), with the dimension of 10*10, despite the focus of
intensive research on it, remained unsolved for 26 years
until it was solved by the exact procedure developed in
(Carlier and Pinson 1989). This celebrated instance,
which in the literature is called ft10, is still used by many
researchers to test their algorithms. The other exact pro-
cedures that have been successfully applied to small in-
stances have been developed in (Applegate and Cook
1991) and (Brucker et al. 1994). By exploring specific
knowledge about the longest path in the disjunctive graph
and employing the cutting-plane method for obtaining
lower bounds, these methods are aimed at applying so-
phisticated inference rules to cut the enumeration tree in
its early expansion phase, with both of the methods able
to solve the ft10 to optimality within several minutes.
One of the most effective formulations of the JSP is

performed by the use of disjunctive graphs (Brucker
et al. 1994). Figure 1 shows a sample problem and
Figures 2 and 3 show two different fixation settings
for the disjunctive arcs of the sample problem. As is
seen, the makespan of the problem, as the longest
path from the starting to the ending node, is different
for Figures 2 and 3. In effect, Figure 3 shows an opti-
mal fixation setting for the disjunctive arcs, which
has led to the optimum makespan of 22.
Since all operations executed on the same machine re-

quire a given order, the notion of feasible order plays a
key role in such graphs, with machine i being associated
with the order πi, which shows the permutation of jobs
on that machine. An order, Π, which consists of {π1,
π2,....,πm} is feasible if it does not introduce any loop in
the graph. Figure 4 shows an infeasible fixation of dis-
junctive arcs and the resultant loop produced.



Figure 1 A sample 4-machine 4-job JSP problem in which the number of the required machine has been written in each circle (operation).
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Denoting the completion time of the last completed
job with makespan, the JSP can be simply formulated as
follows:

min
Πε feasible ordersf g

makespan Πð Þf g ð1Þ

Related works
Solution strategies presented for the JSP range from artifi-
cial bee colony optimization and hybrid genetic tabu
searches (Banharnsakun et al. 2012; Meeran and Morshed
2012; Zhang et al. 2013; Zhang et al. 2008b) through dy-
namic and linear programming (Gromicho et al. 2012;
Bülbül and Kaminsky 2013) to path relinking and particle
swarm optimization (Pongchairerks 2014; Nasiri and
Kianfar 2012). In an overview of scheduling models pre-
sented in (Framinan et al. 2014) several of these strategies
have been examined. Non-exact solution strategies for the
JSP, to which the method presented in this paper belongs,
can be categorized into six different categories, namely (i)
construction methods, (ii) local searches, (iii) metaheuristics,
(iv) evolutionary algorithms, and (iv) hybrids. Interestingly,
Figure 2 Fixing the disjunctive arcs of the sample problem leading to
nearly all successful techniques in these categories model
the JSP as a disjunctive graph. In each category, only those
works have been discussed which have affected the SLENP.
Construction methods build a solution progressively,

starting with a null schedule and expanding it gradually
until a full schedule is obtained. In the process of creat-
ing a full schedule, a sequence of intermediate partial
schedules is created, with each partial schedule expand-
ing the previous partial schedule. In general, myopic de-
cisions are the backbone of such methods in the
progressive expansion of the intermediate partial sched-
ules. Priority-based techniques are the oldest techniques
classified as construction methods.
The method presented in (Giffler and Thompson

1960) is one of the most effective methods in the cat-
egory of construction methods. This method is able to
accept a set of priorities and create either an active or a
non-delay schedule through a dispatching mechanism
which schedules eligible operations one at a time based
on their priorities.
the makespan of 33.



Figure 3 Fixing the disjunctive arcs of the sample problem leading to the makespan of 22 (optimal solution).
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The second major construction method is the shifting
bottleneck procedure (SBP) (Adams et al. 1988), which
decomposes the JSP into several, m, one machine prob-
lems and solves each problem to optimality with the
Carlier’s method. As an intricate algorithm, the SBP
repeatedly redirects the search towards scheduling the
machine which imposes the most severe constraint in
the sense of increasing the objective function.
As the counterpart of gradient optimization in con-

tinuous spaces, local searches probe discrete spaces
through the fundamental notion of move to find local
optimal solutions. In effect, modern local searches are
now the leading procedures in solving the JSP, and this
is mainly due to effective neighborhood schemes devel-
oped in the last three decades. In general, local searches
convert a complete solution to another complete solu-
tion through local changes.
A major point with local searches is that they cannot be

effective unless they exploit the structure of the problem
Figure 4 An infeasible fixation of disjunctive arcs leading to a loop o
through a proper definition of a neighborhood structure
and an effective mechanism for the manipulation of such
a structure. Nearly all effective neighborhood structures
for the JSP are based on the basic notion of critical path in
a resolved disjunctive graph. In effect, each critical path
represents the longest route through operations and its
length is equal to the makespan. Major neighborhood
structures for the JSP are as follows.
N1 neighborhood has been proposed in (Van Laarhoven

et al. 1992) and defines a move by interchanging two suc-
cessive operations of the same machine on a critical path.
The design of N1 has been made based on two principles:
(i) changing the order of two non-critical operations
cannot improve the solution and may only create a cycle
in the disjunctive graph, and (ii) changing the order of two
adjacent operations cannot create a cycle.
N2 neighborhood (Dell'Amico and Trubian 1993) can

reverse more than one arc on the critical path. Assuming i
and j are two consecutive operations of the same block
f 1-2-9-10-1.
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and one of them is at an extreme point of the block, the
predecessor of i and the successor of j can also be subject to
reversal with their predecessors and successors, respectively.
In the N3 neighborhood (Dell'Amico and Trubian

1993), a sequence of three operations on the critical path
can be reversed subject to the condition that such a re-
versal does not lead to any loop. As an extension of N1,
N3 is not limited to the reversal of triplets and includes
the interchange of a pair of operations as well.
In N4 neighborhood (Dell'Amico and Trubian 1993),

each operation of a block can move to any location of the
block, subject to creating no cycle. Unlike in the other
three neighborhood schemes, which are based on adjacent
interchanges of operations, in this neighborhood a shift is
performed. Based on this shift, an operation jumps over
several other operations in its corresponding block to the
left or right. In effect, this neighborhood can be consid-
ered as an expansion of all other previous ones.
As a restricted version of both N1 and N4, N5 is a neigh-

borhood scheme, developed in (Nowicki and Smutnicki
1996), in which the first two or the last two operations of
each block are interchanged. The only exceptions are the
first and last blocks, in which only their last and first two
operations are interchanged, respectively.
The rationale behind the development of N5 is that the

size of N1 is large and includes a large percentage of
moves that cannot lead to any improvement. These
unfruitful moves are those which are involved with two
internal operations in the corresponding block. The re-
moval of these unfruitful moves out of N1 leads to the
creation of N5, which includes a restricted collection of
highly effective moves.
However, despite using such highly effective moves, a

drawback with N5 neighborhood is that its corresponding
search space is disconnected. This disconnection removes
any guarantee for the existence of a path between an opti-
mal solution and an arbitrary seed. In comparison with
N4, N5 is involved with the reversal of only one disjunct-
ive arc, and this makes its corresponding neighborhood
considerably smaller.
In N6 neighborhood (Balas and Vazacopoulos 1998),

each operation of a block can move precisely after the
last or before the first operation of the black, subject to
creating no cycle. N6 is very close to N4, and the major
difference existing between these two neighborhood
schemes is that N4 allows each operation of the block to
move to any other location of the block, subject to creat-
ing no cycle. This makes the size of N6 slightly smaller
than that of N4. N6 has been extended to N6’ in (Zhang
et al. 2008a) by being allowed to move the first or the
last operation of the block into the interior operation in-
side the block.
It is worth mentioning that in the literature these no-

tations are not unique and different authors have used
different notations. For instance, whereas in (Blazewicz
et al. 1996), N5 is referred to the same neighborhood we
mentioned, in (Vaessens et al. 1996) N5 is used to refer
to the neighborhood scheme developed in (Adams et al.
1988), which, as a very large neighborhood, can com-
pletely change the order of operations on one machine.
That is why in this paper, we refer to that neighborhood
schemes as N5’.
Local searches, in general, and neighborhood schemes,

in particular, are mainly used in the context of metaheu-
hurtics. Tabu searches, as part of metaheuristic category,
select improving moves, and are aimed at avoiding to re-
turn to the solutions they have visited recently. In the
cases where no improving move exists, simply the least
disapproving move is chosen. The tabu search presented
in (Nowicki and Smutnicki 1996) has been one of the
most effective searches presented for the JSP. Although
it owes its effectiveness to both the employed neighbor-
hood structure and the balance it maintains between
diversification and intensification, restarting the search
form elite solutions plays a crucial role in its success. In
this metaheuristic, the search is controlled through a
backtracking scheme, and the seed are provided through
generating active schedules. The backtracking process
embedded in the search causes the search to restart
from various high quality solutions encountered from
the beginning of the search. In other words, it recovers
elite solutions with which to restart the search.
In the JSP whose fitness landscape has big valley struc-

ture (Pardalos et al. 2010), the recovery of elite solutions
and then restating the search with these solutions using
different parameters has proved to be very effective. Be-
cause of a random setting, even with using the same
high quality solution as a seed, each restarting initiates
finding a new promising trajectory. It is through these
trajectories that the big valley structure of the JSP is
exploited and high quality solutions are obtained.
As two other effective tabu searches, we can name those

presented in (Taillard 1994) and (Barnes and Chambers
1995), with both using N1 as their neighborhood struc-
ture. Whereas the first procedure changes the size of tabu
iteratively and calculates the objective function value of
each neighbor approximately, the other procedure has a
fixed-length tabu list and computes the objective function
value of each neighbor exactly. For generating a seed, sev-
eral non-delay schedules are generated and the best one is
selected.
As another metaheurstic, the guided local search pre-

sented in (Balas and Vazacopoulos 1994), uses a variable
neighborhood search in escaping local optimality. The
main difference between this search and a typical variable
neighborhood search is that it uses a tree whose nodes
correspond to the orientations, with each descendant
node being a neighbor of its parent node. In (Mattfeld
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1996), this search has cleverly been classified as a variable
depth search due to the famous algorithm of (Lin and
Kernighan 1973), which has first been applied to the
Travelling Salesman Problem (TSP). As another vari-
able neighborhood search for the JSP we can mention
the VNS presented in (Wang and Zhang 2011).
The variable depth search starts with an initial solution,

and in each iteration of the search, it starts with the best
solution found in the previous iteration. Unlike in tabu
search, each iteration performs not one but a number of
potential profitable moves, which in general may be wors-
ening moves, and during the corresponding iteration
never reverses any of those moves.
Despite the fact that in the next iteration, previously

prohibited moves are allowed to be performed again, the
list of forbidden moves in the variable depth search
grows much faster than that in tabu search. The other
variable depth search procedure developed for the JSP, is
the procedure presented in (Dorndorf and Pesch 1993).
Unlike in the TSP, this search has not been extremely
successful for the JSP. It seems that this is partly due to
the complicated structure of the JSP, which makes poten-
tially profitable moves unrecognizable.
In (Lourenco 1995; Lourenço and Adviser-Shmoys

1993), a combination of N1 and a large step optimization
search has been employed to tackle the problem. In the
corresponding large step optimization, randomly two ma-
chines are selected and all disjunctive arcs related to these
two machines are removed. Then, a new order is found
for each of these machines through using the Carlier’s
method (Carlier 1982), which solves one machine problem
to optimality.
The fourth category, genetic algorithms, is not much

related to our work, and the most successful genetic
algorithms provided for the JSP include those presented
in (Yamada and Nakano 1992), (Dorndorf and Pesch
1995), (Falkenauer and Bouffouix 1991), and (Gonçalves
et al. 2005). Finally, we briefly survey hybrids as the last
category. They comprise a variety of algorithms ranging
from genetic (Qing-dao-er-ji and Wang 2012) through
ant bee-based (Zhang et al. 2013) to differential evolu-
tion hybrids (Ponsich and Coello Coello 2013).
The first related hybrid discussed is the algorithm based

on global equilibrium presented in (Pardalos and Shylo
2006). This algorithm, which is called Global Equilibrium
Search (GES), has some common features with simulated
annealing algorithm. In each stage of the search, GES col-
lects information about the solution space for its next
stages, and similar to the SA, the GES performs the search
as a chain of temperature rounds.
The procedure also employs a local search which uses

two neighborhood structures. The first neighborhood
structure is N1 and the second structure manages to move
each operation on the block either to the beginning or to
the end of its corresponding block, similar to N4. The
authors have modified an accelerating method in litera-
ture for the evaluation of moves in their second neigh-
borhood structure. This method, which instead of
computing the exact value associated with a move, cal-
culates its tight lower bound at the cost of negligible
computational effort, has significantly contributed to
the effectiveness of the procedure.
The next related work in the hybrids is a filter-and-fan

approach presented in (Rego and Duarte 2009). The au-
thors have presented a filter and fan approach for solving
the JSP. The SBP (Shifting bottleneck procedure) has been
used both for generating initial solutions and enhancing
the final solutions as a post optimization procedure. It in-
corporates a tree search for restricting the solution space
and works similar to the beam search.
Whereas beam search works in construction heuristics,

filter and fan search, as its natural generalization, can
work both in construction heuristics and local searches.
When used in local searches, it places a local optimal
solution at the root of the search tree, and the best m
solutions obtained in this process are located at level 1,
among the neighbors of these m solutions, the best m
neighbors are selected and are placed in level 2. In
effect, each level consists of m nodes that are selected
among the best neighbors of nodes existing in its previ-
ous level. By using a hash mechanism, any repeat in
this search tree is prevented. After generating k solu-
tions and selecting the best solution obtained in the
process, it becomes the root of the tree, and the search
restarts.
The employed filter and fan procedure can work based

on the first-improvement strategy as well. This means
that whenever in the process, the root is improved, the
enhanced solution becomes the root, and the best m
solutions obtained in the previous search tree are placed
in the first level of the next search tree.
The next related work in hybrids is a TS/SA algorithm

presented in (Zhang et al. 2008a). The procedure devel-
oped by these authors is based on their conjecture that
the quality of solutions obtained by the tabu search is
determined based on the quality of the initial solutions.
That is why they use a simulated annealing algorithm to
generate high quality initial solutions for a tabu search.
In other words, the main principle guiding this search is
that SA generates elite solutions and TS improves the
solutions generated by SA.
These kinds of integration are usually very effective.

For instance, in (Huang and Liao 2008) ant systems are
combined with tabu searches and provide assistance for
a decomposition method inspired by the shifting bottle-
neck procedure, used as the construction method of the
procedure. Having briefly reviewed the related work, we
can now describe the SLENP.
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The SLENP
The SLENP combines small and large neighborhood
schemes in coping with the job shop problem. Four mod-
ules have been combined to create this procedure. The
first module is aimed at generating semi-active schedules
by a forward-backward method called Semi-Active Sched-
ule Generator (Forward-Backward-SASG). The second
module is based on a local search that manipulates a small
neighborhood structure guided by a tabu list, and the third
module includes a feedback-based mechanism for perturb-
ing the solutions generated. A very large-neighborhood
local search, which is guided by a forward-backward
shifting bottleneck (Forward-Backward-SBP) method,
comprises the fourth module. Whereas the shifting
bottleneck mechanism and tabu list are used as a ma-
chinery to manipulate the neighborhood structures, the
perturbation mechanism diversifies the examined solu-
tions, and the semi-active generator generates initial
schedules.
The employed small neighborhood structure is highly

restrictive, and the reason we have used semi-active, in-
stead of active schedules, is that in (Jain et al. 2000),
through computational experiments, it has been shown
that semi active schedules better match with restrictive
neighborhood structures. The conclusion made in (Jain
et al. 2000) is partly based on semi-active schedules
employed in (Nowicki and Smutnicki 1996). It should be
noticed that when the employed neighborhood structure
is not restrictive, active schedules perform better than
semi-active schedules. The reason is twofold. First,
makespan is a regular criterion and the optimum belongs
to the set of active schedules. Second, active schedules are
a subset of semi-active schedules, and, on average, are of
higher quality than semi-active schedules.
In the procedure, the repeats are detected by a feedback

mechanism called repeat-check, which causes perturb-
ation to occur whenever the total number of successive re-
peats for two identical values of the makespan reaches a
given threshold. The shifting bottleneck module manipu-
lates a large-neighborhood and is aimed at enhancing the
solution obtained by the other three modules. To improve
the results obtained by the shifting bottleneck method, a
forward/backward mechanism has been added to it.
The pseudocode of the SLENP has been represented

in Figure 5. The integrating part of the pseudocode is
Elite Heap, which is a priority queue for keeping high
quality solutions for possible improvement and releasing
them based on their quality. First, at line 3, the Elite-
Heap is initially filled by repeatedly calling the Forward-
BackwardSASG procedure. This is performed through
generating n solutions by the Forward-BackwardSASG
procedure, and selecting the best m solutions among
them. The Forward-BackwardSASG procedure has its
own pseudocode and will be discussed in detail.
After the filling of the EliteHeap, the main loop in pseudo-
code starts at line 5. The main goal of this loop is to make
possible improvement in the solutions located in the Elite-
Heap. Line 7 removes a solution from the EliteHeap and
line 9 performs a limited tabu-search on this solution. In
this tabu search, the tabu list includes elements which show
the sequence of operations on a particular machine. In this
tabu search, both N5 and N6′ neighborhoods are used. As
discussed, N6′ is a version of N6 in which the possibility of
moving the starting and ending operations of the block to
the interior positions of the block have been considered.
The employed tabu list is aimed at determining whether,

within a particular short-term period, a potential solution
has been visited and decreases the possibility of repeatedly
visiting the same sequence of solutions. Since this particu-
lar short-term memory cannot exclude the large sequences
of repeats, lines 13 and 14 record the occurrence of every
two consecutive solution values, and line 15 prevents any
such possible repeat through making a perturbation in the
current solution, aiming at further decrease in the possibil-
ity of repeats.
The performance of such perturbation depends on de-

tecting a large sequence of repeats. For this purpose, if x
has been followed by x’ previously, C[x,x’] > 1, the value of
totalRepeats is incremented at line 14, and as soon as
totalRepeats exceeds a certain threshold, the current solu-
tion is perturbed using the N1 neighborhood. As lines 17
and 18 indicate, with each perturbation, the history of the
recorded solution values is discarded. The reason for dis-
carding this history is that any perturbation changes the
course of possible repeats. Line 22 ensures that the pro-
cedure is repeated until there is no improvement for
MaxIter iterations. The loop terminates at line 23.
The best solution obtained in the loop undergoes an it-

erated forward-backward, one-machine post-optimization
process for possible further improvement. The loop termi-
nates at line 23, and line 24 applies a large-neighborhood
search to the best solution obtained. This is performed by
calling ForwardBackwardSBP, whose complete pseudo-
code has been given in Figure 6.
This complete pseudocode describes a modified version

of the post-optimization phase of the shifting bottleneck
procedure (SBP) (Adams et al. 1988). The modification
performed includes adding a backward process to the pro-
cedure. The pseudocode starts with initializing a list of
machines, L, at line 5.Then a loop starts at line 9. In each
iteration of this loop, at line 12 the status of a machine is
set to open (i.e. “not scheduled”), and at line 14 the sub-
problem corresponding to that machine is given to the
Carlier procedure to be solved.
Based on line 11, the procedure randomly switches from

the forward case to the backward case and vice versa.
After solving the corresponding one machine problem
with the Carlier method at line 14, the output sequence is



Figure 5 The c-type pseudocode of the SLENP.

Figure 6 The c-type pseudocode of the ForwardBackwardSBP module.
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Figure 7 The c-type pseudocode of the ForwardBackwardSASG.
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applied to the solution and the makespan is calculated at
line 15. Then, line 16 replaces the previous sequence with
the new one if the new sequence is of higher quality than
the previous one. Lines 7, 9, 19, 21 ensure that the proced-
ure is terminated if there is no improvement for 2m con-
secutive iterations. As lines 23 through 27 show, after
each full optimization cycle for all m machines, the ma-
chine numbers in the list L are rearranged based on their
solution cost to the one-machine problem, with the ma-
chines producing the longest makespan sitting in the top
of the list and those producing the smallest makespan sit-
ting in the bottom of the list. The pseudocode terminates
at line 29.
As mentioned, the EliteHeap is filled by repeatedly call-

ing the Forward-BackwardSASG procedure. The pseudo-
code of this procedure has been presented in Figure 7.
The pseudocode, which generates semi-active schedules,
starts with lines 4 and 5 and initializes a forward and
Table 1 The value of each parameter as either a constant
or a function of the number of jobs (n) and the number
of machines (m)

Parameter Value

TotSol n.m+1000

k 10

EliteHeapSize 500

PerturbProb 0:3 � n
m

MaxIterNonImprov 3000 � n
m

TabuSizemin 14þ n
m

TabuSizemax 19þ n
m

RepeatTolerancemin 9þ n
m

RepeatTolerancemax 11þ n
m

N5N6’Prob 0.1

TripleMovesProb 0.6
backward binary heap, respectively. Then with a loop
starting at line 8, forward and backward processes are
used alternatively, starting with the forward process,
which is set at line 7. Depending on whether the forward
or backward process is in place, an element is taken from
the forward or backward heap in lines 11 and 13,
respectively.
The pseudocode constructs a solution by iteratively se-

quencing jobs on machines. This is done in the two direc-
tions of forward and backward alternatively, in the sense
that in each iteration based on the value of the direction
variable, an operation is scheduled on the beginning or
the end of the schedule, respectively. Since in lines 11 and
13 from the top k elements of forward_BinaryHeap or
backward_BinaryHeap, an element is chosen, and larger
values of k can cause further diversification, the parameter
k plays a key role in the quality of solutions generated.
The smaller values of k lead to generating a limited

number of solutions, all in the same high quality region.
On the other hand, when the value of k is increased, say
to 3 or 5, the diversification is increased at the cost of
decreasing the quality of regions. Since for filling the
EliteHeap, this module is called for n times and among
the n solutions generated the best m solutions are se-
lected, the values of each of the three parameters k, m,
and n should be selected based on the other two
parameters.
The other issue contributing to the effectiveness of the

procedure is the forward-backward mechanism embed-
ded in the Carlier’s method as the key component of the
shifting bottleneck procedure. Both in the forward and
backward processes, it is vital that the sub-solution pro-
vided by the Carlier’s procedure matches with the current
solution, in the sense that the Carlier’ procedure should
not introduce any loop in the current disjunctive graph.
As it has been stated in (Adams et al. 1988), introducing
loops through the Carlier’s procedure is not a common



Figure 8 Solution value (makespan) per each schedule evaluation for the instance ft10.
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occasion and rarely can happen in practice. In our imple-
mentation, both in the forward and backward processes,
we have prevented loops as follows.
Suppose, that the Carlier’s procedure suggests 71, 78,

30, 1, 42, and 35 as the sequence of operations that should
be processed, one after another, on the corresponding ma-
chine. Now in the disjunctive graph, we find all successors
of the operation 35 and make sure that none of the opera-
tions before the operation 35 in the proposed sequence by
the Carlier’s procedure is among these successors. Then
we find all successors of the operation 42, and make sure
that none of the operations before the operation 42 is
among them. Checking for the existence of any violation
continues until we find that the operation 71 is not among
the successors of the operation 78.
Figure 9 Best makespan achieved per each element removal from th
In case of encountering any violations, they are re-
corded, and the Carlier’s procedure is called again, albeit
with the set of recorded violations as a constraint for be-
ing avoided. This process is repeated until the sub-
solution provided by the Carlier’s procedure matches with
the current solution. The employed tabu search selects
improving moves and avoids returning to the solutions it
has visited recently.

Computational experiments
The SLENP has been implemented in C++ and compiled
via GNU GCC compiler on a DELL PC with 2.2 Ghz
speed. The benchmark problems to which the procedure
has been applied include 43 instances extracted from
ORLIB site managed by Brunel University, UK. The
e elite heap.



Figure 10 The changes of global best solution per each removal from the elite heap.
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selected instances comprise a combination of represen-
tative problems collected from the literature. They range
from 6 × 6 to 20 × 20 in size, with the first number
showing the number of jobs and the second number
showing the number of machines. They include 3 in-
stances, ftxx, from (Fisher and Thompson 1963), 11 in-
stances, laxx, from (Lawrence 1984), 5 instances, abzx,
from (Adams et al. 1988), 10 instances, orbxx, from
(Applegate and Cook 1991), 4 instances, ynx, from
(Yamada and Nakano 1992), and 10 instances, swvxx,
from (Storer et al. 1992).
The procedure has 11 parameters, and most of these

parameters have been set in terms of the number of
jobs, n, and the number of machines, m. In setting the
parameters, care has been taken to increase the explor-
ation power of the procedure with respect to the increase
in m, and ⌊n/m⌋. Table 1 shows how these parameters
have been set. A brief description of these parameters is as
follows; (i) TotSol denotes the number of total initial solu-
tions generated, (ii) k represents diversification parameter
of the Forward-BackwardSASG module which controls
the diversity of initial solutions, (iii) EliteHeapSize indi-
cates the size of EliteHeap, (iv) PerturbProb represents the
chance by which the solution is perturbed after being re-
moved from eliteheap, (v) MaxIterNonImprov denotes the
number of iterations after which the tabu search stops if
no improvement occurs in makespan, (vi-vii) TabuSizemin

and TabuSizemax show the extremes of the bound in
which the size of the tabu list as a uniform random vari-
able can change in each run, (viii-ix) RepeatTolerancemin,
and RepeatTolerancemax represent the extremes of the
bound in which the tolerance for accepting consecutive
makespan repeats is changed randomly, (x) N5N6′Prob
denotes the chance of selecting N5 neighborhood in each
iteration and consequently the chance of selecting N6′
neighborhood is 1-N5N6′Prob, (xi) TripleMovesProb rep-
resents the probability by which at the start and the end of
the critical block a triple move is performed.
As stated in the previous section, the SLENP uses both

N5 and N6′ as its small neighborhood. That is why
among the parameters described above, the parameter
N5N6′Prob has been used to determine the chance of
selecting each of the two neighborhoods. Using one of
the two neighborhoods randomly causes that starting
with the same initial starting point leads to different
courses of actions and consequently to different solu-
tions, improving the diversity of solutions generated and
increasing the chance of escaping local optimality.
Before presenting the performance of the procedure for

the benchmark instances and comparing the obtained
results with the best available solutions, we first show the
results of its operations on the ft10, which is the most
famous instance. Figure 8 shows the solution value (make-
span) per each schedule evaluation. As is seen, the make-
span has converged towards 930, which is the optimal
solution of the problem. It is worth mentioning that value
of 930 has been found after applying the shifting bottle-
neck improvement heuristic in the final stage of the pro-
cedure. The shifting bottleneck improvement heuristic has
been executed after the procedure has evaluated 272850
schedules, and has been performed on a solution whose
makespan was 934.
Figure 9 shows the best makespan obtained for each

element removed from the elite heap. In effect, for 90



Table 2 Comparing the performance of the SLENP with that of TSSA

SLENP TSSA

Instance Size LB BKS Best %DEVbest Tbest Avg Tavg(s) Best %DEVbest Avg Tavg

ft06 6 × 6 55 55 55 0.000 0 55 0.005 – – – –

ft10 10 × 10 930 930 930 0.000 0.455 930 9.224 930 0.000 930 3.8

ft20 20 × 5 1165 1165 1165 0.000 0.48 1165 2.727 – – – –

la19 10 × 10 842 842 842 0.000 0.13 842 0.776 842 0.000 842 0.5

la21 15 × 10 1046 1046 1046 0.000 5.3 1046.7 15.216 1046 0.000 1046 15.2

la24 15 × 10 935 935 935 0.000 10.29 936.5 20.360 935 0.000 936.2 19.8

la25 20 × 10 977 977 977 0.000 6.2 977 13.699 977 0.000 977.1 13.8

la27 20 × 10 1235 1235 1235 0.000 9.08 1235 31.980 1235 0.000 1235 11.7

la29 20 × 10 1152 1152 1162 0.868 86.64 1163.5 40.024 1153 0.087 1159.2 63.9

la36 15 × 15 1268 1268 1268 0.000 3.4 1268.3 12.937 1268 0.000 1268 9.9

la37 15 × 15 1397 1397 1397 0.000 1.97 1397 9.181 1397 0.000 1402.5 42.1

la38 15 × 15 1196 1196 1196 0.000 4.35 1198.6 14.836 1196 0.000 1199.6 47.8

la39 15 × 15 1233 1233 1233 0.000 1.31 1233.6 19.099 1233 0.000 1233.8 28.6

la40 15 × 15 1222 1222 1224 0.164 6.57 1226.6 15.926 1224 0.164 1224.5 52.1

abz5 10 × 10 1234 1234 1234 0.000 0.58 1234 3.545 – – – –

abz6 10 × 10 943 943 943 0.000 0.12 943 0.151 – – – –

abz7 20 × 15 656 656 662 0.915 39.04 664 64.822 658 0.305 661.8 85.9

abz8 20 × 15 645 665 668 0.451 106.52 672.4 55.935 667 0.301 670.3 90.7

abz9 20 × 15 661 678 688 1.475 98.7 689.5 35.820 678 0.000 684.8 90.2

orb01 10×10 1059 1059 1059 0.000 0.7 1059.6 5.961 1059 0.000 1059 3.5

orb02 10×10 888 888 888 0.000 0.14 888 0.475 888 0.000 888.1 6.4

orb03 10×10 1005 1005 1005 0.000 0.365 1005 7.415 1005 0.000 1012.5 13.8

orb04 10×10 1005 1005 1005 0.000 0.155 1006.2 7.580 1005 0.000 1008.3 14.3

orb05 10×10 887 887 887 0.000 1.23 887 12.093 887 0.000 888.6 6.6

orb06 10×10 1010 1010 1010 0.000 0.23 1010.9 9.165 1010 0.000 1010 8.5

orb07 10×10 397 397 397 0.000 0.14 397 0.284 397 0.000 397 0.5

orb08 10×10 899 899 899 0.000 2.26 899 6.020 899 0.000 902.5 7.2

orb09 10×10 934 934 934 0.000 0.18 934 0.509 934 0.000 934 0.4

orb10 10×10 944 944 944 0.000 0.15 944 0.176 944 0.000 944 0.3

yn1 20×20 826 884 892 0.905 66.63 897.7 40.040 884 0.000 891.3 106.3

yn2 20×20 861 907 911 0.441 1.78 913.4 62.312 907 0.000 911.2 110.4

yn3 20×20 827 892 900 0.897 59.85 903.1 42.178 892 0.000 895.5 110.8

yn4 20×20 918 968 982 1.446 49.81 986.8 56.047 969 0.103 972.6 108.7

swv01 20×10 1407 1407 1437 2.132 115.33 1458.5 60.642 1412 0.355 1423.7 142.1

swv02 20×10 1475 1475 1505 2.034 92.27 1520 64.431 1475 0.000 1480.3 119.7

swv03 20×10 1369 1398 1426 2.003 82.68 1434 48.665 1398 0.000 1417.5 139.1

swv04 20×10 1450 1470 1511 2.789 66.47 1517.8 57.664 1470 0.000 1483.7 143.9

swv05 20×10 1424 1424 1475 3.581 45.461 1492.3 58.092 1425 0.070 1443.8 146.7

swv06 20×15 1591 1678 1730 3.099 43.94 1738.2 81.892 1679 0.060 1700.1 192.5

swv07 20×15 1446 1600 1632 2.000 88.79 1648 68.546 1603 0.188 1631.3 190.2

swv08 20×15 1640 1756 1807 2.904 147.39 1814.1 71.765 1756 0.000 1786.9 190

swv09 20×15 1604 1661 1701 2.408 126.12 1707.5 68.661 1661 0.000 1689.2 193.8

swv10 20×15 1631 1754 1812 3.307 122.66 1820.6 85.666 1754 0.000 1783.7 184.6
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Table 3 The performance result on la01 to la40

SLENP

Instance Size BKS Best %DEVbest Tbest(s) Avg Tavg(s)

la01 10 × 5 666 666 0.000 0.00 666 0.00

la02 10 × 5 655 655 0.000 0.06 655 0.07

la03 10 × 5 597 597 0.000 0.06 597 0.09

la04 10 × 5 590 590 0.000 0.05 590 0.06

la05 10 × 5 593 593 0.000 0.00 593 0.00

la06 15 × 5 926 926 0.000 0.00 926 0.00

la07 15 × 5 890 890 0.000 0.00 890 0.01

la08 15 × 5 863 863 0.000 0.00 863 0.00

la09 15 × 5 951 951 0.000 0.00 951 0.00

la10 15 × 5 958 958 0.000 0.00 958 0.00

la11 20 × 5 1222 1222 0.000 0.00 1222 0.00

la12 20 × 5 1039 1039 0.000 0.00 1039 0.00

la13 20 × 5 1150 1150 0.000 0.00 1150 0.00

la14 20 × 5 1292 1292 0.000 0.00 1292 0.00

la15 20 × 5 1207 1207 0.000 0.02 1207 0.15

la16 10 × 10 945 945 0.000 0.13 945 0.69

la17 10 × 10 784 784 0.000 0.11 784 0.13

la18 10 × 10 848 848 0.000 0.12 848 0.16

la19 10 × 10 842 842 0.000 0.16 842 0.51

la20 10 × 10 902 902 0.000 0.14 902 0.20

la21 15 × 10 1046 1046 0.000 2.68 1046.8 14.58

la22 15 × 10 927 927 0.000 0.72 927 5.50

la23 15 × 10 1032 1032 0.000 0.23 1032 0.24

la24 15 × 10 935 935 0.000 4.04 935.2 22.75

la25 15 × 10 977 977 0.000 1.51 977.2 10.97

la26 20 × 10 1218 1218 0.000 0.41 1218 0.44

la27 20 × 10 1235 1235 0.000 2.06 1235 27.79

la28 20 × 10 1211 1216 0.413 0.45 1216 0.79

la29 20 × 10 1152 1163 0.955 25.80 1164.3 32.50

la30 20 × 10 1355 1355 0.000 0.38 1355 0.40

la31 30 × 10 1784 1784 0.000 0.68 1784 0.70

la32 30 × 10 1850 1850 0.000 0.02 1850 0.04

la33 30 × 10 1719 1719 0.000 0.23 1719 0.70

la34 30 × 10 1721 1721 0.000 0.66 1721 0.67

la35 30 × 10 1888 1888 0.000 0.74 1888 0.77

la36 15 × 15 1268 1268 0.000 5.28 1268.4 16.01

la37 15 × 15 1397 1397 0.000 1.12 1397 3.89

la38 15 × 15 1196 1196 0.000 1.75 1199.2 14.18

la39 15 × 15 1233 1233 0.000 6.54 1235.4 21.19

la40 15 × 15 1222 1225 0.245 25.12 1227.1 17.95
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different elements taken from the elite heap, this figure
has presented the trend in which the corresponding elem-
ent has been improved in the search. The 90 different
peaks in the figure correspond to the 90 solutions taken
out from the heap and each shows the makespan of the
corresponding element. Associated with each peak is a dip
which shows the makespan of the best solution obtained.
As is seen in Figure 9, each of the elements taken from

the heap has led to a different solution, and sometimes
high quality elements taken from the heap have produced
solutions which cannot compete with solutions produced
by low quality elements. The trend, however, is towards
the improvement of the final solution. Figure 10 shows
such a trend by depicting the changes in the global best so-
lution per the removal of each element from the elite heap.
Now we present the results of applying the procedure to

the entire benchmark instances selected. To remove the
effect of the random seed, in line with other procedures,
for each instance, the SLENP has been run for 10 times
each with a different random seed. The time allowed for
each run is n(9n-60)/m seconds for instances with n ≥ 10
(jobs) and 1 second for the instances with n < 10. More-
over, since in the case of availability of the optimal make-
span it is given to the procedure as an input, the
procedure can stop as soon as a solution with such quality
is achieved.
With respect to performance, Table 2 compares the pro-

cedure with one of the fastest available procedures for the
JSP, namely TSSA (Tabu Search Simulating Annealing)
(Zhang et al. 2008a). In this table, %DEVbest represents the
deviation percentage of the obtained solution from the
best available solution in the literature, BKS, and has been
obtained based on the formula of (s-BKS)/BKS, with s be-
ing defined as the best solution returned by procedure.
The running times of the TSSA have been reported on a
Pentium IV 3.0 Ghz CPU.
Table 2 shows that, in 25 out of 43 cases, the SLENP

has been able to find the best known solution for the
corresponding benchmark instance. As is seen in Table 2,
for four of the benchmark instances, the TSSA has no
corresponding output. Removing these four rows out of
consideration, the following conclusions can be drawn.
In 53.8%, 21/39, of cases, the SLENP has generated solu-
tions with the same quality as those generated by the
TSSA and in general the solutions generated by the
TSSA are on average around 1.05% better than those
generated by the SLENP. However, the solutions pro-
duced by the SLENP have been obtained on average
112.85% faster than those generated by the TSSA. Since
both procedures have used only a single processor, tak-
ing the difference between the clocks pulses on which
these two procedures have been run, 2.2 versus 3.0 Ghz,
implies the chance that this speed percentage may be
larger than the value presented.
Also since in (Chassaing et al. 2014), a comparison has
been made among several procedures based on their
performance on solving la01 to la40 instances, we have
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tested our procedure on these instances as well. It is
worth noting that despite the fact some of these
instances were included in our first experiments, we
have solved them again, with new initial random solu-
tions. The results have been shown in Table 3. As is
seen, except for three instances, the SLENP has been
able to find the optimal solutions of all instances. One of
these instances belongs to what those authors have clas-
sified as strongly large instances, and the other two in-
stances belong to what they have classified as large
instances.

Concluding remarks
Towards generating both fast and high-quality solutions
to the JSP, the SLENP has synergistically combined a
construction method, a local search, and a large-neigh
borhood technique as a post-optimization component.
Its construction technique constructs feasible schedules
iteratively, one element at a time. The innovative feature
of this component is the use of a forward-backward
mechanism in scheduling activities.
The second component has been a local search, which

starts with the initial schedules generated by the construc-
tion method. Consistent with all current effective neigh-
borhood structures for the JSP, the employed local search
has been founded on the concept of the critical block,
which guides the construction neighbors. The innovative
feature of this component is the use of two different
neighborhoods that a parameter decides which to work in
each round.
The third major component of the SLENP is the post-

optimization method whose development has been in-
spired by the combination of the forward-backward shift-
ing bottleneck procedure and the biased randomizing
search. The reason for selecting this procedure as the post-
optimization component for the SLENP has been twofold.
First, the shifting bottleneck heuristic is one of the most

effective heuristics for the JSP which by sequencing the
bottleneck machine successively, can provide high quality
solutions for the JSP. Second, equipping this mechanism
with a forward-backward process can further improve the
accuracy of this highly effective mechanism.
By using these components, the SLENP can find solu-

tions with high quality in a matter of seconds. This indi-
cates that the components of the procedure act
synergistically. Towards its enhancement, three major
directions can be envisaged for sketching the procedure.
First, since a large portion of execution time is spent on

calculating the values of the makespan, a faster evaluation
technique, which without explicit calculation can estimate
the makespan, can lead to producing solutions with higher
quality through increasing search efficiency.
Second, in a parallel environment, various local searches

can simultaneously operate to cooperatively locally optimize
various parts of the same encoding. In this parallel environ-
ment, the local searches can communicate with one another
so that each local search can ignore those parts of the en-
coding fixed by other local searches and concentrate only
on manipulating its own part.
Third, since in the employed tabu search, the manage-

ment of tabu list, which, as a short term memory, keeps
the forbidden moves, has played a critical role in the qual-
ity of the overall result, other possible mechanisms in
managing the tabu list can be tested. One promising
mechanism is an adaptive tabu list, which based on a feed-
back received from the corresponding fitness landscape,
can alternate between a fixed list and a random-sized list.
Such a flexible tabu list, whose size is determined adap-
tively, can properly adjust the short term memory of the
search and can possibly lead to higher quality solutions.
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