
Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11
http://www.hcis-journal.com/content/2/1/11

RESEARCH Open Access

Quorums-based Replication of Multimedia
Objects in Distributed Systems
Tadateru Ohkawara1*, Ailixier Aikebaier3, Tomoya Enokido2 and Makoto Takizawa1

*Correspondence:
tadateru.ohkawara@gmail.com
1 Department of Computer and
Information Science, Seikei
University, 3-3-1 Kichijoji-kitamachi,
Musashino-shi, Tokyo 180-8633,
Japan
Full list of author information is
available at the end of the article

Abstract

Background: Multimedia objects like music and movies are distributed to peers
through downloading and caching in peer-to-peer (P2P) overlay networks. In this
paper, we consider multimedia objects which are characterized in terms of not only
data structure but also quality of service (QoS) like frame rate and number of colours.
For example, there are a pair of replicas oi and oj of a fully coloured movie object o.
Here, a content of a replica oi is changed by adding a subobject but another replica oj
is not changed. On the other hand, the colour of the replica oj is changed with
monochromatic one but not in the replica oi . This means, the replica oi is newer than
the replica oj with respect to the content but is older than oj with respect to QoS. Thus,
replicas of a multimedia object are partially ordered in terms of newness of not only
content but also QoS parameters.

Methods: In traditional quorum-based (QB) protocols, replicas are totally ordered just
in terms of newness of content. We discuss a multimedia quorum-based (MQB)
protocol to synchronize multiple replicas to make consistent on the basis of the
newness-precedent relation of replicas. Here, the replicas are ordered in vectors of
version counters of content and QoS parameters. Every replica in a quorum is not
updated for QoS operations to reduce the communication overhead. We evaluate the
MQB protocol in terms of communication overhead and show the communication
overhead can be reduced in the MQB protocol compared with the traditional QB
protocol.

Conclusions: We discussed the multimedia quorum-based (MQB) protocol to keep
replicas of a multimedia object mutually consistent. We evaluated the MQB protocol in
terms of the total volume of data transmitted among the replicas. Then, we showed
the total amount of data transmitted can be reduced in the MQB protocol compared
with the traditional quorum-based (QB) protocol.

Background
In scalable distributed systems like cloud computing systems [1] and peer-to-peer (P2P)
overlay networks [2] systems, resource objects like databases and files are replicated and
distributed to multiple server computers in order to increase the performance, relia-
bility, and availability. In P2P overlay networks, objects, especially multimedia objects
like movies are in nature autonomously distributed through peer-to-peer communi-
cation. There are many discussions on how to maintain the mutual consistency of
multiple replicas like the two-phase locking (2PL) [3], read-one-write-all (ROWA) [4],

© 2012 Ohkawara et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 2 of 16
http://www.hcis-journal.com/content/2/1/11

and quorum-based (QB) [5] protocols. In the 2PL protocol, all the replicas are first locked
before they are read and write. On the other hand, only one replica is locked for read while
every replica is locked for write in the ROWA protocol. In the QB protocol, subsets of the
replicas for read and write operations are referred to as read quorum Qr and write quo-
rum Qw, respectively. Every pair of read and write quorums include at least one common
replica. Only if every replica in a quorum could be locked, a transaction can manipulate
the replicas in the quorum. In Cassandra [6], the synchronization scheme based on the
quorum concept [4] is adopted.
Various types of objects including multimedia objects are distributed in P2P overlay

networks. Multimedia objects are characterized in terms of quality of service (QoS) like
frame rate and number of colours in addition to the contents. Thus, not only the content
but also QoS parameters of an object are manipulated. For example, suppose there are
three replicas o1, o2, and o3 of a fully-coloured movie object o in a quorum Q. A scene
subobject is added to the replica o2. On the other hand, the colour of another replica o3
is changed with monochromatic one. The replica o2 is newer than the replica o3 in terms
of the content while the replica o3 is newer than the replica o2 in terms of number of
colours. Thus, replicas are partially ordered in terms of newness of not only content but
also QoS parameters in a quorum. The partially ordering newness-precedent relation �
among replicas of a multimedia object is defined in the paper [7]. On the other hand,
replicas of a file object are totally ordered just in terms of newness of content in the tradi-
tional QB protocol. Here, there is no newest replica in the quorumQ. A complete quorum
includes a newest replica. A newest replica should be a monochromatic replica with the
scene subobjects in the quorum Q. The replicas o2 and o3 can be made the newest one by
degrading colours and adding the scene subobjects, respectively. Thus, even if a quorum is
not complete, some replica oi might be made the newest by applying operations with data
held in other replicas oi in the quorum. An incomplete quorum which can be complete
is referred to as completable. The replica Q is completable. We discuss how to obtain the
newest replica in an incomplete but completable quorum. In the traditional QB protocol,
every quorum is complete. However, multimedia quorums can be completable.
We propose a multimedia quorum-based (MQB) protocol in this paper. Here, each

replica of a multimedia object holds the vector of counters, where there is one counter
for each of the content and QoS parameters. If a transaction issues a read operation op,
the transaction selects the newest replica oi in a quorum Qop. If not found, one replica oi
is selected and is made newest by obtaining operations and data which are not performed
on the replica oi through communicating with other replicas. Then, the transaction reads
the replica oi in the quorum Qop. The content and QoS parameters of every replica are
updated to be the newest. Here, computation and communication resources are con-
sumed to update every replica in the quorum Qop. In order to reduce the computation
and communication overheads, every quorum is tried to be completable, that is, only the
counter vector of every replica is updated in the quorum Qop but all the replicas them-
selves are not updated. We evaluate the MQB protocol compared with the QB protocol
and show the communication overhead in the MQB protocol can be reduced with the
QB protocol.
In section “Method”, we discuss the newness-precedent relations on replicas of multi-

media objects. In section “Evaluation”, we discuss the multimedia quorum-based (MQB)
protocol to maintain the mutually consistency of replicas. In section “Conclusions”,

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 3 of 16
http://www.hcis-journal.com/content/2/1/11

we evaluate the MQB protocol compared with the QB protocol in terms of communica-
tion overheads.

Method
Partially Ordering Relations of Multimedia Replicas

Multimedia objects

Amultimedia object o is characterized in terms of not only content parameter o.c but also
quality of service (QoS) parameters o.Q. A content o.c shows data structure, i.e. the part _
of structure of subobjects. QoS o.Q is specified in a tuple of QoS parameters 〈q1, ..., ql〉
(l ≥ 0). Frame rate and resolution are examples of QoS parameters. Thus, each replica
oi of an object o is specified in a pair of the content oi.c and QoS parameters oi.Q. It is
noted a traditional replica oi like a text object is just specified in terms of a content oi.c.
The content oi.c in a replica oi is manipulated in a content operation like delete-subobject
while QoS parameters. oi.Q is manipulated in a QoS operation like change-colour.
In a QoS parameter frame rate (fr), 40[fps] is richer than 20[fps]. Thus, for a pair of

values x and y of a QoS parameter qk , y is richer than x (x → y) (y is poorer than x) iff
y includes more volume of data than x. For example, 20 → 40[fps]. Let c1 and c2 be a
pair of contents of an object o. A content parameter c2 is richer than a content c1 (c1 is
poorer than c2) (c1 → c2) if c1 is a component of c2. A value x can be obtained by just
removing some data from a value y if x → y. However, if y → x, the value x cannot
be obtained without adding any data to the value y. For example, a fully coloured movie
object can be degraded to a monochromatic one by just removing the colour data. How-
ever, we have to add colour data to a monochromatic object in order to change with a
coloured one.
A scheme of an object o is written in a tuple 〈p0, p1, ..., pl〉 where the first parameter

p0 stands for a content parameter o.c and the kth parameter pk indicates a QoS parameter
o.qk (k = 1, ..., l). o.pi shows a parameter pi of an object o (i = 0, 1, ..., l).

Newness-precedent relation

LetO be a set {o1, ..., on} of replicas of an object o (n ≥ 1) in the system. Here, the content
parameter oj.c of a replica oj is newer than the content oi.c of another replica oi (oi.c ≺ oj.c)
iff (if and only if) the content parameter oj.c is updated, e.g. some subobject is deleted
but oi.c is not updated. A content oi.c precedes a content oj.c (oi.c � oj.c) iff oi.c ≺ oj.c
or oi.c = oj.c. A QoS parameter oj.qk of a replica oj is newer than oi.qk (oi.qk ≺ oj.qk) iff
the parameter qk is changed in the replica oi but is not in the replica oj. For example, a
monochromatic replica oj is obtained by changing the QoS parameter cl (colour) of a fully
coloured replica oi. Here, the QoS parameter oj.cl is newer than oi.cl (oi.cl ≺ oj.cl). A QoS
parameter oi.qk precedes oj.qk with respect to newness (oi.qk � oj.qk) iff oi.qk ≺ oj.qk or
oi.qk = oj.qk .
Replicas in the replica set O are partially ordered in the newness-precedent relation �

(⊆ O2). A replica oi precedes a replica oj with respect to newness (oi � oj) iff oi.c � oj.c
and oi.qk � oj.qk for every QoS parameter qk (k =0, 1, ..., l). A replica oi is equivalent
with a replica oj (oi ≡ oj) iff oi.c = oj.c and oi.qk = oj.qk for every QoS parameter
qk . A replica oi is newer than another replica oj (oi ≺ oj) iff oi � oj but oi
≡ oj. A
replica oi is uncomparable with a replica oj (oi | oj) iff neither oi � oj nor oj � oi. In the
traditional quorum-based (QB) protocols [8] [3], replicas in the replica set O are totally

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 4 of 16
http://www.hcis-journal.com/content/2/1/11

ordered, i.e. for every pair of replicas oi and oj in the replica set O, either oi ≡ oj or
oj ≺ oi, that is, oi � oj. On the other hand, replicas of a multimedia object o are partially
ordered in the newness-precedent relation �. For example, the content parameter oj.c of
a replica oj is newer than the content oi.c (oi.c ≺ oj.c) while some QoS parameter oi.qk
is newer than oj.qk (oj.qk ≺ oi.qk). Here, a pair of replicas oi and oj are uncomparable
(oi | oj).

Newest replica in a quorum

In terms of the newness precedent relation �, we define the least upper bound (lub)
and greatest lower bound (glb) of replicas. oi ∪ oj shows a least upper bound (lub)
of a pair of replicas oi and oj, which is a replica ok such that oi � ok and oj � ok
and there is no replica oh such that oi � oh � ok and oj � oh � ok . oi ∩ oj indi-
cates a greatest lower bound (glb) of replicas oi and oj, which is a replica ok such
that ok � oj and ok � oj and there is no replica oh such that ok � oh � oi
and ok � oh � oj. Let Q be a quorum of replicas o1, ..., on. ∪Q indicates the lub
o1 ∪ ... ∪ on of every replica in the set Q, i.e. top replica of the set Q, which shows
the newest replica in the quorum Q. A replica oi is maximal iff there is no replica oj
in the quorum Q such that oi � oj. MaxQ shows a subset of maximal replicas in the
quorum Q. A quorum Q is referred to as complete iff the lub ∪Q exists in the quo-
rum Q. Here, a quorum Q is referred to as complete iff there is a top replica ∪Q in the
quorum Q.
Figure 1 shows a quorum Q of five replicas o1, o2, o3, o4, and o5 of a multimedia object

o, Q = {o1, o2, o3, o4, o5}. Each replica oi has a content parameter (c) and QoS parameter
colour (cl), i.e. oi = 〈c, cl〉. Here, a directed edge oi → oj shows the newness-precedent
relation oi � oj. A replica o1 is composed of three fully coloured subobjects, blueberry
b, orange r, and strawberry s. The content parameter c is 〈b, r, s〉, o1 = 〈〈b, r, s〉, fully −
colour (fc)〉. Suppose initially o1 ≡ o2 ≡ o3 ≡ o4 ≡ o5.

Figure 1 Replicas of a multimedia object.

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 5 of 16
http://www.hcis-journal.com/content/2/1/11

1 In a content operation delete, a subobject r is removed in the replicas o2 and o5.
Here, o2 ≡ o5 = 〈〈b, s〉, fc〉. For a pair of the replicas o2 and o5, the content
parameters o2.c and o5.c are newer than o1.c (o1.c � o2.c) and o1.c � o5.c while the
QoS parameters o2.cl are o5.cl are the same as o1.cl, o1.cl = o2.cl. Hence, the replica
o1 precedes the replica o2 (o1 � o2) and o1 � o5. Similarly, {o3, o4} � o2 and {o3, o4}
� o5. {o1, o3, o4} � o5.

2 Next, a pair of the replicas o3 and o4 are changed by degrading with monochromatic
(mc) ones by a down-colour (dc) operation; o3 ≡ o4 = 〈〈b, r, s〉, mc〉. Here, the QoS
parameters cl of the replicas o1 and o2 are newer than o1.cl (o1.cl � o3.cl) and
o1.cl � o4.cl while o3.c = o4.c = o1.c = 〈b, r, s〉. The replica o1 precedes the replica
o3 (o1 � o3) and o1 � o3. Similarly, o1 � o4. Here, a pair of the replicas o2 and o3 are
uncomparable (o2 | o3). Similarly, o5 | o3, o2 | o4, and o5 | o4.

3 Then, the subobject orange r is deleted in the replica o4; o4 = 〈〈b, s〉, mc〉. Here,
o2 ∪ o3 = o4.

4 A lemon subobject l is added to the replica o5. Here, o5 = 〈〈b, l, s〉, fc〉. Here, there is
no lub o4 ∪ o5 in the quorum Q. A pair of the replicas o4 and o5 are maximal and the
replica o1 is a bottom of the quorum Q, i.e. o1 = o2 ∩ o3 as shown in Figure 2. There
is no top replica ∪Q in the quorum Q. The lub o4 ∪ o5 shows the newest replica for
the replicas in the quorum Q. By changing the colour cl of the replica o5 into mc or
deleting the orange r from the replica o4, a top replica 〈〈b, s〉, mc〉 (= o4 ∪ o5) can
be obtained.

In Figure 2, the vertical axis shows the newness of the content parameter c. The content
c = 〈b, r, s〉 is changed with the content 〈b, s〉, i.e. 〈b, r, s〉 � 〈b, s〉. Hence, o1.c (= 〈b, r, s〉)
includes a larger volume of data than o2.c (= 〈b, s〉), i.e. o1.c ⊇ o2.c. The horizontal axis
indicates the newness of the QoS parameter cl. The QoS parameter cl is changed from
fc to mc, i.e. fc � mc. The QoS parameter o1.cl(= fc) includes more volume of data than
o2.cl (= mc). Thus, 〈b, s〉 → 〈b, r, s〉 and mc → fc. A replica oj is richer than a replica
oi (oi → oj) iff oi.c → oj.c and oi.qk → oj.qk for every QoS parameter qk . This means,
the replica oi can be obtained by deleting data and degrading the richer replica oj to a less
QoS one.

Figure 2 Newness precedence of content and QoS.

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 6 of 16
http://www.hcis-journal.com/content/2/1/11

In the QB protocol [9], there is at least one newest replica oi in a read quorum Qr .A
transaction reads the newest replica oi in the quorum Qr .A transaction writes every
replica in a write quorum Qw. Then, every replica in the quorum Qw gets the newest.
In the QB protocol, each replica has the version counter. The version counter of every
replica in a write quorum Qw is incremented so that the version counter of each replica
in the quorum Qw shows the maximum value in the replica set O. Hence, the write quo-
rum Qw includes at least one newest replica whose version counter is the maximum. A
replica whose version counter is the maximum is the newest. Every replica is required to
be complete in the QB protocol.
For a pair of values x and y,max(x, y) is defined to be the value x if y � x. Here,max(x, y)

=max(y, x).max(x, y) =⊥ if x | y. The upgrade operation oi + oj on a pair of replicas oi and
oj a replica oh such that oh.c = max(oi.c, oj.c) and oh.qk = max(oi.qk , oj.qk) for every QoS
parameter qk . +Q shows o1 + ... + on for a quorum Q (= {o1, ..., on}). +Q shows a replica
o which may not be in a quorum Q but which can be the top replica ∪Q. Here, let mc be
max {oi.c | oi ∈ Q} and mqk be max {oi.qk | oi ∈ Q} in a quorum Q. A replica oi can be
upgraded to an lub of a quorum Q if the content parameter oi.c and every QoS parameter
oi.qk could be changed to mc and mqk , respectively. In order to reduce the overhead to
upgrade a replica, one of the maximal replicas is taken. For example, a maximal replica
oi with the smallest number of parameters to be changed is taken. Then, the maximal
replica oi is upgraded. A quorum Q is referred to as completable iff +Q is ∪Q. That is,
some replica oi can be upgraded to the top replica∪Q. The quorumQ shown in Figure 1 is
incomplete but completable since one of the maximal replicas o5 and o6 can be upgraded.

Types of operations

Let op be an operation supported by an object o, i.e. read or write operation.LetQop (⊆ O)
be a quorum for an operation op. Here, there might not be the newest, i.e. top replica in
the quorum Qop. That is, the lub ∪Qop is not in the quorum Qop. Even if there is no top
replica in the quorum Qop, there is some maximal replica oi in the quorum Qop.
There are two types of write operations by which replicas are changed:

1 Enriching (E) type.
2 Impoverishing (I) type.

Suppose a value x is changed with another value y of a content or QoS parameter in an
operation op. Here, the value x precedes the value y, i.e. y is newer than x (x � y). If op
is an enriching type of operation, y is richer than x (x → y). Otherwise, y → x. A richer
replica oi can be easily changed into a poorer replica because data in the replica is just
removed without using additional data not in the replica oi. On the other hand, we need
additional data which is not in a replica oi to change a poorer replica oi in order to a richer
one. Thus, in an enriching operation, some volume of data is added to a replica oi, i.e.
the replica oi is enriched. For example, an orange subobject r is added to the replica o4 by
a content operation insert as shown in Figure 2. The number of colours (cl) is increased
in a QoS operation up-colour (uc), i.e. changed with the fully coloured one as shown in
Figure 3 (a). This is an enriching operation. On the other hand, some data is removed
from a replica in an impoverishing operation, i.e. the replica is made poorer. For example,
some subobject, say an orange r is deleted from a replica o by a content operation delete
as shown in Figure 3 (b). On the other hand, further data which is not in the replica is

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 7 of 16
http://www.hcis-journal.com/content/2/1/11

Figure 3 Enriching and impoverishing operations.

required to increase the frame rate. Thus, it is easier to perform the impoverishing type
of write operation than the enriching type on a replica.
Suppose there are a pair of monochromatic replicas oi and oj of a multimedia object o,

which are composed of a blueberry b, orange r, and strawberry s subobjects. A pair of the
replicas oi and oj are equivalent, oi ≡ oj where oi.c = oj.c = 〈b, r, s〉 and oi.cl = oj.cl =
mc. Then, a transaction T1 deletes an orange subobject r in the replica oi. The top, i.e.
newest replica is the replica oi while oj is obsolete. Since delete is an impoverishing write
operation, the replica oj can be made a newest one by just deleting the subobject r. On the
other hand, suppose a transaction T2 changes the colour (cl) parameter of the replica oi
to be fully coloured in an up-colour (uc) operation. The uc operation is an enriching one.
In order to change the replica oj, data to make the replica oj fully coloured has to be sent
to the replica oj since the replica oj does not have the data while oi has the data. Even if
the operation uc which is applied to the replica oi is obtained to the replica oj, the replica
oj cannot be changed without obtaining the colour data from the newest replica oi.
In the QB protocol,Qopi ∩ Qopj
= φ for every pair of quorumsQopi andQopj of conflict-

ing operations opi and opj. The quorum-based protocol for abstract types of operations
on objects is discussed in the paper [5].

Multimedia Quorum-Based (MQB) Protocol

Counter vectors

Let Q be a quorum of replicas o1, ..., on (n ≥ 1) of a multimedia object o. Each replica
oi is characterized in terms of the content oi.c and QoS parameters oi.q1, ..., oi.ql (i =
1, ..., n). Here, a tuple of parameters 〈p0, p1, ..., pl〉 is a scheme of a replica oi. Here,
the object oi is written as a tuple 〈v0, v1, ..., vl〉 (l ≥ 1) of values, where v0 shows the
content c and vk stands for a value of a QoS parameter qk for k = 1, ..., l. A vector oi.V
= 〈vco, vc1, ..., vcl〉 of version counters is assigned to a replica oi = 〈oi.v0, oi.v1, ..., oi.vl〉.

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 8 of 16
http://www.hcis-journal.com/content/2/1/11

Initially, oi.V = 〈0, 0, ..., 0〉. Each time an element oi.qk is changed (k = 0, 1, ..., l), the
counter oi.vck is incremented so that the counter oi.vck is the maximum in the quorumQ.
Suppose a counter vck is incremented since a parameter oi.pk is changed in a replica oi

by performing an operation op on the replica oi (k ∈ {0, 1, ..., l}). First, the maximum
counter value v is taken in a set {oi.vck | oi ∈ Qop} of the counter values of the quorumQop.
In the quorum Qop, the maximum value v of the counter vck is incremented by one, v = v
+ 1. Then, oi.vck = v on every replica oi in the quorumQop. The value of the kth parameter
oi.qk of a replica oi is the newest if the counter vck is maximum in the quorum Qop.
Let us consider a quorum Q of five replicas o1, o2, o3, o4 and o5 shown in Figure 1,

Q = {o1, o2, o3, o4, o5}. Initially, every replica is equivalent in the quorum Q, i.e.
o1 ≡ o2 ≡ o3 ≡ o4 ≡ o5. Each replica oi has one QoS parameter colour (cl) and a vector
oi.V = 〈oi.vc0, oi.vc1〉 (i = 1, ..., 5). In each vector oi.V , oi.vc0 is a counter for the content
parameter oi.c (= oi.v0) and oi.vc1 is a counter for the QoS parameter cl (number of
colours) oi.cl (= oi.v1). In every replica oi, initially oi.V = 〈0, 0〉 where oi is composed of
three fully coloured subobjects s, g, and a, i.e. oi = 〈〈s, g, a〉, fl〉.
1 First, the fully coloured replicas o2 and o5 are updated by changing the colour parame-

ter cl with the monochromatic one, o2 = o5 = 〈〈s, g, a〉, mc〉. The counter vc1 is incre-
mented by one. Here, o2.V = o5.V = 〈0, 1〉 since the second parameter cl is changed.

2 Next, a pair of replicas o3 and o4 are obtained by deleting an orange subobject r, i.e.
o3.V = o4.V = 〈1, 0〉 where o3 = o4 = 〈〈s, g〉, fc〉 since the first content v0 is changed.

3 Then, the orange subobject r is deleted in the replica o4, o4 = 〈〈s, g〉, mc〉.
Here, o4.V = 〈1, 1〉. Here, o1 � o2 � o4 where o1.V ≤ o2.V and o2.V ≤ o4.V .

4 Then, the fully coloured lemon subobject l is added
to the replica o5, o5 = 〈〈b, l, s〉, fc〉. The counter vector o5.V is changed with 〈2, 0〉.

Here, a pair of the replicas o2 and o3 are uncomparable (o2 | o3) where a pair
of the vectors o2.V = 〈1, 0〉 and o3.V = 〈0, 1〉 are not comparable. o1 � o3 since
o1.V < o3.V . o3 � o4 and o3 � o5 where o3.V ≤ o4.V and o3.V ≤ o5.V , o4 | o5
since o4.V = 〈1, 1〉 and o5.V = 〈2, 0〉. Figure 4 shows the vector oi.V of each replica

Figure 4 Counter vectors of replicas.

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 9 of 16
http://www.hcis-journal.com/content/2/1/11

oi (i = 1, ..., 5). Here, a directed edge oi → oj shows the newness-precedent relation
oi � oj. Here, there is no top replica in the quorum Q. Here, max(o4.vc0, o5.vc0) = 2 and
max(o4.vc1, o5.vc1) = 1. Hence, if the colour parameter o5.cl of the replica o5 is changed
with monochromatic one mc, the replica o5 gets the top replica 〈〈b, l, s〉,mc〉. Here,
the counter o5.vc0 is incremented by one, o5.V = 〈2, 1〉. In another way, the replica o4
can be the newest replica 〈〈b, l, s〉, mc〉 by adding a monochromatic lemon l to the
replica o4.

Write operations

Suppose a transaction T issues a write operation op to change the kth parameter pk of
a replica oi (0 ≤ k ≤ l). A transaction T first locks a replica oi in the op mode before
performing an operation op on the replica oi. Here, a lock mode op1 is referred to as
conflict with a lock mode op2 if an operation op1 conflicts with an operation op2. If the
replica oi is already locked in a mode conflicting with the operation op, the transaction T
has to wait.

[Write procedure]
1 First, the transaction T locks every replica oi with an op mode in the quorum Qop. If

every replica oi could not be locked, the transaction T waits.
2 If successfully locked, the transaction T writes the kth element oi.vk of every replica

oi and collects the vector oi.V from every replica oi in the quorum Qop.
3 vc = max (o1.vck , ..., on.vck) and the transaction T changes oi.vck with vc + 1 in

every replica oi of the quorum Qop.

The version counter vck of every replica in the quorum Qop is changed with the max-
imum value vc. In order to reduce the computation and communication overheads, the
parameter oi.pk of every replica oi is not always changed while the counter is updated:

1 If the operation op is an enriching type, the parameter oi.qk of every replica oi is
updated in the quorum Qop.

2 If op is an impoverishing type, the parameter oi.qk of only the top replica oi is updated.

We consider the replicas of the object o shown in Figure 5. Suppose a transaction T1
adds a lemon subobject l to the replicas. The operation add is an enriching type of write
operation. Suppose Qadd is a quorum {o1, o2, o3} of the replicas for the add operation.
Here, o1 = 〈〈b, r, s〉, fc〉, o2 = 〈〈b, s〉, fc〉, and o3 = 〈〈b, r, s〉, mc〉. A pair of the replicas
o2 and o3 are maximal, MaxQadd = {o2, o3} ⊆ Qadd. Here, max(o1.c, o2.c, o3.c) = 〈b, s〉

Figure 5 Upgrade of a replica.

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 10 of 16
http://www.hcis-journal.com/content/2/1/11

(= o2.c = o3.c) and max(o1.cl, o2.cl, o3.cl) =mc. Here, the replica o2 can be the top replica
〈〈b, s〉, mc〉〉 by upgrading the replica o2, o2 = + Qadd. Then, the lemon subobject l is
added to the replica o2. Here, o2 = 〈〈b, l, s〉, mc〉. A pair of the other replicas o1 and o3 are
changed so that o1 ≡ o2 and o3 ≡ o2. That is, the colour parameter cl of the replica o1 is
changed with monochromatic onemc, the orange subobject r is deleted, and the lemon l
is added to the replica o1. The orange r is deleted and the lemon l is added to the replica
o3. Then, a pair of the replicas o2 and o3 get equivalent with the replica o1 (o2 ≡ o3 ≡ o1 =
〈〈b, s〉, mc〉).
Next, suppose a transaction T2 deletes a subobject b. Here, suppose there are three

replicas o1, o2, and o3 shown in Figure 2. One maximal replica o2 is taken and upgraded
to 〈〈b, s〉, mc〉. Then, b is removed. Here, o2 = 〈〈s〉, mc〉. Since the delete operation is an
impoverishing one, the other replicas o1 and o2 are not updated and the delete operation
is logged in o1 and o2.

Read operations

Next, suppose a transaction T issues a operation op to replicas of an object o to read
the parameter pk (k = 0, 1, ..., l). The transaction T has to read the kth parameter
oi.pk of the newest replicas oi in the quorum Qop. In order to read the newest replica
oi, the transaction T has to read the version counter oj.vck from every replica oi in the
quorum Qop:

[Read procedure]
1 First, the transaction T locks every replica with an op mode in the quorum Qop. If

every replica could not be locked, the transaction T waits.
2 If every replica could be successfully locked, the transaction T collects the vector

oi.V from every replica oi in the quorum Qop.
3 If there is a replica oi such that oj.V ≤ oi.V for every replica oj in the quorum Qop,

the replica oi is the top of the replicas in the quorum Qop, i.e. oi = ∪Qop and is the
newest in the quorum Qop. The transaction T reads the replica oi and change the
counter oi.vck in every replica in the quorum Qop.

4 If there is no top replica in the quorum Qop, the transaction T has to upgrade one
maximal replica oi in Qop, i.e. oi = +Qop which is the top ∪Qop of the quorum Qop.
The transaction T reads the kth element oi.vk of the replica oi and changes the
counter oj.vck with oi.vch in every replica in Qop.

Upgrade of amaximal replica

If a top replica is not in the quorum Qop, the transaction T has to obtain a top replica
from the replicas in the quorum Qop in the read procedure. We discuss how to upgrade a
maximal replica oi to the top replica, i.e. oi = +Qop by using the vectors of the replicas. A
replica oi is referred to as satisfy a counter vector V = 〈vc0, vc1, ..., vcl〉 iff oi.vck = vck for
k = 0, 1, ..., l.
First, one maximal replica oi is selected in the quorum Qop as follows:

[Selection of a maximal replica]
1 The transaction T obtains a vector V = 〈vc0, vc1, ..., vcl〉 where vck =

max({oi.vck | oi ∈ Qop}) for k = 0, 1, ..., l from the collection of the vectors collected
in the quorum Qop.

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 11 of 16
http://www.hcis-journal.com/content/2/1/11

2 A replica oi which satisfies the vector V = 〈vc0, vc1, ..., vcl〉, i.e. oi.vck = vck for
every k = 0, 1, ..., l, shows the top replica ∪Qop. If the replica oi is found, the
transaction T reads the replica oi.

3 Otherwise, the transaction T selects a replica oi where | {vck | oi.vck = vck for k =
0, 1, ..., l} | is the maximal in the quorum Qop. That is, a maximal replica oi is
selected so that the overhead to change the replica can be reduced.

The replica oi found at step 3 is not the top in the quorum Qop. Here, a parameter pk
of a replica oi is current if oi.vck is maximum. Otherwise, the parameter pk is obsolete.
Hence, the transaction T updates the parameters of the replica oi as follows:

[Upgrade of a maximal replica]
1 For each obsolete parameter pk , the transaction T finds a replica oj where oj.pk is

current in the quorum Qop which satisfies oi.vck < vck .
2 The transaction T updates each obsolete parameter oi.pk with the current one

oj.pk by using the replica oj.
3 The vector oi.V is updated as oi.V = V.

At step 1, the replica oj found by the transaction T has the newest value of each
obsolete parameter pk of the replica oi. The value of the parameter oi.pk has to be
enriched to the parameter value oj.pk . If the parameter value oi.pk is richer than
oj.pk , i.e. oj.pk → oi.pk , the QoS parameter of the replica oi can be impoverished
just by deleting some data in the replica oi without using additional data. Other-
wise, the parameter pk of the replica oi has to be enriched, i.e. we need further data
which is not in the replica oi to enrich the value of the QoS parameter pk . Hence,
the content oi.v0 of the replica oi is required to be the same as the replica oj, i.e.
oi.v0 = oj.v0.
The elements oi.v0, oi.v1, ..., oi.vl of every replica oi in the quorum Qop (⊆ O) are

changed with the newest ones. In addition, the vector oi.V of every replica oi in the
quorum Qop has to be changed to be larger than every replica in the replica set O. In
every read operation op’, every replica in the quorum Qop′ is changed with a replica
equivalent with the top replica. It is sure at least one top replica of the replica set
O is included in the quorum Qop′ . However, the overhead to change every replica in
the quorum Qop′ is increased. Suppose one top replica is read by the operation op′

and other replicas in the quorum Qop′ are not changed. Hence, the quorum Qop may
not include the top replica. Here, the content and QoS parameters of every replica in
the quorum Qop can be changed since they are just overwritten. However, the max-
imum vector value obtained by all the replicas in the quorum Qop may not be the
maximum in the replica set O. Suppose Qop′ = {o1, o2, o3} and Qop = {o3, o4}. Here,
suppose the replica o1 is the top replica. A transaction T1 reads the top replica o1 in
a read operation op’ but does not change the other replicas o2 and o3. Then, another
transaction T2 writes the replicas o3 and o4 in a write-type operation op. Here, the
vectors of replicas o3 and o4 are not the newest while the vector of the replica o1 is
the newest.
If every replica is updated in a read operation, it implies larger communication and

computation overhead to bring update data to every replica and then update every replica
in the read quorum. In order to reduce the overhead, we take the following approach:

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 12 of 16
http://www.hcis-journal.com/content/2/1/11

[Completable quorum]
• In a read operation op, only the vector oi.V of every replica oi except the top replica

is changed but the content oi.v0 and QoS parameters oi.Q of the replica oi are not
changed.

In a write operation op, the vector V which shows the top replica in the replica set O
can be obtained in the quorum Qop. In the example of the quorums Qop′ and Qop, the
vectors of the replicas o1, o2, and o3 are updated while the content and QoS parameters
of the replicas o2 and o3 are not updated by the transaction T1. Then, the transaction T2
overwrites every replica in the quorum Qop. Here, the vector o3.V of the replica o3 is the
newest since o3.V is updated by the transaction T1. Hence, the vector of the replica o3 is
incremented and then the vector o4.V of the replica o4 is changed with o3.V .

Evaluation
Wewould like to evaluate the multimedia quorum-based (MQB) protocol compared with
the traditional quorum-based (QB) protocol in terms of communication overhead. In the
MQB protocol, if a transaction issues a read operation, every replica in a read quorum
Qr is not updated while the vector of every replica is updated. We show how much the
communication overhead to update every replica in the quorum Qr can be reduced in
the MQB protocol.
Suppose there are n replicas, o1, ..., on (n ≥ 1) of an object o. Suppose there are two

types of operations, read (r) and write (w). Qr and Qw show a pair of read and write quo-
rums, respectively. nr shows the number |Qr| of replicas in the quorumQr and nw = |Qw|.
Let fr and fw be a pair of probability that a replica is included in the quorums Qr and
Qw, respectively. We assume each quorum is randomly constructed. That is, fr = nr/n
and fw = nw/n. According to the quorum properties, fr + fw > 1 and fw > 0.5. Let f be
fr + fw − 1. Here, f shows probability that a replica is included in both the quorums Qr
and Qw. f > 0.
In the QB protocol, a transaction T first issues a lock request to every replica in a quo-

rum Qop to perform an operation op ∈ {r, w}. If every replica is successfully locked in the
quorum Qop, the transaction T issues an operation op to replicas in Qop. First, suppose
the transaction T issues a write op to every replica in the write quorum Qw and updates
the version counter of every replica. Here, totally 4 · nw (= 4 · n · fr) messages are trans-
mitted. In order to write replicas, data is sent to every replica in the write quorum Qw.
Let d be the size of the update data, e.g. the size of a replica. The expected volume of data
transmitted is n · fw · d.
On the other hand, the transaction T issues a read operation op to one replica and

receives a value of the replica in the read quorum Qr . Then, the transaction T sends the
newest value to every other replica and updates the version vector of every replica in the
QB protocol. The totally 4·nr messages are transmitted between the transactionT and the
replicas. In the QB protocol, the newest value of the replicas in the quorumQr is read into
the transaction T and is transmitted to every other replica which is in the quorum Qr but
not in the quorumQw. Hence, the expected volume of data transmitted is n · fr ·(1− fw) ·d.
In the MQB protocol, the transaction T reads the top replica and updates the ver-

sion counter of every replica in the read quorum Qr . However, the other replicas are not
updated in the quorum Qr . The number 4 · nr (= 4 · n · fw) and 4 · nw (= 4 · n · fr) of

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 13 of 16
http://www.hcis-journal.com/content/2/1/11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

da
ta

 r
at

io

/(). /().

Figure 6 Transmission data volume (fw = 0.6, f = 0.1).

messages are transmitted for read and write in the MQB protocol, respectively, as well
as the QB protocol. The volume of data transmitted to write the replicas is n · fw · d
in the traditional QB protocol and the MQB protocol. Here, let α be the ratio of the
number of write operations to the total number of operations issued by transactions
(0 ≤ α ≤ 1). “ α = 0” means every request is read and “α = 1” shows every request is
write. In the QB protocol, the expected volume SQ of data transmitted in each transaction
is α · n · fw · d+ (1− α) · n · (1− fw) · fr · d. The expected volume SM of data transmitted in

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

da
ta

 r
at

io

. .

Figure 7 Transmission data volume (fw = 0.8, f = 0.1).

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 14 of 16
http://www.hcis-journal.com/content/2/1/11

Figure 8 Transmission data volume (MQB).

the MQB protocol is α · n · fw · d + (1 − α) · d since no data is transmitted to every other
replica in read than the top replica in the quorum Qr .
Figures 6 and 7 show the ratios SQ/(n · d) and SM/(n · d) for the write ratio α. Here, we

assume there are ten replicas, n = 10. In Figure 6, fw = 0.6, and f = 0.1. In Figure 7, fw =
0.8 and f = 0.1. SQ = SM for α = 1. As shown in Figures 6 and 7, the total amount of
data transmitted can be reduced in theMQB protocol compared with the QB protocol. In
Figure 8, the ratio SM / (d ·n) is shown for the write probability fw. Here, fw should be lager
than 0.5 from the quorum constraint (fw > 0.5). The lager fw and α are, the lager amount
of data is transmitted. In order to reduce the communication overhead, the write quorum

Figure 9 Transmission data volume (MQB) (fw = 0.8, f = 0.1).

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 15 of 16
http://www.hcis-journal.com/content/2/1/11

Figure 10 Transmission data volume (QB) (fw = 0.8, f = 0.1).

should be smallest. In Figure 9, the data ratio SM / (d · n) for the number n of replicas is
shown where fw = 0.8. Figure 10 shows the data ratio SQ / (d · n) for the number n of the
replicas. The communication overhead of the MQB protocol is increased in complexity
O(n) since the ratio to the number n of the replicas is almost O(1).

Conclusions
In this paper, we discussed the multimedia quorum-based (MQB) protocol to keep repli-
cas of a multimedia object mutually consistent.A multimedia object is characterized in
content and QoS parameters. Replicas are partially ordered in the newness-precedent
relation � in terms of not only content parameter but also QoS parameters. If a replica
oi has a larger vector value than another replica oj, the replica i.e. oi.V > oj.V , oi is
newer than oj. A replica oi and the vector oi.V are updated each time the replica oi is
manipulated. In order to increase the performance to read replicas, only the counter vec-
tor of each replica is updated in a quorum while the content and QoS parameters of the
replica are not updated. We evaluated the MQB protocol in terms of the total volume
of data transmitted among the replicas. We showed the total amount of data transmit-
ted can be reduced in the MQB protocol compared with the traditional quorum-based
(QB) protocol.

Competing interests
The authors declare that they have no competing interests.

Author’s contribution
Tadateru Ohkawara carried out the MQB protocol studies, participated in designing, implementing, and evaluating the
MQB protocol and drafted the manuscript. Ailixer Aikebaier and Tomoya Enokido participated in the design of the
algorithm used in the MQB protocol. Makoto Takizawa conceived of the study, and participated in its design and
coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This research is partially supported by the strategy research of Seikei University and MEXT, Grant-in-Aid for Building
Strategy Research Infrastructure.

Ohkawara et al. Human-centric Computing and Information Sciences 2012, 2:11 Page 16 of 16
http://www.hcis-journal.com/content/2/1/11

Author details
1 Department of Computer and Information Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo
180-8633, Japan. 2 Faculty Of Business Administration, Rissho University, 4-2-16 Oosaki, Shinagawa-ku, Tokyo 141-8602,
Japan. 3 New Generation Network Laboratory, NICT, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan.

Received: 17 October 2011 Accepted: 7 March 2012 Published: 10 May 2012

References
1. Hofmann P, Woods D (2010) Cloud Computing: The Limits of Public Clouds for Business Applications. Journal of IEEE

Internet Computing 14: 90–93 ISBN 1089–7801
2. Schollmeier R (2001) A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer Architectures and

Applications. In Proc. of the First International Conference on Peer-to-Peer Computing. Linkoping, Sweden, p 101
3. Gray J (1978) Notes on Database Operating Systems. Lecture Notes in Computer Science, vol 60. Springer Verlag
4. Helal A, Bhargava B (1995) Performance Evaluation of the Quorum Consensus Replication Method. In Proc. of the

Internation Computer Performance and Dependability Symposium (IPDS’95). Erlangen, Germany, pp 165-172
5. Stoica I, Morris R, Karger D, Frans Kaashoek M, Balakrishnan H (2001) Chord: A Scalable Peer-to-peer Lookup Service

for Internet Applications. In Proc. of ACM the 2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM ’01). San Diego, califonia, USA, pp 149–160

6. Lakshman A, Malik P (2010) Cassandra: A Decentralized Structured Storage System. ACM SIGOPS Operating Systems
Review 44(26): 35–40

7. Ohkawara T, Aikebaier A, Enokido T, Takizawa M (2011) Quorums-based Replication of Multimedia Objects in
Distributed Systems. In Proc. of the International Conference on Network-Based Information Systems, NBiS2011,
CD-ROM. Tirana, Albania

8. Enokido T, Higaki H, Takizawa M (1998) Group Protocol for Distributed Replicated Objects. In Proc. of the 27th
International Conference on Parallel Processing (ICPP-98). Minneapolis, Minnesota, USA, pp 570–577

9. Tanaka K, Takizawa M (2001) Quorum-Based Locking Protocol for Replicas in Object-Based Systems. In Proc. of IEEE
the 5th International Symposium or Autonomous Decentralized Systems. Dallas, Texas, USA, pp 196–203

doi:10.1186/2192-1962-2-11
Cite this article as:Ohkawara et al.:Quorums-based Replication ofMultimediaObjects in Distributed Systems. Human-
centric Computing and Information Sciences 2012 2:11.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Background
	Methods
	Conclusions

	Background
	Method
	Partially Ordering Relations of Multimedia Replicas
	Multimedia objects
	Newness-precedent relation
	Newest replica in a quorum
	Types of operations

	Multimedia Quorum-Based (MQB) Protocol
	Counter vectors
	Write operations
	Read operations
	Upgrade of a maximal replica

	Evaluation
	Conclusions
	Competing interests
	Author's contribution
	Acknowledgements
	Author details
	References

