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Background: In the recent study, optimum operational conditions of cathode compartment of microbial fuel cell
were determined by using Response Surface Methodology (RSM) with a central composite design to maximize

Methods: The interactive effects of parameters such as, pH, buffer concentration and ionic strength on power
density and COD removal were evaluated in two-chamber microbial batch-mode fuel cell.

Results: Power density and COD removal for optimal conditions (pH of 6.75, buffer concentration of 0.177 M and
ionic strength of cathode chamber of 4.69 mM) improve by 17 and 5%, respectively, in comparison with normal
conditions (pH of 7, buffer concentration of 0.1 M and ionic strength of 2.5 mM).

Conclusions: In conclusion, results verify that response surface methodology could successfully determine cathode

Keywords: Microbial fuel cell (MFC), Cathode compartment, Optimization of operational parameters, Response

Background
Microbial fuel Cell was introduced as a novel technology
for sustainable electrical energy production from organic
waste water [1,2]. Furthermore, this technology could be
applied as an alternative process for wastewater treat-
ment instead of activated sludge. MFC technology offer
many advantages such as lower sludge production, more
effective organic load removal as well as lower net en-
ergy consumption, in comparison with activated sludge.
In MFCs, microorganisms in anode chamber act similar
to metal catalysts in chemical fuel cells and consume sol-
uble organic components. In the absence of ultimate elec-
tron acceptor, generated electrons could be transferred
directly or by means of nano-wires or mediators from mi-
croorganisms to anode electrode. On the other hand,
hydrogen ions which are generated in microbial metabolic
reaction are transferred to cathode compartment across
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proton exchange membrane such as Nafion 117 Dupont.
Then, electrons, hydrogen ions and oxidant react on the
cathode electrode. Continuous electron transfer from
anode to cathode electrode is necessary for the comple-
tion of the aforementioned reaction in MFCs. When
MECs operate ideally, they can produce electricity as long
as the substrate is supplied. The ideal voltage of the
cell can be thermodynamically predicted by the Nernst
equation (1) [1,3]:

RT

Ethermo = EO_ uE

In(7) (1)

Where E° is the standard cell potential (V), R is the
ideal gas constant (8.314 J/molK), T is the absolute
temperature (K), # is the number of electrons trans-
ferred in the reaction (dimensionless), F is the Faraday’s
constant (96,485C/mol), and IT is the chemical activity
of the products divided by those of the reactants (dimen-
sionless). In fact, the nature of substrate and its concentra-
tion as well as temperature could affect MFC performance.
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In practice, the actual voltage of MFC is lower than
the value thermodynamically predicted, owing to three
distinct factors in anode and cathode compartments.
The factors are activation overpotential, ohmic loss and
concentration overpotential [1,3]. The actual voltage of
MEC could be determined by subtracting all overpoten-
tials from thermodynamically predicted cell voltage as
follows [4]:

v = Ethermo— (Wact + Hotmic T Wconc)cathode (2)

+ (Uact + Hohmic + ”Conc)anode

Where Eppermo is the thermodynamically predicted
voltage, 7, is the activation loss due to reaction kinet-
ics, Wommic is the ohmic loss from ionic and electronic re-
sistances, and 7., is the concentration loss due to mass
transport limitations. The equation (2) implied that
losses in both anode and cathode chambers would lead
to a cell voltage reduction.

As a result, optimization of both anode and cathode
compartments could decrease the overpotentials and
consequently improve cell voltage as well as electrical
power production.

First of all, activation overpotential relates to the rates
of reactions on the anode and cathode electrode. The ac-
tivation energy reduction of anodic or cathodic reactions
by means of catalysts could boost cell output. Pt alloys
were used extensively and showed enhancement in en-
ergy production in MFCs [5]. Due to high cost of Pt,
other metal surfaces such as gold, iridium, iron and rho-
dium were applied in cathode compartment [6]. Among
them, transition metal complexes, particularly those
based on cobalt (Co) and manganese (Mn) showed
promises [7].

Secondly, ohmic overpotentials relate to the resistance
of ions flow across the electrolyte and electrons flow
through the electrodes and connection materials. To re-
duce these losses, three major resistances in the cells
should be considered. The most important one is caused
by ion transfer in the anolyte and catholyte. Mohan et al.
investigated the effect of ionic strength on microbial fuel
cell performance, he determined that there was an
optimum ionic strength that power density reached its
maximum value [8]. Huang et al., found that an increase
in ionic strength could improve power production due
to a decrease in internal resistance [9].

The second ohmic resistance is related to the elec-
trodes as well as connection materials. Application of
electrode materials with good electrical conductivity and
higher surface area such as copper, carbon and platinum
would contribute to lessen the ohmic resistance. Sharma
et al,, used granular carbon active and carbon clothe as
electrode material and found that granular carbon active
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was 19 times better than carbon clothe [10]. The last
ohmic resistance is caused by a membrane which sepa-
rates anode chamber from cathode cell. Pant et al. uti-
lized new membrane Zirfon to replace high cost Nafion
membrane. They also determined Oxygen mass transfer
coefficient of Zirfon was comparable with Nafion [11].
For more support, there is a good review of recent ad-
vances in separator for Microbial fuel cell [12].

Finally, third overpotential is related to mass transfer
resistance in both anode and cathode compartments. To
increase mass transfer coefficient, Scott et al. [13] used
tubular microbial fuel cell. Liang et al. utilized three dif-
ferent configurations to have better idea of internal re-
sistances distribution [14]. Manohar et al. found that a
rise in inlet flow of anode and cathode solution could
decrease mass transfer resistance and improve power
production [15].

Determination of optimal conditions in MFCs requires
extensive exploration of the operating parameters which
affect the power production of MFCs. In this study, the
optimal values of pH, buffer concentration and ionic
strength of cathode electrolyte were determined by Re-
sponse Surface Methodology (RSM). Response Surface
Methodology is a technique to design experiments,
evaluate the effects of operating conditions and achieve
the best conditions for desirable responses with a limited
number of planned experiments [16-19]. To the know-
ledge of the authors, this is the first study deals with
optimization of operational parameters and their interac-
tions in the cathode compartment of microbial fuel cell.

Methods

Microbial fuel cell

A dual-chamber MFC was constructed with following
specifications (Figure 1):

— Anode chamber volume: 90 ml (Totally placed in
cathode chamber)

— Cathode chamber volume: rectangular prism
(dimension = 8 x 6 x 5 cm?, Total volume = 240 ml)

— Anode electrode specification: Graphite brush
(length = 2.5 cm, diameter = 2.5 cm, total surface
area = 0.89 m?) was connected to an external
resistor of 3300 Ohm with copper wire

— Cathode electrode specification: graphite sheet (area
=2 x 3 cm? and thickness = 0.5 ¢cm) was connected
to an external resistor of 3300 Ohm with copper
wire

— Membrane: Nafion_ 117 Dupont (surface area = 4.00 cam?,
thickness = 0.178 mm)

Wastewater
The growth synthetic media (per liter) was prepared for all
experiments consisted of following components: 1000 mg
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Figure 1 Schematic drawing of designed MFC.1-cathode chamber; 2-proton exchange membrane; 3-anode chamber; 4-sampling port.

glucose, 0.114 mg of urea,0.046 mg of K,HPO,, 0.4 mg
of FeCl;, 3 mg of MgSO,, 0.11 mg of CuSO4.5H,0,
0.7 mg of NaCl, 0.015 mg of ZnCl,, 4 mg of Na,S,Os,
0.254 mg of MnSO, and 2.06 mg of FeSO,.7H,0. The
medium was adjusted to pH of 7 and flushed with N,
in order to remove oxygen. In all experiments chemical
oxygen demand of waste water was fixed on 1160 ppm.

MFC operation

Anaerobic sludge was supplied by dairy manufacturer
(Pegah Co. Tehran, Iran). The sludge was filtered with
20 micrometre filter to remove insoluble particles and
then diluted 10 times by the same synthetic medium
used for MFC operation. After dilution, medium was
heated in order to deactivate methanogensys and kept at
35°C incubator for one week. Later, it was subcultured 3
times in the same medium before inuculation. The pre-
pared sludge was used for MFC inoculation. Catholyte
was phosphate buffer which its pH and concentration
were determined based on experimental design. NaCl
was used to change the ionic strength of cathode elec-
trolyte. In the cathode compartments, oxygen was ap-
plied as an oxidant. The total working volume of the
anode and cathode were 80 ml and 100 ml, respectively.

Experimental design
Cathode compartment design is the most important lim-
iting part of power producing MFCs because of poor
kinetics of oxygen reduction reaction due to neutral pH
conditions and high internal resistance due to low ion
concentration in buffer. To overcome these obstacles,
optimization of catholyte pH for higher reaction rate
and buffer concentration and ionic strength for reduc-
tion in internal resistance are the main focus of this
article.

In this study, twenty experiments were designed (= 2" +
2 k +6) respected to three independent variables (k = 3).
Then, eight of the experiments (2°) are factorial design,

six of them (2*3) are axial points (coded + a) and finally
six of experiments are replications of the central values
(zero level) to determine pure errors. The value of «
equals to 1.682 and is calculated by equation (3):

a =2 (3)

Where n is the number of independent variables in
the design.

Table 1 demonstrates the range and level of all the var-
iables. Table 2 shows the experimental design of the in-
dependent variables for cathode optimization.

In recent study, power density (mW/m?) and chemical
oxygen demand (COD) removal (%) were considered as
responses of microbial fuel cell under different condi-
tions. Power density and COD removal were analysed by
the response surface methodology. Finally, the value of
power density in stationary phase of process and final
COD removal of MFC for each of twenty designed ex-
periments are depicted in Figure 2.

Results

Analysis of variance (ANOVA) and model fitting

ANOVA results of the quadratic model for power dens-
ity and COD removal present in Tables 3 and 4, respect-
ively. F-value, probability >F, Lack of Fit, and R* are
parameters that measure how the quadratic model fit
the experimental data. “Adeq Precision” measures the

Table 1 Levels of independent variables used for process
optimization

Symbol Variables Unit Levels
-168 -1 0 1  +1.68
pH of catholyte - 532 6 7 8 8.68
B Buffer concentration M 0065 0.100 0.150 0200 0.234

lonic strength mM 08 25 50 75 9.2
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Table 2 Central-composite experimental design of
independent variables for cathode optimization

Codded factors Responses
A B C A B C R R,
1 Center 0 0 0 7 0150 50 33 934

Run Point type Actual factors

2 Axial 1.7 0 0 868 0150 50 201 771
3 Fact =1 1 -1 6 0200 25 311 872
4 Axial -17 0 0 532 0150 50 251 831
5 Fact 1 -1 -1 8 0100 25 235 839
6 Center 0 -1 0 7 0150 50 287 94

7 Axial 0 0 1.7 7 0150 92 287 887
8 Fact —1 -1 0 6 0100 25 27 86.1
9 Fact 1 1 1 8 0200 75 249 824
10 Center 0 0 0 7 0150 50 322 91

1 Center 0 0 0 7 0150 50 31 937
12 Axial 0 1.7 0 7 0234 50 325 90.1
13 Fact 1 -1 1 8 0100 75 237 815
14 Axial 0 0 =17 7 0150 08 30 914
15 Fact =1 1 1 6 0200 75 317 869
16 Center 0 0 0 7 0150 50 319 934
17 Center 0 0 0 7 0150 50 324 899
18 Fact -1 -1 1 6 0100 75 296 865
19 Fact 1 1 -1 8 0200 25 257 841
20 Axial 0 =17 0 7 0065 50 274 897

(A: pH of catholyte; B: buffer concentration (M); C: ionic strength (mM); Ry:
Power Density (mW/m2); R,: COD Removal (%)).

signal to noise ratio and for achievement of desirable re-
sult this must be greater than four. Hence, in present
quadratic models for power density and COD removal,
the ratios of 13.686 and 15.594 indicated adequate signal
to noise ratio, respectively.

Finally, power density and COD removal were esti-
mated with second-order polynomial equations in terms
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of coded variables and are given in Eq. (4) and Eq. (5),
respectively:

Power Density = 31.53-2.20A +1.33 B+ 0.030 C
-0.35A4 x B-0.47A x C-0.37Bx C
-3.14 A2-0.54 B> + 0.75 C?
R*=0.926,R.; = 0.8612,F = 14.1

(4)
COD Removal = 92.62-1.82 A +0.24 B-0.63 C
-0.05 A x B-0.52 A x C-0.000 B x C
-4.72 A2-1.26 B>-1.21 C?
R* = 0.9463, R.;; = 0.8979, F = 19.57

(5)

The predicted power density versus experimental data
as well as COD removal data are plotted in Figure 3a
and b, respectively. The distribution of the majority of
experimental data points in the vicinity of the bisection
line, indicates the satisfactory correlation between ex-
perimental and predicted values. To check the model ad-
equacy studentized residuals which represented the
differences between the actual response value and the
value that best fitted under the hypothesized model were
calculated. The small residual values for both power
density and COD removal were specified acceptable ac-
curacy of the model prediction. The normal probability
plots of studentized residuals are shown in Figure 3c
and d. From these plots it could be concluded that there
was no abnormality in this study. According to Figure 3e
and f which represent Cook’s distance plots, there was
no point that potentially powerful due to the location in
the factor for both power density and COD removal.

100
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Figure 2 The experimental value of power density (mW/m2) in stationary phase of process and experimental value of COD removal
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Table 3 Analysis of variance for the quadratic model for power density
Source Sum of squares Degree of freedom Mean square F-value P-value
Model 239.07 9 26.56 14.10 0.0001 Significant
A-Initial pH of catholyte 65.94 1 65.94 34.99 0.0001
B-Catholyte concentration 24.19 1 24.19 12.84 0.0050
C-lonic strength 0.013 1 0.013 6.650E-003 0.9366
AB 0.98 1 0.98 0.52 04873
AC 1.80 1 1.80 0.96 0.3508
BC 112 1 112 0.60 04576
AN2 141.72 1 141.72 7521 < 0.0001
BA2 4.16 1 4.16 2.21 0.1682
CA2 8.09 1 8.09 4.29 0.0650
Residual 18.84 10 1.88
Lack of fit 7.05 5 141 0.60 0.7070 Not significant
Pure error 11.79 5 2.36
Total 25792 19
R?=0.9269 Adj R?=0. 8612 Adeq precision = 13686

Interactive effect of the pH, buffer concentration and
ionic strength of cathode compartment on the power
density of microbial fuel cell
The plots of surface response of power density (Figure 4a-c)
were generated while one variable maintained at its zero
level, with varying the others within the experimental range.
Figure 4a presents an elliptic characteristic as a result
of pH and catholyte concentration interaction. This indi-
cated that both pH and catholyte concentration were in-
fluential factors in the design range. As can be seen, the
decrease of the initial pH with simultaneous increase in
catholyte concentration brings about constant increase

of response values to reach the highest level of 33 mW/
m?. The lower the pH, the higher the hydrogen concen-
tration, the higher the rate of the electrochemical reac-
tion occurs in the cathode chamber. In addition, the rise
of buffer concentration share the same effect, contrib-
utes to boosting power density production in microbial
fuel cell.

When the level of pH decreases to lower than 6.5, this
would halt the hydrogen ion transfer from anode chamber
to cathode cell as well as acidification of anode compart-
ment. The event would result in death or inactivation of
microorganisms leading to reduction of power density as

Table 4 Analysis of variance for the quadratic model for COD removal

Source Sum of squares Degree of freedom Mean square F-value P-Value
Model 390.99 9 43.44 19.57 < 0.0001 Significant
A-Initial pH of catholyte 4537 1 4537 2044 0.0011
B-Catholyte concentration 0.78 1 0.78 035 0.5654
C-lonic strength 534 1 5.34 241 0.1519
AB 0.020 1 0.020 9.010E-003 0.9263
AC 2.20 1 2.20 0.99 03424
BC 0.000 1 0.000 0.000 1.0000
AN2 32167 1 32167 144.92 < 0.0001
BA2 2287 1 22.87 10.30 0.0093
CA2 20.98 1 20.98 945 0.0118
Residual 2220 10 222
Lack of fit 7.90 5 1.58 0.55 0.7343 Not significant
Pure error 14.29 5 2.86
Total 413.19 19
R?=0.9463 Adj R>=0.8979 Adeq precision =15.594
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Figure 3 Analysis of variance. Actual versus predicted values of power density (a) and COD removal (b). Normal plot of residual plots of power
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well as COD removal. On the other hand, very high buffer
concentrations also may cause salt precipitation on elec-
trodes or membrane which could have an adverse effect
on electron and ion transfer. From the response surface
plot, the optimal values of pH and catholyte concentration

were 6.5 and 0.22 M, respectively when ionic strength was
at zero level.

The interaction of initial pH and ionic strength of the
cathode solution at zero level of catholyte concentration
are shown in Figure 4b. Based on aforementioned figure,
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there was an elliptic characteristic with the long axis of
the ellipse running along the ionic strength axes. This
indicated that pH was more influential than ionic
strength in the design range. For ionic strengths less
than 5.34 mM, a rise in ionic strength has a positive ef-
fect on power density production due to higher conduct-
ivity. Additional increase of ionic strength, however,
might lead to precipitation of salt on electrode or mem-
brane as well as reduction of hydrogen ion transfer to
cathode electrode and consequently abatement of power
density production in MFC. From Figure 4b, it could be
concluded that at zero level of catholyte concentration,
the optimum value of pH and ionic strength for power
density production were 6.6 and 5.34 mM, respect-
ively. Beyond that point, increasing both pH and Ionic
strength would reversely affect the power density
production.

Figure 4c demonstrates the influence of catholyte con-
centration and ionic strength on the power density pro-
duction. These two factors are in favour of power
density production as a result of an increase in conduct-
ivity. Power density production was increased gradually
when catholyte concentration and ionic strength in-
creased to the level of 0.22 M and 4.20 mM, respectively.
From that point, the higher the cathode electrolyte
concentration and ionic strength, the lower the power
density production would occur as a result of salt pre-
cipitation on electrode and membrane. It should be
mentioned that at low ionic strength and buffer con-
centration, power density dramatically drops as a result
of low conductivity.

The interactive effect of the pH of catholyte, buffer
concentration and ionic strength on COD removal in
microbial fuel cell

Interactive effects of the aforementioned factors on the
COD removal were depicted in Figure 5a. Microorgan-
isms in the anode chamber consume glucose as their
sole carbon and energy sources and this would lead to
generation of electron current and power. Consequently,
to increase the rate of the electrochemical reaction as
well as power density, higher electron production and
substrate consumption are required in anode chamber.
It could be expected that trend of COD removal would
be similar to power production.

On the other hand, oxygen leakage from cathode to
the anode chamber could result in more COD removal
without any significant effect on the power production.
Substrate, moreover, seeps through a membrane from
anode to cathode chamber and water leakage from cath-
ode to anode could affect COD removal in MFC. As a
result, COD removal is not as sensitive as power density
to variable factors and it varies in a limited range of 83
to 94%.
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Figure 5a shows interaction of pH and catholyte con-
centration on COD removal, with maintaining ionic
strength at its zero level of 5 mM. From Figure 5a, it
could be concluded that COD removal would improve
by lowering initial pH and increasing the buffer concen-
tration. As it was mentioned, the trend of response sur-
face is similar to power density. The maximum COD
removal was achieved at the condition with the pH of
6.8 and buffer concentration of about 0.157 M.

Interaction of initial pH and ionic strength while buf-
fer concentration was at its zero level of 0.15 M were
shown in Figure 5b. This caused an elliptic characteristic
with the long axis of the ellipse running along the ionic
strength axes. It could be concluded that the initial pH
had more influence on COD removal than ionic strength.
Similar to power density, ionic strength could elevate
COD removal, yet higher ionic strength (more than
4.51 mM) had adverse effects on COD removal due to salt
precipitation on membrane and cathode electrode. Based
on response surface plot, low pH led to a decrease in
COD removal because of the formation of a hydrogen ion
gradient between anode and cathode chamber which pre-
vented H" transfer from anode to cathode compartment.
Moreover, pH of higher than 6.8 was not desirable owing
to low hydrogen ion concentration in the cathode cell
which could complete electrochemical reaction on the
cathode electrode.

Figure 5c depicts the interaction of cathode buffer
concentration and ionic strength while initial pH was at
its zero level of 7.0. Surface response plot indicated that
COD removal was more sensitive to catholyte concen-
tration than ionic strength. In fact, the influence of cath-
olyte concentration and ionic strength for both COD
removal and power density are the same. Maximum
COD removal could be achieved with buffer concentra-
tion and ionic strength of 0.155 M and 4.34 mM,
respectively.

Optimization and verification

The optimal condition was predicted by “Numerical
Optimization” toolbox of the Design Expert software
version 7.0.0. The following constraints are exerted to
obtain the optimal conditions, pH: 6.7-6.8, catholyte
concentration: 0.17-0.18 M and ionic strength: 4.68-
4.84 mM. The values of predicted optimal power density
and COD removal are 32.5 mW/m? and 92.5%, respect-
ively at the optimal condition.

To confirm the predicted optimum condition and its
output by Design Expert, new experiments with the opti-
mal conditions (test #1) and a control test under the
zero level of independent variables (test #2) were con-
ducted with the same MFC. For optimal conditions, two
similar experiments were used to avoid any errors. The
MECs ran under the optimal condition (pH of 6.75,
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catholyte concentration of 0.17 M and ionic strength of
4.76 mM) and the control test ran under general condi-
tion (pH of 7, buffer concentration of 0.15 M and ionic
strength of 5 mM) in batch mode. MFC’s voltage across
a 3300 Q resistor versus time, polarization and power-
current curve were plotted for optimal and control con-
dition in Figure 6a-c. COD of the anode compartments
were determined from the start up to voltages below
50 mV. Later, average maximum output voltage of 372.5
and 345 mV were obtained in stationary phase of micro-
organism growth for test #1 and #2 respectively.

The power density in stationary phase was calculated
and reached its maximum for the test #1. Average power
density and COD removal were respectively 35 mW/m>
and 93.5% for optimum condition. On the other hand,
power density and COD removal were 30 mW¥/m?” and
89.5% respectively for test #2. Thus, power density and
COD removal were improved 17% and 5% respectively.
Finally, the results verify that the optimum condition
predicted by Design Expert could successfully improve
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MEC output. Moreover, the results confirm that the se-
lected condition ranges are acceptable.

Discussion

In this study effect of cathode operational parameters
such as pH, catholyte concentration and ionic strength
on MFC performance was evaluated and optimal oper-
ational condition was determined by response surface
methodology. pH of cathode compartment selected as
one of the most important factors which affect perform-
ance of microbial fuel cell. There are many researches
that consider pH of anode chamber and its effects on
power density and COD removal in microbial fuel cell
[20,21] while just few study were performed on the impact
of cathode chamber pH on MFC performance. In two
chamber air cathode microbial fuel cell with catholyte pH
equal to 1.0, power density was increased 2.5 fold com-
pared to the same MFC with catholyte pH of 7.5 [22].

In addition, in air cathode MFC lower pH was pre-
ferred [23]. Power density of MFC with cathode com-
partment pH of 2.0 was increased 3.8 times higher than
the power density obtained in the same MFC working at
neutral pH. The better performance of MFC with low-
pH cathode was likely due to that low pH guarantees
high concentration of protons. Therefore, the concentra-
tion loss, as a cause of the cathodic overpotential, can be
largely reduced under low pH condition. As a result of
higher protons concentration in low pH, furthermore,
the requirement of proton transfer through membrane
was decreased and consequently, this would result in a
decrease in ohmic loss.

Consequently, optimized pH of cathode chamber in
present optimization study was equal to 6.75 in which
power density and COD removal reached the maximum
values. It is noteworthy that low pH of cathode chamber
solution leads to reverse proton concentration gradient,
reverse proton transfer, anode chamber acidification and
microorganism death.

The higher concentration of cathode catholyte led to
higher buffer capacity and kept the pH constant in the
cathode compartment. Buffer concentration, moreover,
affects membrane and catholyte resistance. Then, by
using different phosphate buffer concentration (0.01,
0.03, 0.05 mM), membrane resistance were 230, 32.6
and 10.5 Q respectively [24]. Membrane and catholyte
resistance decreased significantly when higher concen-
tration of buffer was used. Similarly, it was found that
concentration of 0.175 M of phosphate buffer was im-
proved MFC performance. Higher buffer concentration,
although, improve power production and COD reduc-
tion in MFC as a result of higher conductivity and con-
stant pH, while very high buffer concentration might
lead to power density reduction because of precipitation
of salt on electrode and membrane.
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Ionic strength similar to buffer concentration has the
same influence on conductivity. Consequently, the higher
the ionic strength, the higher conductivity of catholyte
and thus higher power produced in MFC. As a result,
catholyte with 4.76 mM NaCl was determined that has
the best effect on MFC performance. Moreover, effect of
ionic strength on anode chamber has similar manner [8].
On the other hand, addition of NaCl to the anode com-
partment led to an increase in conductivity, and power
production. Yet, higher concentration of NaCl (more than
10 mM) led to deactivation of microorganisms and finally,
the concentration of 100 mM led to microorganism death.

Conclusions

Application of response surface methodology (RSM) to
determine the optimal condition of cathode compart-
ment for maximizing power density and COD removal
was successful. The optimal conditions were determined
for pH, buffer concentration and ionic strength as 6.75,
0.175 M and 4.76 mM, respectively. In comparison with
the normal condition (zero level), improvement of power
density by 17% as well as 5% higher COD removal ob-
tained by the system with optimal condition.
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