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The dynamics of a family’s gut microbiota reveal
variations on a theme
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Abstract

Background: It is clear that the structure and function of the human microbiota has significant impact on
maintenance of health and yet the factors that give rise to an adult microbiota are poorly understood. A
combination of genetics, diet, environment, and life history are all thought to impact the development of the gut
microbiome. Here we study a chronosequence of the gut microbiota found in eight individuals from a family
consisting of two parents and six children ranging in age from two months to ten years old.

Results: Using 16S rRNA gene and metagenomic shotgun sequence data, it was possible to distinguish the family
from a cohort of normal individuals living in the same geographic region and to differentiate each family member.
Interestingly, there was a significant core membership to the family members’ microbiota where the abundance of
this core accounted for the differences between individuals. It was clear that the introduction of solids represents a
significant transition in the development of a mature microbiota. This transition was associated with increased
diversity, decreased stability, and the colonization of significant abundances of Bacteroidetes and Clostridiales.
Although the children and mother shared essentially the identical diet and environment, the children’s microbiotas
were not significantly more similar to their mother than they were to their father.

Conclusions: This analysis underscores the complex interactions that give rise to a personalized microbiota and
suggests the value of studying families as a surrogate for longitudinal studies.
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Background
Numerous studies have identified associations between
deviations in the gut microbiota (that is the community
of microorganisms living within the gastrointestinal tract)
and diseases as varied as psoriasis, diabetes, colon cancer,
and susceptibility to Clostridium difficile infection [1-4].
The mechanisms that give rise to an individual’s
microbiota as well as the deviations from their normal
microbiota are poorly understood. In light of our growing
appreciation for the role of the microbiota in maintaining
a healthy state, with isolated exceptions such as fecal
microbiota transplant as a treatment for recurrent
Clostridium difficile infection [5], we are largely powerless
to manipulate the microbiota to achieve long-term
transitions to a healthy state. Fundamental to this problem
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are the sources of our microbiota and the relative
importance of numerous variables that can affect the
structure and function of the microbiota.
Genetics, environment, life history characteristics, and

diet are expected to have significant long-term impact on
the composition of one’s microbiota. Studies of monozygotic
and dizygotic twins suggest that monozygotic twins
who share an identical set of genes have more similar
microbiotas than dizygotic twins who only share half
their genes [6,7]; however, the biological significance of
the difference in similarity is likely minimal. Furthermore,
shared environments and diet confound the similarity
between twins. In addition, the microbiotas of co-habiting
individuals tend to be more similar than individuals that
are not co-habiting; this argues for the importance of
a shared environment and similar diet in shaping the
microbiota [8]. Life history characteristics such as whether
one was breastfed or bottle-fed or born vaginally or via
Cesarean section have been shown to impact the immediate
structure of the individual’s microbiota in infancy [9,10];
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however, it is unclear what long-term impacts these
characteristics have on the composition of the microbiota.
One notable example of such investigations was a 2.3-year
time course study of a child’s life starting at birth [11].
Discrete changes in his microbiota were associated with
fever and coincident transitions in diet and antibiotic
therapies. That study suggests that large perturbations are
needed to shift a child’s microbiota from one community
structure to another. Several other studies have employed
antibiotic perturbations and observed that the structure of
the microbiota largely returns to its pre-treatment state
after the cessation of the treatment [12-14]. Similar results
have been observed among individuals who undergo
bowel preparation prior to colonoscopy [15]. In short-
term diet perturbation studies, groups of individuals have
been given diets that are discordant with their normal
diet, and although their microbiota changes, it does not
converge to resemble the microbiota of others receiving
the same diet. In addition, when the individuals return to
their normal diet, their microbiotas also return to their
previous community structure [16,17]. These studies and
numerous others indicate that the microbiota is relatively
robust to perturbation as numerous studies have shown
that the structure of an individual’s microbiota is more
similar to itself over time than it is to the microbiota of
another individual [6,18,19]. The model that emerges from
these studies is that the fundamental source for one’s
microbiota is the physical and biological environment in
which the individual lives. Meanwhile, other factors
including genetics, immunological exposures, environment,
life history characteristics, diet, and overall philosophy to
using antibiotics and other clinical interventions, sculpt the
underlying community structure.
Families provide a unique platform for testing the

factors that impact the membership and abundance of one’s
microbiota because they provide greater opportunities to
control for the factors that affect the structure of the
microbiota. For example, an analysis of a family where
one child becomes a vegetarian would improve our
understanding of the effects of diet on the microbiota while
controlling for the other factors. In addition, families with
various-aged children may represent a chronosequence of
the family’s microbiota [20]. Chronosequences could be
used to understand how the microbiota develops over time
without having to collect samples for numerous years from
a single individual. They could also be useful as a tool for
determining when an individual’s microbiota deviates from
his or her siblings. Over short periods of time, analysis of a
family’s microbiota could also inform our understanding of
how perturbations to one individual’s microbiota would
impact the microbiota of others in the family. These studies
have been performed to understand the transmission of
pathogens [21-23]. In light of these opportunities, we
characterized the gut microbiota of a family with six
children over the course of a month relative to a cohort of
unrelated adults from the same geographic region.

Methods
Sample collection and DNA extraction
This study was approved by the University of Michigan
Institutional Review Board. All subjects or their parents
granted consent to participate in the study. The members
of the family obtained fecal samples by scraping feces from
toilet paper at their home and their place of employment
using sterile wooden applicators [19]; the infant’s samples
were obtained by scraping feces from his cloth diapers
using sterile wooden applicators [11]. The parents obtained
the samples for the children and kept a diary of the
food the children ate during the course of the study.
Because of the size of the family, it was not practical to
record the amounts of each food consumed by the family
members. Samples from unrelated adults in the broader
community were collected from individuals residing in
Ann Arbor, MI area (53 males, 102 females; ages 19 to 88
years). Subjects were excluded if they had had any signs of
diarrhea in the previous seven days or were pregnant. All
fecal samples were immediately stored at −20°C until
DNA extraction. Total bacterial DNA was extracted
from each fecal sample using the PowerSoil®-htp 96
Well Soil DNA Isolation Kit (MO BIO Laboratories Inc.,
Carlsbad, CA, USA) on an EpMotion 5075 liquid handling
workstation (Eppendorf, Hauppauge, NY, USA).

DNA sequencing and curation
The V3-V5 region of the 16S rRNA gene was amplified
and sequenced using the 454 GS FLX pyrosequencing
platform at the Baylor College of Medicine as described
previously [24]. In parallel to the fecal samples, a mock
community was included on each sequencing run for
calculating sequencing error rates after curation [25].
All 16S rRNA gene sequences were curated using the
mothur software package as previously described
[25,26] and resulted in a final error rate of 0.009%.
Sequences were clustered into operational taxonomic
units (OTUs) using a 3% distance cutoff with the
average neighbor clustering algorithm [27]. Taxonomic
assignments were determined using a naïve Bayesian
classifier trained using the RDP training set with an
80% bootstrap confidence threshold [28]. All samples
were rarefied to 1,827 sequences per sample to avoid
the detrimental effects of uneven sampling.

Metagenomic shotgun sequencing and curation
For each of the eight family members, samples were
collected at days 1, 15, and 26, which corresponded to the
beginning, middle, and end of the study. Random genomic
DNA from these samples was sequenced as previously
described at the Baylor College of Medicine [29]. SeqPrep
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was used to remove primer sequences from reads
(https://github.com/jstjohn/SeqPrep). All reads were
pooled together and normalized using khmer’s digital
normalization pipeline [30]. This excluded from assembly
any read that had a median k-mer of length 20 that had
previously been encountered at least 20 times. The
excluded reads were saved for downstream analysis. The
remaining reads were filtered by abundance, removing any
low abundance and unique k-mers. The filtered reads
were assembled by velvet with k-mer lengths of 31 and 35
[31]. The contigs from these assemblies were combined
and de-replicated at 99% with CD-HIT [32]. The
combined, de-replicated contigs were merged with
minimus2 [33]. Merged contigs and singletons from
minimus2 were screened by BLASTn for hits to human
sequences. Contigs with hits to human sequences and the
associated reads were removed from further analysis. Open
reading frames (ORFs) were predicted from assembled
contigs with MetaGeneAnnotator [34]. Gene counts were
obtained by mapping reads to the predicted genes with
bowtie [35]. UBLAST was used to assign each translated
ORF to Kyoto Encyclopedia of Genes and Genomes
(KEGG) orthology categories (KO) [36,37]. Those ORFs
that mapped to genes that were not already assigned to a
KO category or lacked a significant match in the KEGG
database were pooled into a single category. To assign
ORFs to operational protein families (OPFs), we first
performed a database-independent all-versus-all BLASTP
search of the ORFs. The resulting BLAST scores were used
to calculate distances between the ORFs, which were
clustered using the average neighbor clustering algorithm
with a 25% dissimilarity cutoff [38]. All samples were
rarefied to 1,207,904 sequences per sample (approximately
114 Mbp per sample) to avoid the detrimental effects of
uneven sampling.

Community analyses
The mothur software package was used to calculate the
inverse Simpson alpha diversity index, the θYC measure
of community structure, and non-metric dimensional
Table 1 Descriptive characteristics of family members

Subject Sex Weight (kg) Height (c

Infant (0 years old) Male 7.0 ND

2 years old Female 10.2 82

4 years old Male 22.2 107

6 years old Male 24.0 117

8 years old Male 22.8 127

10 years old Female 42.7 153

Mother Female 72.5 164

Father Male 96.5 183

NA, not applicable. Weights and heights were measured as of the first day of the st
microbiota was determined by identifying those OTUs that had a minimum relative
scaling (NMDS) ordinations for both the 16S rRNA gene
and metagenomic sequence data [26]. Random Forest
analysis of the 16S rRNA gene sequence data was per-
formed using the randomForest R package with 10,000
trees (http://cran.r-project.org/).

Data availability
The 16S rRNA gene sequence data, metagenomic sequence
data, and the associated MIMARKS spreadsheet are
available online (http://www.mothur.org/FamilyStudy).

Results and discussion
We studied an eight-member family to investigate the
formation of the personalized microbiota (Table 1). The
mother and father had lived together for more than eleven
years and had six children (two females and four males)
ranging in age between two months and ten years old.
The family members were of typical health with no recent
antibiotic usage and showed no signs of obvious illness
during the month covered by this study. All of the
children were exclusively breastfed for at least the first 6
months of life and were partly breastfed until they were
between 18 and 30 months old; the 2-month-old was
exclusively breastfed and the 2-year-old was also being
breastfed in addition to eating solids at the time of this
study. The children and mother shared nearly all of their
meals together and the father generally ate dinners on
weeknights and all meals at weekends with the rest of the
family (Additional file 1: Table S1). The family lived in a
rural environment with pets and livestock. Within this
context, we obtained daily fecal samples from each
member of the family over the course of 26 days that we
used to sequence the V3-V5 region of the 16S rRNA gene.
We measured the association between age and diversity

and age and stability of each family member’s microbiota.
Diversity was strongly associated with the degree to which
the child was being breastfed (Figure 1A). The infant
(exclusively breastfed) had the lowest diversity, the
two-year-old (breastfed and eating solid food) had the
next to lowest diversity, and the remaining four children
m) BMI (%ile) Number of OTUs in core microbiota

NA (NA) 4

15.2 (17%) 21

19.4 (>99%) 26

17.5 (86%) 32

14.1 (8%) 27

18.2 (66%) 18

26.8 (NA) 58

28.8 (NA) 22

udy. The number of operational taxonomic units (OTUs) in the individual’s core
abundance of at least 0.05% in 95% of the individual’s samples.

https://github.com/jstjohn/SeqPrep
http://cran.r-project.org/
http://www.mothur.org/FamilyStudy
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Figure 1 Diversity and stability of the microbiota found within family members and individuals sampled from the broader community.
(A) Each point represents the inverse Simpson alpha diversity index for a sample collected from each individual. (B) The average similarity
between samples collected from the same individual with varying number of days between when the samples were collected.
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(all weaned) had a similarly high level of diversity; the
diversities of the three groups of children were
significantly different from each other and the weaned
children were not significantly different from each
other. The mother and father each had diversities that
were significantly different from each other and the
children. Interestingly, the mother’s diversity was consider-
ably higher than those observed within the family and
among the Ann Arbor cohort and the father’s diversity was
more similar to that of the Ann Arbor cohort. This is in
contrast to previous observations that women who had
recently given birth had lower diversity than normal
women [39]. To assess whether these differences in
diversity resulted in differences in the stability of each
microbiota, we calculated the average β-diversity between
an individual’s samples as a function of the number of
days between their collection (Figure 1B). This analysis
indicated that the infant had the most stable community
and that the stabilities of the other family members were
indistinguishable. Samples collected a day apart were just
as similar as samples collected ten days apart. These data
suggest that the transition from breast milk to solid foods
brings about increased diversity and decreased stability in
the gut microbiota.
It has been repeatedly shown that an individual’s

microbiota is more similar to itself over time and more
similar to family members than it is to unrelated individuals
[6,18,19]. Thus, it was hypothesized that within the family
there exists a ‘theme’ or core microbiota that distinguishes
it from other families. To identify the core microbiota for
each individual we identified those OTUs that had a relative
abundance over 0.05% in at least 95% of their samples. This
resulted in the identification of between 4 (infant) and
58 (mother) OTUs, which represented the core for each
individual (Table 1); these represented between 1.8 and
7.7% of the OTUs that were detected for each individual.
When we compared the lists of core OTUs from each
individual to identify the family’s core microbiota, there
was no overlap; however, when we removed the infant
from the analysis, we identified 12 OTUs that were
common to each person’s core microbiota (Figure 2). We
also analyzed the Ann Arbor cohort and identified four
OTUs that were found in 95% of the cohort members.
These OTUs affiliated with members of the genus
Bacteroides (OTU 3), family Lachnospiraceae (OTUs
4 and 9), and genus Subdoligranulum (OTU 12); OTUs 4,
9, and 12 were shared with the family core microbiota.
The 12 OTUs that comprised the family’s core microbiota
represented between 32.0 and 57.9% of the sequences in
the 7 family members who were eating solids, 3.6% of
the sequences in the infant, and 13.4% of the sequences
obtained from the Ann Arbor cohort (Figure 2). These data
indicate that a considerable fraction of each individual’s
microbiota is represented by a core microbiota consisting
of anaerobic Gram-positive spore formers.
Having identified the family’s core microbiota, we next

attempted to identify variations on that theme within the
family. We used the Random Forest machine-learning
algorithm to identify OTUs that would allow us to
distinguish between family members and obtained an
out-of-bag error rate of 3.6%; at most, one sample
from each individual was misclassified. When we limited
the features to the top 15 OTUs that had the highest
Gini index (Figure 3), the error rate was 7.2%. The low
classification error rate indicated that each individual had
a unique microbiota. The most obvious distinguishing
OTUs included one affiliated with Catenibacterium (OTU
28), which had a high relative abundance in the parents



Figure 2 Relative abundance of operational taxonomic units (OTUs) detected in all weaned individuals within the family. The colors
represent the average relative abundance of each OTU in each individual and as observed in the broader community. The percentages at the
bottom of the heatmap indicate the percentage of sequences these OTUs represent in each individual.
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and was most abundant in the father. The overall similarity
of the parents’ microbiota is striking, as they are unrelated
and spent more than 20 years apart prior to meeting. In
spite of this, they still had similar community membership,
but distinct abundances of those OTUs. The infant and
two-year-old, both still at least partially breastfed, had an
OTU that was affiliated with the Bifidobacterium (OTU 6).
Although it was not one of the 15 strongest features, an
OTU affiliated with the family Enterobacteriaceae (OTU 8;
Gini: 1.53; median relative abundance: 24.5%) was also
disproportionately high in the infant. The variations
between the OTUs that distinguished the weaned
children was more subtle and indicated that the differ-
ences were not due to the incidence of specific OTUs but
were instead defined by the specific relative abundances of
multiple OTUs. Overall, the difference in the microbiota
of each family member was largely due to differences in
abundance, not membership. These data support the
hypothesis that one’s microbiota becomes individualized
from an early age.
Given the large family size, it was possible to assess
the relative importance of genetics and environment/diet
on shaping the gut community structure using the children
who had been weaned, their parents, and members of the
Ann Arbor cohort (Figure 4). As expected, the community
structure of each individual in the family was more similar
to themselves than to any other family member (P < 0.001).
Even though each of the children share 50% of their DNA
with each other and their parents, the median similarity
between children (θYC = 0.41) was significantly higher
than their median similarity to either of their parents
(θYC-Mother = 0.34; θYC-Father = 0.32; both P = 0.010);
additionally, the children were more similar to each
other than their mother and father were to each other
(θYC-Parents = 0.33; P = 0.031). The similarity between each
child and their mother was higher than to their father
(ΔθYC = 0.02); however, this difference was not statistically
significant (P = 0.125) and not likely to be biologically
significant. Interestingly, previous family-based studies
have excluded the children’s father from the analysis
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[6,11]. This is notable when one considers that the chil-
dren in this study were homeschooled by their mother
with whom they share nearly all of their meals. These
observations suggest that the father and his microbiota
may be just as important as the mother in shaping a
child’s microbiota. More broadly, it is likely that other
caregivers and their environment may participate in
shaping a child’s microbiota. Finally, the family members
were as similar to each other as individuals from the Ann
Arbor cohort were to each other (P = 0.433); however,
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based on the earlier Random Forest analysis, the family’s
microbiota was clearly different from the broader
community. The different microbiota represented
within the family were clearly unique relative to each
other and the broader community. The mechanisms
that give rise to this uniqueness are likely a complex
mixture of factors. Regardless, the family members
appear to represent variations of a shared familial
microbiota.
As the diversity data and Random Forest analysis

suggested, the infant and two-year-old had the most
distinct community profiles within the family. The
dynamics of the infant’s microbiota was characterized by
a series of transitions between single OTUs affiliated with
the genera Bifidobacterium (median relative abundance:
63.2%) and Escherichia (median relative abundance: 25.9%;
Figure 5). Such transitions are possibly a result of
competition for resources between the two populations or
predation by phage, which could suppress the size of the
opposing population. Although the microbiota of the
two-year-old was more similar to her weaned siblings,
the same Bifidobacterium-related OTU that was found in
her infant brother dominated her microbiota (median
relative abundance: 10.0%). Bifidobacterium spp. have
been associated with milk fermentation in breastfed
infants [40]. This OTU was observed in all family
members at lower relative abundance (median relative
abundance: 0.3%; Figure 3). In the extreme case of
transitioning from a diet consisting of only breast milk to
solids, it was apparent that bacterial populations were
being selected in response to the diet. Interestingly, the
microbiota of the two-year-old represented a mixture of
her exclusively breastfed brother and her weaned siblings.
To assess the effect of diet on the structure of the gut

microbiota, the parents recorded the food consumed by
each individual in the family over the course of sampling
(Additional file 1: Table S1). Because the quantity of
individual foods was not recorded, we qualitatively assessed
the family’s food record and identified samples collected
the day after individuals consumed essentially the same
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diet. The distances between the communities in those
samples were no more similar to each other than between
samples collected on the same day from individuals who
consumed different diets. On Saturdays and Sundays the
father’s diet was more concordant with the rest of the
family and he spent a greater amount of time with them.
This led us to predict that following these days there
would be periods of increased similarity in the microbiota
between the father and the rest of the family. This was not
observed (Figure 6). These results suggest that although
the overall similarity in diet may make the family’s micro-
biota distinct from other individuals in the Ann Arbor
community, the day-to-day variation in the family’s
diet did not entirely explain the day-to-day variation
in their microbiota. It is also possible that the differ-
ences in diet and environment were not large enough
to elicit a significant response in the individuals’
microbiota. Rather, it may be that a shared environ-
ment and similar diet are long-term drivers of com-
munity structure and so day-to-day differences would
not have a large impact on the individuals’ micro-
biota. Such a model depends on the existence of a
stable microbiota with a sufficiently diverse community
that is resilient to perturbations. Long-term tracking of
such families will likely bracket perturbations of varying
magnitudes (for example, illness, antibiotic usage, travel)
and will allow us to better understand the forces that
make an individual’s microbiota more similar or different
from one another.
Finally, we assessed the genetic diversity of the family’s

microbiota by performing shotgun metagenomic sequen-
cing using samples collected from each individual at the
beginning, middle, and end of the sampling period.
Across all individuals, we observed a total of 4,499
KEGG categories and 675,908 OPFs. The inverse
Simpson alpha diversity index calculated using OPFs
(Figure 7A) followed a pattern that was similar to the di-
versity calculated using 16S rRNA gene sequence data
(Figure 1A); no trends were observed when ORFs were
assigned to KEGG categories (Figure 7B). When we
assigned the ORFs to OPFs, 7.3% were shared across all
family members, 36% were shared among the four
weaned children, and 13% were shared between the two
breastfed children. When we assigned ORFs to KEGG
categories, 66% were shared across all family members,
77% were shared among the four weaned children, and
78% were shared between the two breastfed children.
Whether we assigned the ORFs to clusters based on
KEGG KOs or to OPFs, we were able to separate sam-
ples by individual, as there was a significant concordance
between the taxonomic structure of the communities
based on 16S rRNA gene sequences and the genetic
structure of the communities based on both the KEGG
KO and OPF data (ROTU-KEGG = 0.58, ROTU-OPF = 0.69;
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Figure 8). These results support the 16S rRNA gene-
based analysis that the genetic composition is conserved
between individuals, but that each individual has a
unique microbiota.

Conclusions
Our analysis of this family’s microbiota demonstrates
that they represent a unique island within the possible
permutations of microbiota structures. Within the fam-
ily, each individual had a unique, personalized micro-
biota that allowed them to be differentiated from other
members of their family. These personalized microbiota
appear to develop at an early age, likely after weaning.
Although it remains to be seen whether that is the
microbiota that the children will carry with them
through adolescence, it suggests that the differences in
genetics and diet, environment, and life history charac-
teristics imprint their effects on the microbiota at an
early age. Despite the personalized nature of each micro-
biota, the overall family is clearly more similar to each
other than they are to unrelated individuals from the
broader community. Overall, these results confirm the
model that individuals who share an environment likely
share the same ecological meta-community that can
colonize the microbiota and then be selected upon by
host genetics, diet, and life history.
Although the microbiota of the family members are
personalized to each member and are clearly distinct
from those of the Ann Arbor community, there was
still a large amount of temporal day-to-day variation.
It is interesting that the underlying membership of
each microbiota was consistent across the study for each
person but the abundances of the individual populations
were variable. Furthermore, we were unable to associate
these fluctuations with diet, differences in environment, or
health. This family experienced many disturbances to
their microbiota via fluctuations in the composition
of their diet and differences in environment. Yet their
gut microbiotas were largely resilient to these disturbances.
This suggests that the composition of their individual
gut microbiota have been selected for to adapt to
these disturbances. This suggests that adaptation by
the microbiota to a personalized set of disturbances
(for example, food preferences, hygiene, behaviors) helps
to select for a personalized microbiota that is resilient to
the disturbances.
The family considered in the current study will

offer several opportunities to better understand the
microbiota. First, our data suggest that the family repre-
sents a chronosequence, which can be used to understand
the connection between child development and overall
microbiota dynamics. For example, as the various children
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go through different life events such as weaning, puberty,
and moving away from home, it will be possible to assess
the effects of these events on the microbiota. Here, we
saw the profound influence of complete weaning on the
microbiota when viewing the 2-year-old who had not yet
been weaned as a control for her older siblings. Second,
this family offers the ability to better understand the
effects of mode of birth on the development of the
microbiota when controlling for genetics, environ-
ment, and diet, as the infant in this study was the
only child to not be born vaginally. Following the
development of the microbiota in this child relative
to his siblings will help us to better understand the
long-term impacts of Cesarean delivery. Finally, in
the present analysis, the weaned children had similar
microbiotas relative to their parents, suggesting that
factors other than age or sex are most important in
shaping their microbiota. Tracking these children to
identify events that lead to deviations in microbiota
structure will allow us to better understand the
mechanisms that shape and reinforce the structure of
these communities.
Families represent a special cultural entity with shared

genetics, environment, diet, and microbiota. Unfortunately,
they have been largely ignored as a medium for under-
standing how genetics, environment, and diet interact
to form an individual’s personalized microbiota. All
families are different and present different mixtures of
genetics, environment, and diet. Although this family
may be considered unique because of the large num-
ber of children in it, exposure to livestock, and home-
schooling, all families have idiosyncrasies that make
them unique. As our data suggest, children are born
into an environment where they are provided with
the family’s microbiota; however, their unique genetics,
diet, and life history exert a selection on that microbiota
to make their own at a very early age. Therefore, it is
critical that we develop a better understanding of
how individualized microbiota develop as a function
of human social interactions with each other and
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their environment. How this translates to other com-
munal living arrangements, such as establishing new
families, dormitories, hospitals, and assisted living
centers, is likely to yield a better understanding of
the mechanisms that affect the structure and function
of the microbiota.
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Additional file

Additional file 1: Diet record for family members. Record of food
consumed by family members over the course of the study.
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