
Barzdins et al. Health Information Science and Systems 2013, 1:14
http://www.hissjournal.com/content/1/1/14
RESEARCH Open Access
Graphical modeling and query language
for hospitals
Janis Barzdins1, Juris Barzdins1,2, Edgars Rencis1* and Agris Sostaks1
Abstract

Background: So far there has been little evidence that implementation of the health information technologies
(HIT) is leading to health care cost savings. One of the reasons for this lack of impact by the HIT likely lies in the
complexity of the business process ownership in the hospitals. The goal of our research is to develop a business
model-based method for hospital use which would allow doctors to retrieve directly the ad-hoc information from
various hospital databases.

Methods: We have developed a special domain-specific process modelling language called the MEDMOD. Formally,
we define the MEDMOD language as a profile on UML Class diagrams, but we also demonstrate it on examples, where
we explain the semantics of all its elements informally. Moreover, we have developed the Process Query Language (PQL)
that is based on MEDMOD process definition language. The purpose of PQL is to allow a doctor querying (filtering)
runtime data of hospital’s processes described using MEDMOD.

Results: The MEDMOD language tries to overcome deficiencies in existing process modeling languages, allowing to
specify the loosely-defined sequence of the steps to be performed in the clinical process.
The main advantages of PQL are in two main areas – usability and efficiency. They are: 1) the view on data through
“glasses” of familiar process, 2) the simple and easy-to-perceive means of setting filtering conditions require no more
expertise than using spreadsheet applications, 3) the dynamic response to each step in construction of the complete
query that shortens the learning curve greatly and reduces the error rate, and 4) the selected means of filtering and
data retrieving allows to execute queries in O(n) time regarding the size of the dataset.

Conclusions: We are about to continue developing this project with three further steps. First, we are planning to
develop user-friendly graphical editors for the MEDMOD process modeling and query languages. The second step is
to do evaluation of usability the proposed language and tool involving the physicians from several hospitals in Latvia
and working with real data from these hospitals. Our third step is to develop an efficient implementation of the
query language.
Background
Introduction
In 2002, the management professor and renowned
author Peter Drucker stated in his book “Managing
in the Next Society”, that “health care is the most diffi-
cult, chaotic, and complex industry to manage today”,
and that the hospital is “altogether the most complex hu-
man organization ever devised”. Since then, hospitals
have made advances in implementation of the promising
* Correspondence: edgars.rencis@lumii.lv
1Institute of Mathematics and Computer Science, University of Latvia,
Riga, Latvia
Full list of author information is available at the end of the article

© 2013 Barzdins et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
health information technologies (HIT) in hopes to achieve
major healthcare cost savings, reduce medical errors and
improve health outcomes [1]. Unquestionable and meas-
urable has been the positive impact of the HIT on patient
safety, quality and continuity of care, and the patient em-
powerment [2,3]. So far however there has been little evi-
dence that implementation of the HIT is leading to health
care cost savings [3]. One of the reasons for this lack of
impact by the HIT likely lies in the complexity of the busi-
ness process ownership in the hospitals.
While both the management and support processes

are directly controlled by the hospital management, the
main operational clinical processes which constitute the
core value production of the business has generally been
l Ltd. This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:edgars.rencis@lumii.lv
http://creativecommons.org/licenses/by/2.0


Barzdins et al. Health Information Science and Systems 2013, 1:14 Page 2 of 11
http://www.hissjournal.com/content/1/1/14
owned by the doctors. Since medical professionals and not
the managers carry the ultimate responsibility for the pa-
tient’s outcomes, the management has a limited control
over the doctors’ individual bedside decisions. Therefore, a
more profound involvement of the doctors in transforming
the processes within their health care organizations has
been widely regarded as a factor that is critical for their
success [4-7]. This is particularly true considering the fact
that up to 85% of all the spending in health care is directly
or indirectly controlled by the medical professionals [8].
In contrast to the professional managers who have re-

ceived an appropriate training and control the administra-
tive resources (e.g., specially dedicated business analysts for
extracting process knowledge from the increasing amount
of digitally stored data), doctors so far have benefitted to a
much lesser degree from these advances in HIT as a tool
for better understanding of the patterns and systemic con-
sequences of the clinical decisions they make. The goal of
our research is to develop a business model-based method
for hospital use which would allow doctors to retrieve dir-
ectly the ad-hoc information from various hospital data-
bases which is needed in building their process-oriented
knowledge for their managerial roles.
For better understanding, we broke down the task of

achieving this goal into two steps. First, we developed a
new domain-specific language for hospital modeling
which allows doctors and managers visualizing the hos-
pital processes. Subsequently, based on this modeling
language, we developed an easy-to-perceive graphical
query language which permits retrieving specific infor-
mation needed for the analysis of a particular clinical
process. The query language is considered to be the basic
added value of this paper. An evaluation of our approach
is given in Conclusions.

Related work
In recent years business processes in hospitals have been
studied for the applicability of modeling methods used
in other industries. For example, there are published re-
ports of successful usage of BPMN for describing the
clinical process for strictly selected group of patients
with a specific diagnosis in oncology [9] and the process
in selected department for pathology investigations [10].
However, there are also reports suggesting that applica-
tion of BPMN is difficult in the specific domain of health
care, since the nature of health care processes in a multi-
disciplinary hospital is inherently complex [11], and that
has been the basis also for the domain-specific modeling
in testing [12].
There are works on querying the descriptions of the

business processes without the underlying data, e.g.,
work of Beeri et al. [13], where the visual query language
BPQL has been introduced, and the BPMN-Q language
by Awad [14].
Beeri et al. [15] went a step further by introducing the
BP-Mon – a query language for monitoring business
processes, which allows the users defining the monitor-
ing tasks and retrieving their associated reports visually.
Although the language is simple enough for IT special-
ists, it is hardly useable by doctors in the hospitals. For
example, the specification of reports (retrieved data) re-
quires knowledge about XML.
Beheshti et al. [16] introduced a process mining and

querying methodology, where data are acquired also
from the information system. These data are called Event
Logs and are grouped into folder nodes – a similar con-
cept to slices presented in this paper. However, the query
language is itself based on SPARQL making it impracti-
cal for a broader use by the hospital staff.

Methods
Hospital modeling language MEDMOD
The most-widely known general purpose modeling lan-
guage UML offers at least three different types of lan-
guages, whose elements can be used in hospital modeling.
The first one – UML Activity diagrams (and also the

BPMN diagrams) – describes the sequence of activities
to be performed. However, this kind of language cannot
be directly used in the hospital domain because of the
large degree of variations of the order how doctor exe-
cute various treatment procedures. The sequence of the
activities can only be partially defined here. On the other
hand, certain procedures have established protocols and
well-defined sequence of activities, e.g. registration of
the patient, or anaesthesia used in performing certain
types of procedures, and these are suitable for analysis
using the UML activity diagram. Therefore, while the ac-
tivity diagrams can be used in describing some aspects
of the hospital operation, they are not applicable for the
entire process.
The second type of diagrams are the UML Class dia-

grams or ontologies (they largely differ in only one
aspect – the former uses closed-world semantics, while
the latter exploits the benefits of the open-world seman-
tics, e.g., see [17]). This type of diagrams is very conveni-
ent for concept modeling, but is not oriented towards
modeling the activities. UML allows however perceiving
an activity, e.g., X-ray investigation for a patient, as a
class. Instances of this class would then be defined as cer-
tain X-ray investigations used for specific patients. Fur-
ther in this paper we will make an essential usage of this
type of classes.
The third type of diagrams is UML Use-case diagrams,

which combine the elements of the class and activity di-
agrams. They describe activities called use-cases. It is
also stated that use-cases can be perceived as classes,
whose instances are concrete executions of these activ-
ities. A very useful aspect of the use-case diagrams is



Barzdins et al. Health Information Science and Systems 2013, 1:14 Page 3 of 11
http://www.hissjournal.com/content/1/1/14
their capability for interaction between the use-cases
with extending the activity by calling another activity. In
other words, the extension point mechanism in the use-
case diagrams makes it possible to describe specific con-
trol flows having a guard condition (the extension point
name), which are executed during the current activity
instead of waiting for the activity to complete. This fea-
ture isn’t present neither in UML activity diagrams, nor
in BPMN, but is very pertinent in the case of hospital
modeling. At the same time there are no ordinary con-
trol flows in use-case diagrams, because use-case dia-
grams are a priori dedicated to describing a higher-level
functionality.
This all led us to think that a special domain-specific

modeling language is needed for hospital modeling,
which would borrow the most useful features from
class, activity and use-case diagrams. We have devel-
oped such a language called the MEDMOD. Formally,
we can define the MEDMOD as a profile on UML Class
diagrams as can be seen in Figure 1 (OCL constraints
defining MEDMOD more precisely are omitted here).
We are however describing the language on examples
(see Figure 2) for its easier perception by the domain
experts (doctors and managers).
Let us now describe the elements of MEDMOD in

more detail (see Figure 2).

Activity
Activity is the central element of the MEDMOD lan-
guage and denotes a task in time having a start and end
moments. Semantically it is related to the Action elem-
ent of UML Activity diagrams. Examples of Activity are
seen in Figure 2 depicted as yellow boxes with rounded
corners.
From the linguistic point of view, we divide Activities

in three different categories based on how the Activity
name is formed. The first type of Activities is the most
common one and conforms to the simple present lin-
guistic form – “Doctor sets diagnosis”. The second type
Figure 1 The UML profile defining the MEDMOD language.
of Activities is formed in passive voice and used in cases,
when there can be different consequences to some pre-
vious Activity leading to execute one of different out-
going flows from it – “Patient admitted to hospital
ward”. The third type of Activities refers to a greater
process with some given name, which then serves as a
name for the Activity – “Clinical process in ward”. These
naming conventions are, however, only guidelines for
users creating and reading the MEDMOD diagrams and
they are provided for better comprehension of the process.
The visual appearance of Activity does not depend on its
linguistic type.
Activities can also have attributes of five primitive data

types – Integer, Real, String, Boolean and DateTime.
These attributes can be specified for every concrete Ac-
tivity at diagram creation, and different values can be
assigned to these attributes of concrete instances of the
Activity at run-time. Since there are very detailed codifi-
cators in the medical world for coding every procedure,
diagnosis or other attributes (see Health Level Seven
International, the global authority on standards for inter-
operability of health information technology [18]), we
also allow using enumerations as data types. For instance,
the Activity “Doctor assigns procedure” has an attribute
“procedure_code”, whose values come from the enumer-
ation “pCode” (see Figure 2).
Exactly one of the Activities of every MEDMOD dia-

gram is denoted as the Master Activity meaning that the
execution of the diagram starts with this Activity (there
can be no ingoing arrows to this Activity). Master Activity
has a slightly different visualization – a bolder frame
(see Activity “Patient enters the hospital” in Figure 2).

Follows
This type of oriented relation can be established between
two Activities A and B meaning that Activity B can only
start after Activity A has ended (the same semantics as
the Control Flow of UML Activity diagrams). It is allowed
for several Activities to follow the same Activity – the



Figure 2 An example of a MEDMOD process.

Barzdins et al. Health Information Science and Systems 2013, 1:14 Page 4 of 11
http://www.hissjournal.com/content/1/1/14
XOR semantics is implied in this case meaning that only
one of those outgoing flows can be executed. We denote
this situation by introducing a new diamond-shaped graph-
ical element seen in Figure 2. It is also allowed to have
several ingoing flows into an Activity implying the OR se-
mantics, i.e., the following Activity can start executing
when at least one flow has executed, and several instances
of that Activity can arise, if several incoming flows executes
at different times. It is, however, not allowed to introduce
several parallel outgoing flows from the same Activity. We
substitute the parallel branching of UML Activities with a
more general feature, the composition, by introducing so
called Aggregate Activities and their parts – Component
Activities that can be executed simultaneously.

Composition
A composition between two Activities can be established,
if one Activity (called the Aggregate) semantically consists
of one or more other Activities (called the Components).
It has an analogy with the relation “includes” of UML
Use-case diagrams. We have borrowed the notation for the
Aggregate part of Composition (the filled diamond) from
the UML Class diagrams. Also, a composition fork graph-
ical element can be introduced to collect the Components
of the same Aggregate Activity (seen in Figure 2). For
instance, Activity “Clinical process in ward” consists of
two types of Activities – “Doctor assigns procedure”
and “Doctor sets diagnosis” (notice a slightly different
visualization – a dashed frame – for Aggregate Activ-
ities in Figure 2). Each Component Activity can appear
several times within the Aggregate, therefore we also
allow cardinalities to be attached to the Component
end of a Composition (the default cardinality is 1).

Interruption
An interesting phenomenon relates the composition –
what is the semantics of a Follows-type relation going
out from the Aggregate Activity? It was stated before
that the Follows flow can execute when the Activity A
has ended. But the Aggregate Activity can actually never
end, if it has at least one Component having a cardinal-
ity, e.g., * (many). In this case the Aggregate is constantly



Barzdins et al. Health Information Science and Systems 2013, 1:14 Page 5 of 11
http://www.hissjournal.com/content/1/1/14
waiting for new and new Component instances to born,
and only some force from outside can decide, when to
stop the waiting process. We must therefore introduce a
new type of control flow – an Interruption – stating that
if there is an outgoing Interruption flow from the Ag-
gregate Activity A to some Activity B, it means that
the Activity A is suspended, when the flow is executed
(i.e., when the Activity B needs to be started) meaning
that it can no more create new Component instances
(already created Component instances continues to exe-
cute normally). For instance, in Figure 2 the Activity
“Clinical process in ward” is suspended when the doctor
decides to either transfer the patient to another ward, or
to discharge the patient. The Interruption flow is adorned
with a jagged “lightning bolt” arrow. Simple Activities
can also be interrupted in similar manner.

Extension
Extension is an oriented relation between two Activities
A and B meaning that Activity B can be called at some
time during the execution of Activity A. This feature
allowing us to extend the Activity is also borrowed from
UML Use-case diagrams. The call is triggered, when
some predefined condition occurs. The condition is de-
scribed as an Extension point name and attached to the
Extension. For instance, a doctor can decide that a “sec-
ond opinion is necessary” (the Extension point name)
during the evaluation of patient’s medical needs. In that
case another Activity “Patient consulted by second doctor”
is called (see Figure 2).
Using the four abovementioned elements, one can de-

fine a MEDMOD process serving at least two purposes:
1) the visualization of hospital processes can help doc-
tors and management of the hospital in performing their
daily tasks better; 2) one can use the graphical process
in order to perform queries on their underlying real
data. This is one of the added values of this paper. To
achieve the second part of the goal stated in the Intro-
duction, we must first introduce a new concept of a slice
being exploited in the next section. If we look at the
MEDMOD diagram from the process point of view, we
can notice that every instance of the Master Activity de-
fine a separate transaction consisting of those instances
of Activities that can be reached from the instance of
the Master Activity (these are called run-time instances
in the process modeling world). We call the set of all
run-time instances within a transaction a slice. The basic
assumption we make here is that no two slices can ever
share any common instances. It must be notices that
certain Activities can have several instances within a
slice (because of loops and cardinalities of type “many”).
We use a slightly different visual representation for this
type of Activities for better perception as can be seen in
Figure 2.
When the process is described, is it very important for
the doctor to be able to see the run-time instances (both
within a slice and over several slices) with their respect-
ive attribute values from different points of view. One
idea here could be to export all slices over some period
of time to Microsoft Excel and then use its features to
analyse the data. The main problems here arise from the
fact that we can have loops and cardinalities of type
“many” allowing several run-time instances appear for a
concrete Activity. Developing a non-trivial query for this
case may involve serious “Excel programming” not being
possible for a doctor. To overcome this problem, we
have developed a simple process query language that is
based on the process diagram that needs to be analysed.

Process query language
The Process Query Language (PQL) has been based on
MEDMOD process definition language. The purpose of
PQL is to allow a doctor interested in clinical processes
querying (filtering) runtime data of hospital’s processes
described using MEDMOD. In fact, a doctor should be
able to ask the ad-hoc questions like “How much did the
Dr. Jekyll’s patients cost?” or “Which patients with Pneu-
monia had more than two X-rays?”. This paper describes
general ideas behind PQL and does not touch any imple-
mentation details except the efficiency of query execu-
tion. We assume that technical problems, like the import
of runtime data from hospitals information system to
MEDMOD data structures, have been already solved.
Asking questions begins with choosing (opening) the

MEDMOD process diagram, which describes the process
under inspection, switching to the filtering mode (for ex-
ample by pressing on a special toolbar button) and setting
the time interval the doctor is interested in. As a result, a
new diagram – Process Query Diagram – is created. It
contains the chosen process description in the MEDMOD
syntax. In addition, every activity node in the diagram has
an indicator (the attached box) showing the number of in-
stances in the initial dataset – all slices corresponding to
the chosen time interval (see Figure 3 – an example where
the details described in this section can be viewed).
Now the doctor can undertake two types of actions –

she can set filtering conditions or retrieve data. Setting
filtering conditions can be initiated by selecting an action
node. Typically, the doctor can choose to set a filter on at-
tribute values of the node. The attribute can be selected,
for example, by clicking on it. There are several options for
filtering. The first filtering option is the comparison oper-
ations like equals, greater than, less than, contains, begins
with, etc. The actual list of operations depends on the data
type of the attribute. The same principle has been used in
spreadsheet applications like Microsoft Excel for setting
simple filtering conditions on column values. The typical
filter input form has been shown in Figure 4.



Figure 3 An example of Process Query Diagram describing a hospital operation.

Figure 4 Filtering condition input form – comparison operation
on attribute.

Barzdins et al. Health Information Science and Systems 2013, 1:14 Page 6 of 11
http://www.hissjournal.com/content/1/1/14
First, the comparison operation is selected (e.g., greater
than). Second, a value is given. If the possible values can be
retrieved from the fixed list (e.g., HL7 codes or doctors of
the hospital), then the input form offers a list (e.g., via a
combo box) the user can choose from. Following the sim-
plicity of spreadsheet applications, only one extra compari-
son operation is allowed here. User may choose one of the
following options – either both conditions are mandatory
(logical AND), or at least one of the conditions must be
met (logical OR). Thus, most of the typical conditions, in-
cluding value intervals, can be given using such input form.
In the process query diagram a filtering condition appears
as a label in the corresponding activity node. Thus, the
doctor is always aware of filtering conditions that have



Barzdins et al. Health Information Science and Systems 2013, 1:14 Page 7 of 11
http://www.hissjournal.com/content/1/1/14
been set. Immediately after the filtering condition has been
created or updated, it is applied on the dataset. The filtered
dataset contains all instances from those slices, which con-
tains instances conforming to the filtering condition. As a
consequence, all data displayed in the diagram (e.g., the in-
dicators of number of instances) are updated.
The second filtering option is the data partitioning

operations like getting Top or Bottom instances based
on some attribute. Doctor may ask for 10 slices, where
total expenses are the largest. She should select the cor-
responding activity and choose the data partitioning op-
tion. The filter input form is shown in Figure 5.
First, the partitioning operation is selected (e.g., Top).

Second, a value is given. When the filter is applied, the
filtered dataset contains only instances from those slices,
which contain instances with ten largest total expenses
values. It should be noted that partitioning operations
are applied on the dataset retrieved by applying the com-
parison operations. If several data partitioning operations
have been set, then the result is the intersection of slices
retrieved by partitioning operations.
If there is a possibility that a slice may contain more

than one instance of the same type (e.g., if there is a
composition with a cardinality “many” or flows heading
backwards), then it is possible to set a filtering condition
on aggregate functions. The filtering conditions may be
applied to the Sum or Average of attribute values of in-
stances in the slice. The filtered dataset contains all in-
stances from those slices, which contains instances of
the filtered type having sum or average value of the
given attribute within values specified by the condition.
For example, the doctor may ask for those slices, where
average cost of “Procedure is executed” is greater than
100. Another option is to set comparison condition on
number of instances within a slice using the Count
operation. For example, doctor can ask for slices where
“Doctor sets diagnosis” happened more than once. Setting
this condition may be initiated by clicking on the action
node itself (not on an attribute).
As stated before, there are two types of querying

actions – setting filtering conditions and retrieving data.
Figure 5 Filtering condition input form – data partitioning
operation.
The former is explained above. Now let us proceed to the
latter. Although the MEDMOD diagram elements cannot
be modified in PQL, user may supplement the diagram
with additional details. The possible options appear in the
palette and can be dragged into the diagram, thus retriev-
ing data within the diagram.
The first option is the time interval. It can be drawn be-

tween actions containing date&time attribute. The time
interval symbol appears in the diagram. The incoming
arrow denotes interval’s start activity and the outgoing
arrow denotes interval’s end activity. The interval has also
a name. In fact, we may think of a time interval as of a de-
rived attribute in the master activity of the slice, which is
computed as the difference between interval’s end activity
date&time and interval’s start activity date&time. Note that
there may exist multiple interval values because of multiple
start and end instances within the slice. To specify more
precisely the instances the time interval should be mea-
sured between, a conditional expression may be used. For
example, if the doctor wants to measure time between
“Doctor sets procedure” and “Procedure is executed” for
those instances, whose procedure code matches, she should
supply the conditional expression stating “start procedure
code equals end procedure code”. If no conditional ex-
pression has been supplied, then the interval between two
adjacent (in time) instances of corresponding types is mea-
sured. Once the time interval has been defined, it can be
used in filtering conditions.
An important feature is the possibility to add intervals

between instances allocated in different slices, e.g., between
patient’s multiple appearances in the hospital. It would re-
quire grouping of slices to be introduced. Grouping would
allow merging slices depending of some attribute values,
e.g. patient’s surname.
The second data retrieving option is the set of aggregate

functions, which can be evaluated over the filtered dataset
in order to obtain a single number as an answer to the
question asked. They are: Count, Sum and Average mean-
ing respectively the number of instances within the dataset,
the sum of the given attribute values over all instances in
the dataset and the average of the given attribute values
over all instances. They can be applied by dragging the
selected function from the palette to the corresponding
activity node (for Count) or to the attribute (for Sum
and Average). The result (one number) appears on the dia-
gram as an indicator box, which displays the computed
value. In fact, the number of instances of each activity ap-
pears in the diagram by default. However, they can be also
removed from the diagram.
The third possible option of retrieving data is a list

of all instances corresponding to the selected activity.
Dragging corresponding palette element to an activity ini-
tiates the display of all instances of corresponding type in
the filtered (or initial if no filtering conditions are applied)



Barzdins et al. Health Information Science and Systems 2013, 1:14 Page 8 of 11
http://www.hissjournal.com/content/1/1/14
data set. They are displayed as a table, where each row
represents an instance and columns represent the attri-
bute values. There is also one special column containing
slice’s ID the instance belongs to. Since it is possible to
display several instance tables at once, the presence of
an ID in each of them helps to recognize data from the
same slice across several tables. If the filtering condi-
tions have been changed, then the content of all tables
and indicator boxes is recomputed.
Thus, the basic steps in querying are:

1. Process Query Diagram is created from a MEDMOD
diagram – the initial dataset is determined by initial
time interval given by the doctor and the indicator
boxes denoting the number of instances for each
action appear;

2. Doctor may apply two types of filtering conditions –
comparison operations on attributes and aggregation
functions or data partitioning operations;

3. Doctor may retrieve data into the diagram – aggregate
values (Count, Sum, Average), which are one number
answers, or instance tables;

4. Changing filtering conditions immediately reflects
on displayed data.

Results and discussion
Since the main target auditory of the PQL is non-IT pro-
fessionals, we have to assess the adequacy of the query lan-
guage for its purpose – effective ad-hoc querying of
hospital’s data. We will discuss two areas of effectiveness –
usability of language and efficiency of query execution.

Usability of the query language
To test the practical aspects of using the PQL we presented
it to a group of seven doctors working in a hospital. Our
primary interest was to assess the “readability” of the de-
signed clinical process model and of the information filtered
with its application by the end-users. After a short instruc-
tion about the syntax of process description, available filter-
ing mechanisms and visualizing the retrieved information
in data indicator boxes next to each of activity nodes, doc-
tors were asked to explain the meaning of the three pre-
pared screenshots representing retrieved data with a use of
the query language. All participants of this test demon-
strated that they could accurately retrieve the question to
be asked by applying the proposed querying techniques in
our hospital model. In general, all of the participating doc-
tors rated the presented methodology positively and noted
not only the potential for this tool to facilitate management
and improve the transparency of clinical processes, but also
its potential for research on the impact that certain vari-
ables have on the treatment outcomes.
The evaluation of the language in action – the evalu-

ation of the usability for the proposed method of building
queries can’t be done properly without the implementa-
tion of the language. However we are aware that the dir-
ect manipulation interaction mechanism [19] used by the
PQL (the dynamic response to each step in construction
of the complete query), which allows the physician to see
immediate reaction to his every action, shortens the
learning curve greatly and reduces the number of errors
in the process of building queries. For example, the phys-
ician wants to get information about patients having diag-
nosis Chickenpox, which is a typical childhood disease. In
order to do that, he would set a simple condition on activ-
ity Doctor sets diagnosis (see Figure 3). Number of patients
matching the condition would be retrieved and shown im-
mediately. Now if the physician wants to refine the query
and ask about a certain age group, e.g., patients elder than
6 years, but accidentally puts a number 67 instead of 6 in
the condition, he will most likely get no data matching the
condition or some small number of patients. Thus, the
physician may immediately cancel the last condition using,
for example, Undo button, and get to the previous state.
It may seem that simple means of querying described

in the previous sections can answer just simple questions,
and it is true. However combining simple answers may
give answers to more complicated questions. Let’s take a
simple question – “How many patients had diagnosis
Pneumonia?” The answer is a single number – number
of patients with diagnosis Pneumonia. Now adding the
second condition, e.g., “How many patients had diagnosis
Stroke?” answers the conjunction of both questions.
“How many patients had diagnosis Pneumonia and
Stroke?” Thus we obtain another number – number of
patients with both diagnoses. If we have remembered the
first answer, then we can interpret the sequence of an-
swers as an implication, e.g., “If a patient has Pneumonia,
then there is a probability p that he has Stroke”, where p
is the number obtained by dividing the second result
(number of patients with Stroke and Pneumonia) by the
first result (number of patients with Pneumonia only). In
fact, the data mining task, association rule learning, like
market basket analysis (“if the customer has bought A,
then there is a probability p that he will buy B”), is being
solved here. However unlike in the classical data mining
where new hypotheses about data are extracted auto-
matically [20], here the hypotheses generated by hu-
man intelligence can be verified and it can be done very
efficiently – in linear time regarding size of the dataset
(see the next section). Automatic extraction of hypoth-
eses requires non-linear (exponential) time regarding to
the number of items - possible attribute values of inter-
esting MEDMOD activities [21].

Efficiency of query execution
The efficiency of the query execution has been an import-
ant aspect of implementation of query languages, because



Barzdins et al. Health Information Science and Systems 2013, 1:14 Page 9 of 11
http://www.hissjournal.com/content/1/1/14
of obvious reasons - the result of query have to be obtained
in reasonable time. It is conventional that the linear time
of execution of an algorithm regarding the size of data is
acceptable. Now let us show that the execution of PQL
queries (using most of typical constructs) is linear regard-
ing the number of instances in the initial dataset.
As it was mentioned before, building PQL queries has

two main actions - filtering and retrieving data. Let’s dis-
cuss complexity of the filtering in PQL. One of the filter-
ing options was setting simple conditions (comparison
operations) on attribute values. The set of possible com-
parison operations has been chosen in such way that
evaluation of condition on a single instance of the data-
set can be performed in constant time. The reason is the
simplicity of the allowed operations – there are no refer-
ences allowed to other instances. Of course, the constant
depends on the implementation of objects and the size
of used MEDMOD diagram. The evaluation of a single
condition on the complete dataset can be done by evalu-
ating the condition on every instance in the dataset. If
the instance meets the condition, then the correspond-
ing slice should be included into the filtered dataset. The
following pseudo code illustrates the evaluation of a
condition:

function evaluateCondition(initial_dataset, condition)
filtered_dataset := ᴓ

foreach slice in initial_dataset do
foreach instance in slice do

if condition(instance)==true then
add slice to filtered_dataset
exit loop

return filtered_dataset

The main idea is to go through all slices in the initial
dataset and check all instances in the particular slice. If
the condition evaluates to true on the instance, then the
slice is added to the filtered dataset. It is easy to see that
in the worst case all instances in the initial dataset have
to be checked to evaluate the condition, but no more,
because slices are non-overlapping. However, checking a
single instance does not require more time than some
constant, thus the total time needed to evaluate a single
condition on the initial dataset is O(n), where n is the
number of instances in the dataset.
It should be noted that the second filtering option,

data partitioning operation, like, getting k Top or Bottom
slices depending on some attribute, requires no more
than k inspections of every instance. The idea is to main-
tain the list of k top or bottom instances. Every new in-
stance under inspection should be compared to at most
every instance in the list. Since typically k is much
smaller than the total size of the data set (it is meaning-
ful to query just for few extremes of the kind), we have
restricted the possible inputs of k, thus the evaluation of
data partitioning operations can be done also in O(n)
time, where n is the size of the data set (keeping in mind
the multiplicative constant k). The third filtering option
was comparison to aggregates of attribute values within
a slice, like, Avarage or Sum. It is easy to see that com-
puting aggregates also can be done in the linear time.
Thus, the complete execution of filtering step can be

described by the following pseudo code:

function executeFiltering(initial_dataset, conditions)
filtered_dataset := initial_dataset
foreach condition in conditions do
filtered_dataset := evaluateCondition(filtered_ dataset,
condition)
return filtered_dataset

It is easy to see that the execution of filtering step in
PQL has linear time complexity regarding size of the
dataset.
Now let’s discuss the complexity of data retrieving op-

erations. The simplest results that can be obtained in
PQL are the single number answers. They are aggregate
functions Count, Sum and Average over the filtered data-
set. As we have discussed above, aggregates can be com-
puted in time O(n), where n is the size of the dataset.
The same linear time is needed also to get the list of
all instances that correspond to the given MEDMOD
activity – every instance in the dataset must be checked
just once.
It should be noted that the prototype of PQL graphical

editor has been implemented and it includes also an ex-
perimental implementation of query execution without
any optimizations. The implementation is meant to serve
for the usability testing of the language on small datasets.
The size of the initial dataset used in the experiment was
5000 slices (~64 000 instances). On the Intel® Core™ i7-
3610QM CPU @ 2.30GHz, 8 GB RAM, Windows 7 64-bit
operating system workstation queries executed in less than
1 second (the time needed to filter, retrieve and display
data). Based on the results of the experimentations we be-
lieve, that an optimized solution would work acceptably
also for larger datasets, e.g., 30000 slice dataset, that corre-
sponds to the number of patients treated in an average
hospital in Latvia (500 beds).

Summary
The main advantages of the PQL are: 1) the view on data
through “glasses” of familiar process, 2) the simple and
easy-to-perceive means of setting filtering conditions re-
quire no more expertise than using spreadsheet applica-
tions (like MS Excel), 3) the dynamic response to each
step in construction of the complete query, that allows the
doctor to see the immediate reaction to every action - it



Barzdins et al. Health Information Science and Systems 2013, 1:14 Page 10 of 11
http://www.hissjournal.com/content/1/1/14
shortens the learning curve greatly and reduces the error
rate, and 4) the selected means of filtering and data retriev-
ing allows to execute queries in O(n) time regarding the
size of the dataset (number of activity instances).
As a drawback of the proposed query language should

be mentioned the need to import the data from the hos-
pital’s information system to the MEDMOD data struc-
tures. What is important, the import should be adjusted
for every change in the real-world process and this prob-
lem has not been researched yet.

Conclusions
We are about to continue developing this project with
three further steps. First, we are planning to develop
user-friendly graphical editors for the MEDMOD process
modeling and query languages. We have already built pro-
totypes of these editors, which were used in creating the
proof of concept, e.g., examples seen in Figures of this
paper. Nowadays, it is a rather easy task to develop graph-
ical editors for such domain-specific languages within
some of the tool building platforms like GRAF [22] or
METAclipse [23].
The second step is to do evaluation of usability the

proposed language and tool involving the physicians
from several hospitals in Latvia and working with real
data from these hospitals. Thus, also missing part of the
research - integration with hospital’s information sys-
tems is to be researched.
Our third plan is to develop an effective implementa-

tion of the query language. Success of the PQL depends
mainly on the efficient implementation of the query execu-
tion. This task, is closely related to the pattern matching
problem [24] in the field of implementation of model
transformation languages (like, MOLA [25], lQuery [26],
etc.), which have already been used in the various areas of
Model-Driven Engineering.

Competing interest
The authors declare that they have no competing interest.

Authors’ contributions
JB1 and JB2 designed the MEDMOD language. JB1 also supervised all the
aspects of the research. JB2 interacted with doctors during the language
design-time. AS designed and developed the process query language and
implemented its prototype. ER assisted in developing both the MEDMOD
and the query languages. All authors helped writing the manuscript and
read and approved the final version.

Acknowledgements
This work has been partially supported by the European Regional Development
Fund within the project Nr. 2010/0325/2DP/2.1.1.1.0/10/APIA/VIAA/109 and by
the Latvian National Research Program Nr. 2 “Development of Innovative
Multifunctional Materials, Signal Processing and Information Technologies for
Competitive Science Intensive Products” within the project Nr. 5 “New
Information Technologies Based on Ontologies and Model Transformations”.

Author details
1Institute of Mathematics and Computer Science, University of Latvia,
Riga, Latvia. 2Faculty of Medicine, University of Latvia, Riga, Latvia.
Received: 15 July 2013 Accepted: 22 October 2013
Published: 4 November 2013
References
1. Hillestad R, Bigelow J, Bower A, Girosi F, Meili R, Scoville R, Taylor R:

Can electronic medical record systems transform health care? Potential
health benefits, savings, and costs. Health Aff (Millwood) 2005, 24(5):1103–1117.

2. Chaudhry B, Wang J, Wu S, Maglione M, Mojica W, Roth E, Shekelle PG:
Improving patient care systematic review: impact of health information
technology on. Ann Intern Med 2006, 144(10):742–752.

3. Goldzweig CL, Towfigh A, Maglione M, Shekelle PG: Costs and benefits of
health information technology: new trends from the literature. Health Aff
(Millwood) 2009, 28(2):282–293.

4. Barzdins J: Developing health care management skills in times of crisis: a
review from Baltic region. International Journal of Healthcare Management
2012, 5(3):129–140.

5. Burns LR, Bradley EH, Weiner BJ, Shortell SM: Shortell and Kaluzny’s Health
Care Management Organization Design and Behavior. Management. Clifton
Park, NY: Delmar Cengage Learning; 2012.

6. Clark J, Armit K: Leadership competency for doctors: a framework.
Leadersh Health Serv 2010, 23(2):115–129.

7. Edwards N: Doctors and managers: building a new relationship. Clin Med
2005, 5(6):577–579. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/
16411354.

8. Sager A, Socolar D: Health Costs Absorb One-Quarter of Economic
Growth, 2000 – 2005. In Health (San Francisco). Boston; 2005. Retrieved
from http://dcc2.bumc.bu.edu/hs/health costs absorb one-quarter of economic
growth 2000-05 sager-socola 7 February 2005.pdf

9. Scheuerlein H, Rauchfuss F, Dittmar Y, Molle R, Lehmann T, Pienkos N,
Settmacher U: New methods for clinical pathways-Business Process
Modeling Notation (BPMN) and Tangible Business Process Modeling
(t.BPM). Langenbeck’s archives of surgery / Deutsche Gesellschaft für
Chirurgie 2008, 397(5):755–761.

10. Rojo MG, Rolón E, Calahorra L, García FO, Sánchez RP, Ruiz F, Espartero RM:
Implementation of the Business Process Modelling Notation (BPMN) in
the modelling of anatomic pathology processes. Diagn Pathol 2008,
3(Suppl 1):S22.

11. Müller R, Rogge-Solti A: BPMN for Healthcare Processes. In Proceedings
of the 3rd Central-European Workshop on Services and Their Composition.
Karlsruhe, Germany: ZEUS; 2011:65–72. Karlsruhe: CEUR-WS.org. Re-trieved
from http://ceur-ws.org/Vol-705/paper9.pdf.

12. Agt H, Kutsche RD, Wegeler T: Guidance for domain specific modeling
in small and medium enterprises. Proceedings of the compilation of the
co-located workshops on SPLASH '11 Workshops. 63rd edition. NY, USA:
ACM New York; 2011.

13. Beeri C, Eyal A, Kamenkovich S, Milo T: Querying business processes. In
Proceedings of the 32nd International Conference on Very Large Data Bases,
Seoul, Korea, September 12-15, 2006. Edited by Umeshwar D, Kyu-Young W,
Lomet DB, Gustavo A, Lohman GM, Kersten ML, Sang Kyun C, Young-Kuk K.
NY, USA: ACM NewYork; 2006:343–354.

14. Awad A: BPMN-Q: a language to query business processes. In Enterprise
Modelling and Information Systems Architectures - Concepts and Applications ,
Proceedings of the 2nd International Workshop on Enterprise Modelling and
Information Systems Architectures (EMISA'07), St. Goar, Germany, October 8-9,
2007. Gesellschaft für Informatik, Lecture Notes in Informatik, Vol. P-119. Edited
by Manfred R, Stefan S, Klaus T. 2007:115–128.

15. Beeri C, Eyal A, Milo T, Pilberg A: Monitoring business processes with
queries. In Proceedings of the 33rd International Conference on Very Large
Data Bases, University of Vienna, Austria, September 23-27, 2007. Edited by
Christoph K, Johannes G, Garofalakis MN, Divesh S, Karl A, Anand D, Daniela F,
Chee Yong C, Venkatesh G, Carl-Christian K, Wolfgang K, Neuhold EJ. Austria:
ACM Vienna; 2007:603–614.

16. Beheshti S, Benatallah B, Motahari-Nezhad HR, Sakr S: A query language for
analyzing business processes execution. Proc. of BPM 2011, LNCS 2011,
6896:281–297.

17. Forbrig P, Günther H, Barzdins J, Barzdins G, Cerans K, Liepins R, Sprogis A:
UML Style Graphical Notation and Editor for OWL 2. In Perspectives in
Business Informatics Research. 64th edition. Edited by Forbrig P, Günther H.
LNBIP, Springer Berlin Heidelberg; 2010:102–113.

18. Health Seven Level International. http://www.hl7.org.

http://www.ncbi.nlm.nih.gov/pubmed/16411354
http://www.ncbi.nlm.nih.gov/pubmed/16411354
http://dcc2.bumc.bu.edu/hs/health costs absorb one-quarter of economic growth 2000-05 sager-socola 7 February 2005.pdf
http://dcc2.bumc.bu.edu/hs/health costs absorb one-quarter of economic growth 2000-05 sager-socola 7 February 2005.pdf
http://ceur-ws.org/Vol-705/paper9.pdf
http://www.hl7.org


Barzdins et al. Health Information Science and Systems 2013, 1:14 Page 11 of 11
http://www.hissjournal.com/content/1/1/14
19. Shneiderman B: Direct manipulation: a step beyond programming
languages. IEEE Computer 1983, 16:57–69.

20. Annotated Bibliography on Association Rule Mining by Michael Hahsler.
http://michael.hahsler.net/research/bib/association_rules.

21. Agrawal R, Srikant R: Fast algorithms for mining association rules in large
databases. In Proceedings of the 20th International Conference on Very Large
Data Bases. Edited by Bocca JB, Jarke M, Zaniolo C. Santiago, Chile: VLDB;
1994:487–499.

22. Sproģis A, Liepiņš R, Bārzdiņš J, Čerāns K, Kozlovičs S, Lāce L, Rencis E, Zariņš A:
GRAF: a Graphical Tool Building Framework. In Proceedings of the Tools and
Consultancy Track. Paris, France: European Conference on Model-Driven
Architecture Foundations and Applications; 2010:18–21.

23. Kalnins A, Vilitis O, Celms E, Kalnina E, Sostaks A, Barzdins J: Building Tools
by Model Transformations in Eclipse. In Proceedings of DSM’07 workshop of
OOPSLA 2007. Montreal, Canada: Jyvaskyla University Printing House;
2007:194–207.

24. Sostaks A: Pattern Matching in MOLA. In Proceedings of the 9th International
Baltic Conference on Databases and Information Systems, Riga, Latvia, July 5-7,
2010. Edited by Barzdins J, Kirikova M. Riga, Latvia: University of Latvia Press;
2010:309–324.

25. Kalnins A, Barzdins J, Celms E: Model Transformation Language MOLA.
Linkoeping, Sweden: Proceedings of MDAFA; 2004:14–28.

26. Liepiņš R: Library for Model Querying – lQuery. In Proceedings of 2012
Workshop on OCL and Textual Modelling; 2012.

doi:10.1186/2047-2501-1-14
Cite this article as: Barzdins et al.: Graphical modeling and query
language for hospitals. Health Information Science and Systems 2013 1:14.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://michael.hahsler.net/research/bib/association_rules

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Introduction
	Related work

	Methods
	Hospital modeling language MedMod
	Activity
	Follows
	Composition
	Interruption
	Extension
	Process query language

	Results and discussion
	Usability of the query language
	Efficiency of query execution
	Summary

	Conclusions
	Competing interest
	Authors’ contributions
	Acknowledgements
	Author details
	References

