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A dating success story: genomes and fossils
converge on placental mammal origins
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Abstract

The timing of the placental mammal radiation has been a source of contention for decades. The fossil record of
mammals extends over 200 million years, but no confirmed placental mammal fossils are known prior to 64 million
years ago, which is approximately 1.5 million years after the Cretaceous-Paleogene (K-Pg) mass extinction that saw
the end of non-avian dinosaurs. Thus, it came as a great surprise when the first published molecular clock studies
suggested that placental mammals originated instead far back in the Cretaceous, in some cases doubling
divergence estimates based on fossils. In the last few decades, more than a hundred new genera of Mesozoic
mammals have been discovered, and molecular divergence studies have grown from simple clock-like models
applied to a few genes to sophisticated analyses of entire genomes. Yet, molecular and fossil-based divergence
estimates for placental mammal origins have remained remote, with knock-on effects for macro-scale
reconstructions of mammal evolution. A few recent molecular studies have begun to converge with fossil-based
estimates, and a new phylogenomic study in particular shows that the palaeontological record was mostly correct;
most placental mammal orders diversified after the K-Pg mass extinction. While a small gap still remains for Late
Cretaceous supraordinal divergences, this study has significantly improved the congruence between molecular and
palaeontological data and heralds a broader integration of these fields of evolutionary science.
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Background
As George Gaylord Simpson [1] detailed in his ground-
breaking volume, one of the main contributions of the
fossil record to the modern synthesis is primary data on
the tempo of evolution. In recent decades, this aspect of
fossil data has been leveraged for calibrating molecular
estimates of clade divergence times. Concurrently, there
has been expanding use of molecular data in palaeobio-
logical studies (for example, [2]), and linking of fossils
and embryos in studies of evolutionary development (for
example, [3]). Yet, these examples of integration between
fields of evolutionary science are still rare, and fossils are
often excluded from macroevolutionary analyses beyond
palaeobiology because of the complexities associated
with including extinct taxa of uncertain phylogenetic af-
finity or with incorporating incomplete data. It has also
been suggested that fossil data will likely have little
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impact on reconstructions of evolution in extant lineages
(for example, [4,5]), despite extensive evidence to the
contrary (for example, [6,7]). One of the most persistent
question marks concerning the quality of fossil data has
come from molecular dating studies themselves, which
can differ from fossil-based divergence time estimates by
tens to hundreds of millions of years and are regarded
by many as showing the poor quality of the fossil record
[8].
For this reason, many palaeobiologists were pleased

when a recent study [9] using a vast genomic dataset to
reconstruct divergence dates for major placental mam-
mal clades, found extensive congruence with the fossil
record. Indeed it appears that most placental mammal
orders originated and diversified after the demise of the
non-avian dinosaurs during the Cretaceous-Paleogene
(K-Pg) mass extinction 65.5 million years ago (mya), as
palaeomammalogists have long maintained. The timing
of this radiation has been a contentious issue since the
first published molecular clock studies of placentals
pushed the divergence times for many clades deep into
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the Cretaceous [10-12], in some cases nearly doubling
the time between molecular origins and first appearance
in the fossil record.

Accurate dating is crucial for understanding the
last mass extinction
Resolving the timing of the placental mammal radiation
is crucial for understanding the magnitude and selectiv-
ity of the K-Pg mass extinction, as well as factors that
shaped the evolution of mammals and, more generally,
the modern biota. Most molecular divergence studies
until now have favored a ‘Short Fuse Model’, in which
the major clades originated and diversified long before
the K-Pg boundary, with some even suggesting that the
extinction of non-avian dinosaurs had little to no effect
on the evolution of extant clades [4]. Others have sup-
ported a ‘Long Fuse Model’, in which major clades origi-
nated long before their first appearance in the fossil
record, but did not diversify extensively until after the
K-Pg extinction cleared valuable niche space for mam-
mals to occupy [13]. The palaeontological evidence has
been consistently in support of an ‘Explosive Model’,
wherein the major clades originated and diversified near
the K-Pg boundary [14,15]. However, as stem members
of several placental orders can be identified within a few
million years of the K-Pg boundary, most palaeontolo-
gists accept that some placental lineages may well ex-
tend into the Late Cretaceous, as suggested by the Long
Fuse Model [16]. Over the last few years, molecular di-
vergence estimates have been steadily moving closer to
those supported by palaeontological data [17,18]. An-
other recent analysis of a molecular supermatrix also
Figure 1 Schematic comparison of placental mammal divergence esti
(B) the fossil record of eutherians, including placentals [14,15]; and (C
phylogenomic analysis of dos Reis et al. [9]. The shaded grey areas den
placental mammals occur, which, for B and C, correspond with large increa
record. Note that these representations are for general pattern only, and do
early molecular clock analyses [20]. Many molecular divergence studies sho
divergences in the Cretaceous [4,11,13], while some others approach fossil-
reconstructed most intraordinal divergences near the
Cretaceous-Paleogene (K-Pg) boundary [19], but the dos
Reis et al. [9] study goes further still in closing the long-
standing gap between molecular data and fossils
(Figure 1).

Mind the gap
Many hypotheses have been suggested for the persistent
discrepancy between molecular and fossil-based esti-
mates, and a primary one is incomplete sampling in the
fossil record. Rock availability and collection effort can
drive apparent patterns of taxonomic diversity [21,22],
but statistical models suggest that preservation alone is
unlikely to explain the difference in divergence estimates
for placental mammals [23]. The relatively poor sam-
pling of Mesozoic mammal fossils from the large south-
ern continents may be a confounding factor, but current
data offer little support for a southern ‘Garden of Eden’
for placental mammals [14,15; but see 25]. On the mo-
lecular side, the effects of body size, population fluctua-
tions, overlapping generations and other life history and
ecological factors have been shown to affect estimates
of substitution rates, potentially misleading divergence
estimates [26,27].
The new study by dos Reis et al. [9] suggests that pre-

vious molecular clock studies were misled by inadequate
molecular data, poor quality control and treatment of
fossil calibrations, and overly simplistic treatment of the
variation in molecular data. The immense amount of
data (36 nuclear genomes and 274 mitochondrial gen-
omes) used in this study was certainly the most obvious
improvement, representing an increase of multiple
mates based on: (A) previous molecular divergence studies [4,10];
) the recently published divergence estimates from the
ote the period during which significant intraordinal divergences within
ses in placental mammal taxonomic diversity recorded in the fossil
not include estimates of error, which were particularly large in the

w a similar pattern as A, with several placental inter- and intraordinal
based estimates [9,17-19].
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orders of magnitude (in terms of genes sampled) over
previous studies. Perhaps even more important was the
use of more accurate fossil data, following the increasing
participation of palaeobiologists in establishing calibra-
tion dates (for example, [9,28,29]), as well as a more
realistic use of those dates as ‘soft’ bounds or probability
distributions, and not as invariant minima [30]. Indeed,
much of the offset in previous studies may have been
due to inappropriate treatment of fossil data, such as
using single calibrations from poorly sampled intervals
[31] or incorrectly assuming that Cretaceous eutherians
represent extant clades [10]. In addition, methodological
innovations in the approach used by dos Reis et al. [9]
allowed for better treatment of branch length and rate
variance, which will be even more important as next-
generation sequencing continues to expand the use of
genomic data in phylogenetic and other evolutionary
analyses.

Fossils are more than calibration points
The utility of fossils extends beyond their use as first ap-
pearance events. Some studies have attempted to model
clade origins based on present and past diversity, as well
as sampling intensity, with one such analysis concluding
that Primates likely originated in the Cretaceous [32].
Quantifying rates of phenotypic character change across
fossil-dominated phylogenetic trees for placentals has
also suggested that there is no significant change imme-
diately before and after the K-Pg boundary [33]. How-
ever, analyses of this nature are preliminary and limited
by the accuracy of available phylogenies, which, in the
case of mammals, usually focus either on Cretaceous or
more recent Cenozoic taxa. Perhaps the most problem-
atic aspect of these approaches at present is that placen-
tal mammals from the Paleocene (the ten-million year
interval immediately following the K-Pg extinction) are
phylogenetically poorly resolved and thus excluded in
most studies. Ongoing work should eventually resolve
early Cenozoic mammal relationships, allowing for inte-
gration of a broader range of fossil data into studies of
mammalian evolutionary rates and clade origins.
New methods will require good fossil data, and in the

intervening 14 years since the publication of the first ex-
tensive molecular clock estimates of mammal divergence
times [10], more than 100 new genera of Mesozoic
mammals have been discovered [34]. Although none of
these taxa are currently well-supported as stem repre-
sentatives of extant placental lineages [14,15; but see
25,35], they provide important data on the effect of the
K-Pg extinction on mammals and cast doubt on extant-
only based reconstructions, which suggest that at least
43 placental lineages survived that event [4]. Fossil evi-
dence demonstrates that there was a diverse mammalian
fauna leading up to the K-Pg extinction, which included
eutherians and metatherians (the clades that include pla-
centals and marsupials, respectively), as well as the
taxonomically-depauperate, but still extant egg-laying
monotremes. In addition, the latest Cretaceous saw
cosmopolitan dryolestoids and multituberculates, as well
as gondwanatheres and other clades with southern or
more restricted distributions. Most of these clades sur-
vive the K-Pg extinction, but in limited numbers. Other
than the extant clades, only multituberculates recovered
or maintained, according to [36], high levels of diversity
in the Paleogene. Between Eutheria and Metatheria, only
five lineages (Herpetotheriidae, Cimolestidae, Adapisori-
culidae, Leptictidae [+Gypsonictops], and Protungula-
tum) are known to have survived the K-Pg extinction,
while many others perished [14,15,37]. The dos Reis
et al. study [9] adds another dozen or so lineages to the
list of survivors, but it is clear that evidence from fossils
and molecules are converging on a model where a small
number of mammalian lineages survive the K-Pg extinc-
tion and diversify soon afterwards.

The fuse remains cryptic
Although the gap has closed substantially, disagreement
between the most recent molecular divergence time esti-
mates and the fossil record persists. Intraordinal diver-
gence estimates now nearly replicate the fossil record of
placental mammals, but the oldest interordinal diver-
gences continue to predate the first fossil occurrences by
approximately 20 million years. The fuse, relative to the
fossil record, is almost 50 million years shorter than in
the first molecular clock studies, and may change fur-
ther. At the moment, however, this suggests that nearly
25% of placental mammal history remains unrepresented
in the fossil record, if none of the known Cretaceous
eutherians fall along the crown’s Mesozoic fuse. This
remaining gap emphasizes a continuing need for palae-
ontological exploration, as was highlighted by the recent
discovery of an approximately 160 million-year-old eu-
therian [38]. The fossil record and molecular divergence
studies have both improved dramatically in recent years
and continue to demonstrate that there is much more to
learn about mammal evolution.

Conclusions
The great strides that have been made in resolving the
timing of placental mammal origin may also bode well
for the many other contentious gaps between molecular
divergence estimates and the fossil record. The timing of
origin for eukaryotes is a notable area of ongoing debate,
with some molecular estimates and fossil-based esti-
mates differing by more than a billion years, (but see
[39]). The origin of animals (Metazoa) is no less contro-
versial, with some molecular dates predating the fossil
evidence for a ‘Cambrian Explosion’ by 800 million
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years, although most studies find the gap to be a mere
100 million years [40,41]. Studies such as the one by dos
Reis et al. [9] demonstrate that better integration of mo-
lecular and palaeontological data is essential for a more
accurate understanding of the patterns and processes
underlying organismal evolution. Hopefully, this pro-
gress in divergence time estimates will encourage further
synthesis of the diverse sources of data available to evo-
lutionary biologists. It is long overdue.
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