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Abstract

Purpose: There is increasing evidence that neurodevelopmental differences in people with Fragile X syndrome
(FraX) may be explained by differences in glutamatergic metabolism. Premutation carriers of FraX were originally
considered to be unaffected although several recent reports demonstrate neuroanatomical, cognitive, and emotional
differences from controls. However there are few studies on brain metabolism in premutation carriers of FraX.

Methods: We used proton magnetic resonance spectroscopy to compare neuronal integrity of a number of brain
metabolites including N-Acetyl Aspartate, Creatine + Phosphocreatinine, Choline, myoInositol, and Glutamate
containing substances (Glx) in 17 male premutation carriers of FraX and 16 male healthy control individuals.

Results: There was no significant between-group difference in the concentration of any measured brain metabolites.
However there was a differential increase in N-acetyl aspartate with aging in premutation FraX individuals compared
to controls.

Conclusions: This is the first 1 H-MRS study to examine premutation FraX individuals. Although we demonstrated no
difference in the concentration of any of the metabolites examined between the groups, this may be due to the
large age ranges included in the two samples. The differential increase in NAA levels with aging may reflect an
abnormal synaptic pruning process.
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Background
Expanded trinucleotide repeats are associated with sev-
eral disabling neuropsychiatric and neurological condi-
tions, such as Huntington’s disease, myotonic dystrophy,
Freidreich ataxia, spinal and bulbar palsy, and Fragile X
syndrome (FraX). The clinical phenotype of FraX is
caused by an expansion of a single trinucleotide repeat
sequence (CGG) in the 5’ untranslated region of the Fra-
gile X Mental Retardation 1 (FMR-1) gene on the X
chromosome. Expansion of the FMR1 gene to more than
200 CGG repeats (full mutation) is accompanied by
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reproduction in any medium, provided the or
methylation of FMR-1 and loss of FMR-1 protein
(FMRP) production [1,2]. Premutation carriers of FraX
have 55 to 200 CGG trinucleotide repeats with dimin-
ished production of FMRP in blood [3], and elevated
levels of FMR-1 mRNA [4,5]. Normal controls have less
than 55 CGG repeats.
The cognitive and behavioral phenotype of the full

mutation of FraX has been described by many authors
[6,7]. In brief, the cognitive phenotype of males usually
includes a moderate to severe intellectual disability [8,9];
deficits in executive function, short-term memory, atten-
tional control, and arithmetic and visuo-spatial proces-
sing [10]; and the behavioral phenotype includes gaze
aversion, anxiety, hyperactivity, and social-interaction
deficits [11]. Females with FraX are less severely
affected, owing to the second, unaffected X chromo-
some. They may be of average intelligence or have a
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mild intellectual disability and often have executive func-
tion deficits [12]. They are also at an increased risk for
mood disorders and social anxiety [8,13].
Contrary to initial beliefs that premutation carriers of

FraX were unaffected, there is increasing evidence that
they have a variety of cognitive deficits, differences in
brain anatomy and that some develop Fragile X-
associated tremor/ataxia syndrome (FXTAS). For ex-
ample, we reported that adult male premutation carriers
display a wide range of executive function, memory, at-
tention, language and perceptual abnormalities [14], and
have reduced regional grey matter volume in a number
of brain regions including the cerebellum, amygdalo-
hippocampal complex, caudate nucleus, and parietal
lobe [15]. FXTAS is clinically characterized by cerebellar
ataxia, tremor, parkinsonism, and mild cognitive decline,
and occurs in 40 % to 45 % of male premutation carriers
of FraX aged 50 years or older [4,16]. Age-related cogni-
tive decline has also been documented however in male
premutation carriers over 50 years of age without
FXTAS, with particular age-related deficits in executive
function noted [17]. Female premutation carriers of
FraX similarly demonstrate abnormalities including a
mild form of the physical phenotype of FraX [12,18], ele-
vated levels of follicle stimulating hormone [19], prema-
ture ovarian insufficiency (POI) [20,21], and increased
emotional problems, with high rates of major depressive
disorder [13] and some anxiety disorders, in particular
panic disorder and agoraphobia [22,23]. Although less
common, FXTAS has also been reported in female pre-
mutation carriers of FraX [24]. Hence premutation car-
riers of FraX have a wide range of physical and cognitive
abnormalities, many of which are associated with or be-
come more prominent with aging.
Differences in neuronal integrity/metabolism may help

explain some of these cognitive abnormalities in premu-
tation carriers of FraX. One technique used to measure
neuronal integrity is in vivo proton magnetic resonance
spectroscopy (1H-MRS) [25,26]. This provides spectra
which can be used to quantify a range of brain metabo-
lites, including N-acetyl Aspartate (NAA), Creatine +
Phosphocreatine (Cr + PCr), Choline (Cho), myo-
Inositol (mI), and Glutamate containing substances (Glx,
which includes the combined signal from (Glutamate
(Glu) and Glutamine (Gln)).
NAA is present at high concentrations in both gray

and white matter. Its synthesis is closely correlated with
mitochondrial energy metabolism - and so NAA is
often used as a measure of neuronal density and/or
mitochondrial function [26-30]. In contrast Cr + PCr
and Cho are used as measures of (respectively) phos-
phate metabolism and membrane turnover [25,26,31-
33], while mI is associated with glial cell structure and
proliferation [34].
Glutamate is the major excitatory neurotransmitter
and is converted into glutamine by glutamine synthetase
[35]. It has been suggested that neurological and psychi-
atric symptoms associated with FraX may be a conse-
quence of an exaggerated response to metabotrophic
glutamate receptor (mGluR) activation due to an ab-
sence/reduction of FMRP [36]. FMRP modulates den-
dritic maturation and synaptic plasticity and one of the
mechanisms postulated for this effect is its inhibition of
the metabotrophic Glu receptors (mGluR), mGluR1 and
mGluR5 mediated mRNA translation in dendrites
[37,38]. In mouse models the mGluR5 antagonist 2-me-
thyl-6-phenylethynyl-pyridine (MPEP) has been shown
to reverse behavioral phenotypes (including hyperactiv-
ity, seizures, pre-pulse inhibition deficits, repetitive
behaviors) and to lead to remarkable improvements in
synaptic plasticity and spine morphology [39]. Further-
more, a recent human study investigated AFQ056, a re-
ceptor subtype-selective inhibitor of mGluR5, and noted
an improvement in behavioral symptoms in 30 male
individuals with FraX [40].
Hence there is increasing evidence that abnormalities

in glutamatergic metabolism may underpin neurodeve-
lopmental and/or behavioral abnormalities in people
with FraX. Relatively few studies, however, have investi-
gated neuronal integrity in premutation FraX carriers
using 1H-MRS with only two case series (both consisted
of two FXTAS individuals respectively) published to our
knowledge [41,42]. Also nobody has reported on glutam-
ate containing substances. In this study, we therefore
used 1H-MRS to assess neuronal integrity in the parietal
lobe of premutation carriers (without FXTAS) and con-
trols. Furthermore, we investigated age-related differ-
ences in neuronal integrity between the groups. We
chose the right parietal lobe (Figure 1) as our region of
interest, as we have previously demonstrated develop-
mental differences in this brain region and it provides
good signal-to-noise [15]. We chose individuals without
FXTAS, as FXTAS affects only some premutation car-
riers over 50 years of age, is associated with significant
cognitive decline and hence the inclusion of these indivi-
duals may have impacted on the validity of our results.

Method
Subjects
We included 17 male premutation carriers of FraX
(mean age 50 ± 15, range 19–70 years) who were
recruited from genetic services throughout Britain (Guy’s
Hospital London; Kennedy-Galton Centre, Harrow, Lon-
don; St. James Hospital, Leeds; Wessex Hospital, South-
ampton) on the basis of their genotype (that is, not
phenotype). The mean, SD, and age range (47 ± 17,
range, 20–70 years) of the 16 healthy control subjects
did not differ from the premutation carriers. Similarly



Figure 1 Position of voxel in the right parietal lobe.
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they did not differ in IQ or in handedness and were
recruited locally through advertisement and underwent
the same investigations as the premutation carriers of
FraX. All participants gave informed consent and/or
assent (as approved by the Institute of Psychiatry and
the South London and Maudsley NHS Trust research
ethics committee and the individual local research ethics
committees attached to the genetic centers where sub-
jects were recruited).
All participants in the study underwent routine blood

tests and a structured physical and psychiatric examin-
ation [43,44], (for the presence of DSM-IV axis 1 or 2
disorder: [45]). Full scale intelligence quotient (IQ) was
measured by the Wechsler Adult Intelligence Scale [46],
and handedness was determined using Annett’s ques-
tionnaire [47]. We used a variety of psychometric tests
to further assess psychopathology including depression -
Beck Depression Inventory (BDI-II) [48], anxiety - Beck
Anxiety Inventory (BAI) [49] and the Hamilton Anxiety
Scale (HAS) [50], and obsessionality - Yale-Brown obses-
sive compulsive scale (Y-BOCS) [51].
Individuals were excluded if they had a history of

major psychiatric disorder (for example, psychosis), aut-
ism spectrum disorder, head injury, epilepsy, toxic ex-
posure, abnormalities in routine blood tests, drug or
alcohol misuse, clinical abnormality on routine MRI, or
other genetic disorders. All subjects were familiarized
with the MRI scanner before imaging and no sedation
was used during the scanning process.

Blood/cheek swab testing
Polymerase chain reaction (PCR) analysis [52], con-
firmed premutation FraX carrier (55–200 CGG trinu-
cleotide repeats), and control (<55 CGG trinucleotide
repeats) status and a ‘Fragile X Size Polymorphism
Assay’ kit (Applied Systems) measured the precise CGG
trinucleotide repeat number.

MRI and MRS acquisition
All 17 male premutation FraX subjects, and 16 male
controls underwent MRI scanning on the same 1.5-T GE
Signa NV/i MR system (General Electric, Milwaukee,
WI, USA) at the Maudsley Hospital, London. A 3D fast
inversion-recovery prepared spoiled gradient acquisition
in the steady state (IR-FSPGR) pulse sequence was
acquired from all subjects with inversion time = 450 ms,
echo time = 2.8 ms, and repetition time = 13.8 ms using
acquisition parameters chosen using a contrast simula-
tion tool [53]. There were 124 contiguous coronal slices
acquired with a slice thickness of 1.5 mm and a matrix
of 256x256, resulting in an in-plane resolution of
0.859x0.859 mm2.
Single-voxel 1H MR spectroscopy was performed in

the same scanning session using a point-resolved spec-
troscopy (PRESS) sequence with repetition time = 3 s,
echo time = 35 ms, and 160 averages with automated
shimming and water suppression and excellent reprodu-
cibility [54] and used to obtain spectra from each voxel
after CHESS water suppression with high signal to noise
ratio and clearly resolved NAA, Cho, mI, and Cr + PCr
peaks among other metabolites. MR spectra were
acquired from a 6 mL volume prescribed over the right
parietal lobe using co-ordinates derived from the coronal
IR-FSPGR images (Figure 1). The water suppression and
shimming were optimized using a standard automated
pre-scan, and in-vivo metabolite levels for NAA, Cr +
PCr, Glx, Cho, and mI were measured using LCModel
software (LCModel version 6.1) [55]. Each spectra was
reviewed to ensure adequate signal to noise ratio (≥6 as
determined by LCModel) and line width (maximum
10 Hz), as well as the absence of artifacts. The Cramer
Rao lower bound was chosen to be < 20 to ensure a good
quality fit for each peak. LCModel uses a linear combin-
ation of model spectra of metabolite solutions in vitro to
analyze the major resonances of in vivo spectra. In this
case, a basis set acquired on the scanner consisting of
alanine, aspartate, creatine, gamma-aminobutyric acid
(GABA), glutamine, glutamate, glycerophosphocholine,
mI, lactate, NAA, N-acetyl-aspartylglutamate (NAAg),
scyllo-inositol, and taurine, was used, together with a
baseline function. Lipids and macromolecules were not
estimated. An example LCModel output is given in
Figure 2
To ensure that differences in tissue composition did

not account for metabolic differences between subject
groups the tissue composition of each 1H-MRS voxel
was analyzed using SPM (Statistical Parametric Map-
ping) software (available at http://www.fil.ion.bpmf.ac.

http://www.fil.ion.bpmf.ac.uk/spm


Figure 2 An example of typical MR spectra from the right parietal lobe. The in vivo data and fitted baseline are shown in black, with the
LCModel fit overlaid in red.
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uk/spm) to determine the percentage of grey and white
matter and CSF composition from the IR-FSPGR images
within the MRS voxel. The metabolite levels were then
corrected for the amount of cerebrospinal fluid in the
spectroscopy voxel.
As expected, many of the metabolite peaks that were

included in the LC model had a Cramer-Rao lower
bound of > 20. However, NAA, Cr + PCr, Cho, mI, and
Table 1 Psychometric data

Premutation
FraX Carriers

(n=17)
Mean (SD)

Healthy
controls
(n=16)

Mean (SD)

P

Age (years) 50 (15) 47 (17) 0.547

Full Scale IQ 114 (13) 115 (17) 0.882

Verbal IQ 113 (16) 116 (21) 0.669

Subcategories 51 (9) 53 (14) 0.570

Vocabulary 26 (4) 26 (5) 0.947

Comprehension 21 (3) 21 (5) 0.832

Similarities 113 (12) 110 (14) 0.552

Performance IQ

Block design 35.50 (8.00) 32.82 (8.34) 0.413

Object Assembly 28.81 (6.02) 25.91 (6.39) 0.249

BDI 5 (5) 5 (4) 0.746

BAI 5 (6) 3 (2) 0.276

HAS 0 (0) 0 (0) 1.000

Y-BOCS - rituals 2 (4) 2 (4) 0.910

Y-BOCS - obsessions 3 (4) 3 (4) 0.910

CGG 87 (18) 29 (6) < 0.00001

BAI,Beck Anxiety Inventory, BDI, Beck Depression Inventory, CGG, Cytosine-
guanine-guanine, HAS, Hamilton Anxiety Scale, Y-BOCS, Yale Brown Obsessive
Compulsive Scale.
Glx all had a Cramer-Rao lower bound < 20 for the par-
ietal voxel of interest, and concentrations were therefore
derived from these metabolite peaks.
All spectroscopy analysis was carried out blind to sub-

ject status.

Statistical analysis
Spectroscopy
All spectroscopy data were normally distributed. We
compared mean differences in metabolite concentrations
between premutation carriers of FraX and controls using
independent t-tests. We also correlated (within each
group) age and metabolite concentrations. We then
investigated group differences in brain aging by trans-
forming the relevant Pearson’s r coefficient into Fisher’s
Z-score to test the significance of the difference between
correlations, where a Z observed ≥±1.96 is significant [56].
Table 2 Spectroscopy data

Premutation
FraX Carriers

(n=17)
Mean (SD)

Healthy
controls
(n=16)

Mean (SD)

P

Voxel contents

Grey matter volume % 42.4 (12.8) 40.5 (7.8) 0.605

White matter volume % 52.1 (14.1) 54.1 (8.8) 0.627

CSF matter volume % 5.5 (3.0) 5.4 (1.9) 0.928

Choline (mM) 1.23 (0.16) 1.20 (0.20) 0.598

Creatine + phosphocreatinine (mM) 6.17 (0.39) 5.90 (0.41) 0.062

Myoinositol (mM) 3.90 (0.40) 3.83 (0.53) 0.665

NAA (mM) 6.21 (0.42) 6.09 (0.81) 0.600

Glx (mM) 9.95 (0.17) 9.91 (0.28) 0.430

All spectroscopy data attained from voxel in right parietal lobe.
Glx, Glutamate/Glutamine; NAA, N-acetyl aspartate.

http://www.fil.ion.bpmf.ac.uk/spm


Table 3 Correlation of brain metabolites and age in
premutation FraX carriers and controls

Correlation with age Difference
between
the two
group z

Premutation
FraX

Carriers
(n=17) r

Healthy
controls
(n=16) r

Choline 0.002 −0.210 0.548

Creatine + phosphocreatinine 0.274 0.077 0.530

Myoinositol 0.375 0.243 0.379

NAA 0.303 −0.412 2.345*

Glx −0.024 −0.585 1.678

The difference in correlation co-efficients between premutation FraX carriers
and controls is expressed where Z≥±1.96 is significant (P< 0.05).
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Results
Demographic profile
There was no between group difference in age or IQ at
the time of MRI acquisition between premutation FraX
carriers and controls. Similarly no difference was noted
between the groups in symptoms of depression, anxiety,
or obsessive compulsive disorder (Table 1).

Spectroscopy (Tables 2 and 3)
There was no difference in the content of grey matter,
white matter or cerebrospinal fluid (CSF) in the voxel of
interest between premutation FraX individuals and con-
trols. Similarly no difference was noted in the concentra-
tion of any of the metabolites measured.
Figure 3 Correlation between NAA levels measured in the right parie
A differential increase in NAA levels with aging within
premutation FraX carriers was found compared to con-
trols (Z = 2.345) (Figure 3). A non-significant differential
increase in Glx levels with aging within premutation car-
riers compared to controls was noted (z = 1.678)
(Figure 4). When we examined individuals between 30
and 60 years of age only (n= 18), this differential in-
crease in Glx levels was significant (z = 2.110).

Discussion
This is the first MRI spectroscopy study to compare a
group of pre-mutation FraX individuals to healthy con-
trols. We demonstrated an age-related increase in NAA
in the pre-mutation FraX individuals compared to
healthy controls. We found no mean difference in the
concentration of any of the metabolites examined be-
tween the two groups, although this may be due to the
large age ranges included in the two samples.
Two previous studies (examining four individuals in

total) with FXTAS gave conflicting results in relation to
NAA levels with two individuals having reduced cerebel-
lar NAA/Cr + PCr levels and two individuals having nor-
mal NAA/Cr + PCr levels [41,42]. There have been no
previous MR spectroscopy studies to our knowledge to
date examining full mutation FraX individuals.
NAA is present at high concentrations in both grey

and white matter and its’ synthesis is closely correlated
with mitochondrial energy metabolism - therefore NAA
is often used as a measure of neuronal density and/or
r2 = 0.092 

r2 = 0.017 

tal lobe and age in premutation FraX carriers and Controls.



Figure 4 Correlation between Cho, Cr + PCr, mI and Glx measured in the right parietal and age in premutation Frax Carriers and
Controls.
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mitochondrial function [26-30]. NAA levels in healthy
controls usually increase gradually with age in grey and
white matter until approximately the first and third dec-
ades respectively before declining gradually thereafter
[57,58]. Thus, increased NAA levels, with subsequent
down-regulation, are normally associated with healthy
cerebral maturation [59]. Morphological studies of
healthy neural development are generally consistent with
these spectroscopic findings, reporting an initial rapid
overproduction of neural synapses in early to late child-
hood [60], with subsequent synapse elimination late in
childhood and adolescence [61], followed by a slow re-
duction in synaptic density thereafter [61,62]. Our find-
ing of a differential increase in NAA concentration with
aging in premutation carriers of FraX is consistent with
previous research suggesting an abnormal maturation
process; for example increased cell packing secondary to
greater synaptic density. This suggestion is supported by
prior work in mice [63], Drosophilia [64], and humans
[65,66], that demonstrated synaptic alterations in the ab-
sence of FMRP. Alternatively, the greater age-related in-
crease in NAA in premutation carriers of FraX may
reflect a hyper-metabolic state in the mitochondria with
a subsequent increased risk of oxidative damage and
neuronal apoptosis [67].
We detected no difference in Glx levels and found no

age-related changes in these metabolites between the
FraX and control groups, however we were unable to
examine these metabolites (that is, Glu/Gln) individu-
ally as these can only be reliably examined at magnetic
field strengths > 3 T due to the multiple overlap of the
resonances at field strengths < 3 T. Therefore future
studies, at higher magnetic field strengths that can
examine these metabolites individually are merited. In-
deed, future pharmaco-therapeutic strategies for FraX
may focus on Glu, with evidence that the mGluR5 an-
tagonist, MPEP, abolishes the audiogenic seizure pheno-
type in FMR1 knock-out mice [68], decreases the
mushroom body defects (fused β-lobes) [69], and as
described above, ameliorates several clinical features in
mouse models. These findings have been replicated in
multiple animal models with many phenotypes and
have led to several human Phase II trials that are
ongoing.
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In addition to a medium field strength (1.5 T), our
study was also relatively small and so may not have had
sufficient power to detect small group differences. How-
ever, it is the largest study to date in this population,
and we have reported case–control differences in similar
sample sizes in people with other neurodevelopmental
disorders. We did not obtain spectra from other brain
regions (due to time constraints) and thus we were un-
able to examine the neuronal integrity of limbic regions
and cerebellum for example. Also, this is a cross-
sectional study, and therefore we are only able to de-
scribe age-related differences - and not individual
changes over time. Hence, there may have been un-
detectable age-related confounders (for example, health
differences) affecting our results, although all individuals
had no recent health difficulties at the time of scanning.
Nevertheless, this pragmatic study design allows analysis
across a wide age range (52 years), which would not be
achievable in a longitudinal brain imaging study. Whilst
we found no difference in NAA levels between the two
groups, NAA levels varied with age in both groups and
therefore it is possible that if we examined a narrower
age range and had greater numbers of individuals in the
study, differences in mean NAA levels may have been
detected between premutation FraX individuals and con-
trols. Consequently our finding of no difference in the
levels of NAA should be interpreted with caution. Simi-
larly, given the large age range and relatively small sam-
ple size, our findings of no difference in the levels of
other metabolites should be interpreted with caution.
Conclusion
This is the first 1H-MRS study to examine premutation
FraX individuals. We detected a differential increase in
NAA levels with aging. This finding provides initial evi-
dence for an abnormal maturation process in permuta-
tion FraX - perhaps reflecting increased cell packing
secondary to abnormalities in synaptic pruning and syn-
aptic density; and/or differences in mitochondrial
metabolism.
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