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Modular organization and reticulate evolution of
the ORF1 of Jockey superfamily transposable
elements
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Abstract

Background: Long interspersed nuclear elements (LINES) are the most common transposable element (TE) in
almost all metazoan genomes examined. In most LINE superfamilies there are two open reading frames (ORFs), and
both are required for transposition. The ORF2 is well characterized, while the structure and function of the ORF1 is
less well understood. ORF1s have been classified into five types based on structural organization and the domains
identified. Here we perform a large scale analysis of ORF1 domains of 448 elements from the Jockey superfamily
using multiple alignments and Hidden Markov Model (HMM)-HMM comparisons.

Results: Three major lineages, Chicken repeat 1 (CR1), LINE2 (L2) and Jockey, were identified. All Jockey lineage
elements have the same type of ORF1. In contrast, in the L2 and CR1 lineage elements, all five ORF1 types are
found, with no one type of ORF1 predominating. A plant homeodomain (PHD) is much more prevalent than
previously suspected. ORF1 type variations involving the PHD domain were found in many subgroups of the L2
and CR1 lineages. A Jockey lineage-like ORF1 with a PHD domain was found in both lineages. A phylogenetic
analysis of this ORF1 suggests that it has been horizontally transferred. Likewise, an esterase containing ORF1 type
was only found in two exclusively vertebrate L2 and CR1 groups, indicating that it may have been acquired in a
vertebrate common ancestor and then transferred between the lineages.

Conclusions: The ORF1 of the CR1 and L2 lineages is very structurally diverse. The presence of a PHD domain in
many ORF1s of the L2 and CR1 lineages is suggestive of domain shuffling. There is also evidence of possible
horizontal transfer of entire ORF1s between lineages. In conclusion, while the structure of the ORF2 appears to be
highly constrained and its evolution tree-like, the structure of the ORF1 within the CR1 and L2 lineages is much
more variable and its evolution reticulate.

Keywords: Long interspersed nucleotide elements, Non-long terminal retrotransposon, Open reading frame 1,
Plant homeodomain, RNA recognition motif
Background
Transposable elements (TEs) are mobile genetic elements
found in nearly all eukaryotic genomes and are the major
contributor to variation in genome size [1]. They are genomic
‘invaders’, one type of genomic component involved in ge-
nomic conflict with the host genome. There is an increasing
body of evidence suggesting that the evolution of TEs is
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reticulate [2-6]. For example, the envelope domain has
been independently acquired by three Gypsy lineages [4].
LINEs are the predominant order of elements found in

most animal genomes examined [7]. Fourteen clades were
assigned to five groups based on reverse transcriptase
(RT) phylogeny by Eickbush and Malik [8]. These five
groups were converted to superfamilies in the TE classi-
fication system proposed by Wicker et al. [7]. Since
then, several clades and one group has been added [9].
Here we use the term superfamily/group since neither
term is universally accepted. The Jockey superfamily/
group is one of the younger superfamilies/groups that
encodes for an apurinic endonuclease (APE) within the
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ORF2 [8]. Eight clades fall within the Jockey super-
family/group, Jockey, Rex1, CR1, L2, L2A, L2B, Daphne
and Crack (Figure 1) [9]. The CR1 and L2 clades are
widely distributed in metazoans, while the Jockey clade
is confined to the arthropods.
All known LINE ORF2s code for a RT and an endo-

nuclease. The APE and RT proteins supply the enzy-
matic activities for cDNA synthesis and host genome
nicking during the replication cycle. The structure and
function of the ORF1 is less well understood and the
structure more variable. Khazina and Weichenrieder
[11] have classified ORF1s into five types based on the
type and organization of domains (Figure 2). Type I
contains at least one RNA recognition motif (RRM)
immediately upstream of a Cys2HisCys (CCHC) zinc
knuckle, and is found in the I, Jockey, R1, Tad1, plant
LINE1 (L1) and L2 clades [11-13]. Type II is the L1 type
ORF1 APE

ORF1 APE

ORF1 APE

ORF1 APE

Figure 1 LINE superfamilies. Relationships between LINE superfamilies/gr
reverse transcriptase (RT) phylogeny [7,9,10]. LINE clades were first assigned
Groups are called superfamilies in the TE classification paper by Wicker et a
dashed outline). In this paper, all Jockey superfamily/group full-length sequ
based on an APE-RT phylogeny (see Figure 3). Subgroups were identified w
onto the phylogeny (see Figures 4, 5 and 6).
of ORF1, a coiled-coil (CC) domain [14] upstream of a
single RRM domain and a C-terminal domain (CTD)
[11,15]. This type is found in the L1, CR1, L2 and R1
clade elements [11,12]. Type III [11] has an occasional
C-terminal RRM in addition to the PHD domain. The
PHD domain was first identified in CR1 elements [16].
The Type III ORF1 with an RRM and a PHD domain
has been found only the CR1 clade. Type IV has an
esterase domain and was also first described in CR1
clade elements [11,16] but has also been identified
in L2 clade elements [12]. Type V is unclassified
ORF1s [11].
The ORF1 classification is based on a sample of 14

ORF1s from 10 LINE clades [11]. Clade allocation was
based on the Repbase sequence title, which theoretically
indicates the clade that the element belongs to [17].
Here we explore the structure and evolution of the
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Figure 2 ORF1 types identified in the Jockey, CR1 and L2 lineages. Subtypes (A, B, C) are used to show the diversity of ORF1 structures
within types identified in this paper. Subtype titles within a circle denote those previously described by Khazina and Weichenrieder [11] and
Kapitonov et al. [16]. Lineages and subgroups were identified by ORF1 structure and phylogenetic structuring based on the apurinic
endonuclease (APE) and reverse transcriptase (RT) domains (see Figures 3, 4). Clades within lineages were identified by the RTclass1 tool [9]. The
phylum and species are taken from the Repbase sequence title [17]. The ORF1 structure schematic shows coding domains 5’ to the endonuclease
identified in this publication and are drawn to scale. Domains not always present are shown with a dashed outline. Red: CCHC, gag-like
Cys2HisCys zinc-knuckle; green: CTD, C terminal domain; yellow: coiled-coil domain; purple: esterase; pink: PHD, plant homeodomain; blue: RRM,
RNA recognition motif; lilac: zf/lz, zinc finger/leucine zipper. The hatched CC, RRM + CTD domains indicate transposase 22, the RCSB Protein Data
Bank entry 2yko and Pfam entry PF02994. A key to all the domains is shown in Figure 6.
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ORF1s of Jockey superfamily/group elements in more
depth within a phylogenetic framework. We used all
full-length Jockey superfamily/group sequences from the
Repbase database [18] for two reasons. First, Repbase is
the most comprehensive and widely used TE database.
Second, many entries are consensus sequences, allowing
us to examine a wide range of elements. We examined
448 full-length Jockey superfamily/group elements. ORF1
structures were determined by multiple alignment and
HMM-HMM comparison against three protein databases.
The structures were then mapped onto an APE and RT
phylogeny. We identified ORF1 types in clades where they
had been not previously described. We also identified
structural variations of the ORF1 types. We propose that
there has been ORF1 domain shuffling in Jockey super-
family/group elements, and that in some instances entire
ORF1s may have been horizontally acquired.

Results
Sequence retrieval from Repbase and Repeatmasker
classification
One thousand two hundred forty nine Jockey superfamily/
group sequences from the Jockey, Rex1, CR1, L2, L2A,
L2B, Daphne, and Crack clades were downloaded from
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the Repbase database [18]. These were classified by
Repeatmasker as 536 CR1, 422 L2, 54 RexBarber, 206
Jockey, 20 L1 and 1 R1 type sequences. The L1 and R1
sequences were removed. Only one complete RexBarber
sequence was found, so this was also removed. After
aligning and removing all incomplete sequences, 451 se-
quences remained: 235 CR1, 87 Jockey and 129 L2 type
sequences. Three sequences that did not fall clearly into
a subgroup (see next section) - one sequence in the CR1
lineage and two in the L2 lineage - were not further
analyzed.

Phylogenetic analysis, clade assignment and ORF1
domains identified
The sequences fell into three well-supported lineages -
L2, CR1 and Jockey - except perhaps for the L2 lineage,
which has a bootstrap value of 71. These lineages are
consistent with the ‘type’ classification by Repeatmasker
based on TE encoded proteins (Figure 3) [19]. Within
each lineage, subgroups were identified both by the level
of bootstrap support in the phylogenetic analysis and by
the type of ORF1 domains found (Figures 4, 5 and 6).
Subgroups were named according to the lineage identi-
fied and a subgroup number assigned. Several subgroups
are not monophyletic but have been grouped together
L2 
(Figure 4)

Jockey
(Figure 5)

CR1 
(Figure 6)

99

99

71

Figure 3 Full-length Jockey superfamily elements fall into three
lineages: CR1, L2 and Jockey. The neighbor-joining phylogeny is
based on a concatenation of the ORF2 apurinic endonuclease (APE)
and reverse transcriptase (RT) domains and inferred using MEGA 6
[20] with the Jones-Taylor-Thornton (JTT) substitution matrix. Robustness
of the nodes was estimated by 500 bootstrap replications. Only
bootstrap values for the three lineages are shown. Lineages are
delineated by alternate light and dark grey shading using FigTree
[21]. Details of the ORF1 types identified in the three lineages are
shown in Figures 4, 5 and 6.
based on ORF1 structure. The Wicker et al. [7] classifi-
cation system proposes that sequences belong to the
same family if they share 80% nucleotide sequence iden-
tity in at least 80% of the coding or internal domain, or
within their terminal repeats, or in both. Apart from the
L2 subgroup 1, the subgroups we identified share 49 to
70% identity in the RT domain and so are not equivalent
to a family (Table 1). We have used the term ‘lineage’ to
describe the three large grouping identified by phylogen-
etic analysis, and the term ‘subgroup’ to describe the
groups within lineages identified by phylogenetic analysis
and ORF1 structure. L2 subgroup 2 therefore refers to
the L2 lineage subgroup 2, not the L2 clade. When refer-
ring to the L2 clade, we will use the term ‘clade’. This
was to avoid confusion with the Repbase clades. We
chose not to use the term ‘type’ used by Repeatmasker
to avoid confusion with ORF1 types.
The lineages and subgroups identified were compared

with the clade assignment based on the Repbase sequence
name and the RTclass1 tool [9]. Clade assignments were
concordant with our phylogenetic analysis and Repeat-
masker type except for the L2 sequences (Figure 3). These
were split into four clades, Daphne, Kiri, L2 and L2B by
the RTclass1 tool. The Repbase sequence names did not
always reflect clade assignments [see Additional file 1].

ORF1 classification
The beginning of the ORF1 was identified in all sequence
alignments except for two of the four L2 subgroup 8 se-
quences, which are also lacking the 5’ untranslated region
(UTR). Three main domains were identified, a gag-like
CCHC domain, an RRM motif and a PHD (Table 1).
A sequence logo of the PHD and CCHC domains for
all sequences in which they were found is shown in
Additional file 2. Alignments for two examples of RRM
domains (CR1 subgroup 3 and L2 subgroup 6) are shown
in Additional file 3. The number of sequences in each sub-
group from the three lineages, that is, CR1, L2 and Jockey,
and the domains identified, are summarized in Table 1.
Pairwise identity at the amino acid level for the ORF1
domain sequence alignments range from 21.7 to 85.9%
and probabilities from 37.1 to 100% (Table 1). Only four
domains have probabilities less than 85%, the RRM
domain in the L2 subgroup 2, the zinc finger in the CR1
subgroup 7, the RRM domain in CR1 subgroup 4 and
the RRM+CTD domain in CR1 subgroup 5.
Five ORF1 types were identified by Khazina and

Weichenrieder [11] using a sample of 14 ORF1s from 10
LINE clades. Using as a basis the ORF1 structure de-
scribed and the elements used by Khazina and Weichen-
rieder [11], we classified the ORF1s identified in this study
into the same types, but have also added a subtype category
A, B and C to describe variations (Figure 2). We have classi-
fied the ORF1 from the CR1 subgroup 2 as type V, which is
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an unclassified ORF1, because we were able to identify less
than 10% of the entire ORF. Type I has at least one RRM
domain immediately upstream of a CCHC zinc knuckle
[11]. In our analysis, this ORF1 type was found in all Jockey
lineage elements, CR1 subgroup 3 and L2 subgroups 2, 8
and 10 (Figures 2, 4, 5, 6 and Table 1). Type II is found in
the human L1 element and has a CC domain, a single RRM
domain and a CTD domain [11]. In the Research Collabora-
tory for Structural Bioinformatics (RCSB) and the Protein
families (Pfam) databases the three domains are submitted
as a single entry, transposase 22 (2yko_A and PF02994,
respectively). This type was identified in several CR1 and
L2 subgroups (Figures 2, 4, 6 and Table 1). In the L2 sub-
group 5 a PHD domain was found downstream from the
transposase 22, after a stop and start codon and therefore
is probably at the beginning of the ORF2. A PHD domain
was also identified in L2 subgroup 6 and CR1 subgroup 5,
at the N-terminus of the ORF1 (Figures 2, 4, 6 and
Table 1). For Type III, Khazina and Weichenrieder [11]
predicted an occasional C-terminal RRM in addition to
the PHD domain. A single PHD domain was found by us
in CR1 subgroup 6 and L2 subgroup 4 and an RRM do-
main associated with an PHD domain in CR1 subgroup 4.
Type IV is an ORF1 with an esterase domain [16], some-
times associated with a zinc finger/leucine zipper [16], and
was identified in CR1 subgroup 7 and L2 subgroup 9.

ORF1 Clans clustering and phylogenetic analysis of Type I
ORF1 domains
The PHD and CCHC domains are quite small, 50 or so
amino acids long [see Additional file 2]. An attempt
was made to determine the relationship between PHD
and CCHC domains from different subgroups by mul-
tiple alignments using muscle [27] and a phylogenetic
analysis using MEGA 6 [20]. This resulted in trees for
both the PHD and the CCHC domains with unresolved
branches (data not shown). A Clans analysis [28],
which is multiple alignment independent, using all
PHD and CCHC domains, resulted in two large clus-
ters, one for the CCHC domains and one for the PHD
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domains. No clear structuring was found within these
two clusters.
Six clusters were inferred in a Clans clustering of the

individual RRM domains (Figure 7). Cluster 1 consisted
of ORF1 type II RRM domains from CR1 subgroup 5
and L2 subgroups 3, 5 and 6. All other ORF1 type II
RRM domain sequences did not cluster strongly with
other subgroups. The ORF1 type III RRM domain was
found in a single subgroup, CR1 subgroup 4. These se-
quences all fell into a single cluster, Cluster 5. The ORF1
type I RRM domains fell into 4 clusters. The upstream
(‘U’) and downstream (‘D’) RRM domains from the Jockey
subgroup 1 formed two separate clusters (Clusters 2 and
6). The RRM domains from L2 subgroup 2 and CR1 sub-
group 3 fell into two clusters, the upstream RRM domains
together in a single cluster (Cluster 4), and the downstream
RRM domains together in a separate cluster (Cluster 3).
The relationship between the type I ORF1 domains is
shown in Figure 8. The ORF1 domains from the Jockey
subgroup 1 and from L2 subgroup 8 fell into two well-
supported groups. The ORF1 domains from CR1 sub-
group 3 and L2 subgroup 2, however, clustered to-
gether, with the CR1 subgroup 3 sequences being
embedded at two positions within the L2 subgroup 2-
sequence phylogeny.

Discussion
In most LINE superfamily/group elements there are two
ORFs, in which the ORF2 codes for at least two
domains, an APE and RT (Figure 1). In contrast to the
ORF2, the structure of the ORF1 is not only less well
characterized but also more structurally variable. Based
on a sample of 14 ORF1s from 10 LINE clades, ORF1s
have been previously classified into five types, depending
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Figure 6 ORF1 types mapped onto the CR1 lineage apurinic endonuclease (APE)-reverse transcriptase (RT) phylogeny. The phylogenies
are sub-trees of the Jockey superfamily APE-RT (ORF2) phylogeny (see Figure 3). Subgroups were identified based on phylogenetic clustering and
the ORF1 type. These are delineated by alternate light and dark grey shading using FigTree [21] and numbered. Subgroup numbers are shown
within white circle in the phylogeny and next to the ORF1 structure schematic. Subgroups were assigned to clades using the RTclass1 tool [9].
The ORF1 type/subtype (see Figure 2) and phylum in which elements were identified are shown above the schematic. The phylum is not
shown if only a single sequence was identified. ORF1 domains were identified by multiple alignment of all sequences within the subgroup
and an HMM-HMM comparision [22]. Coiled-coil domains were identified using Pcoils [23]. The ORF1 structure schematic shows domains 5’ to the
endonuclease. The ORF1 structure is drawn to scale, domain lengths are the minimum identified. We have used the term ‘ORF1’ for simplicity’s sake,
although in some cases domains are shown that are probably at the 5’ end of the ORF2 (L2 subgroup 5 and CR1 subgroup 4) or at the 5’ end
of a single ORF (L2 subgroup 4 and CR1 subgroup 6). Domains are color-coded, details are shown in the key. CCHC, gag-like Cys2HisCys
zinc-knuckle; CTD, C terminal domain; PHD, plant homeodomain; RRM, RNA recognition motif; zf/lz, zinc finger/leucine zipper.
Transposase 22 refers to the RCSB Protein Data Bank entry 2yko_A and Pfam entry PF02994, the L1ORF1 protein composed of a coiled-coil,
RRM and CTD domain [24]. Red asterisks indicate single sequences within a subgroup from a different phylum. In Figure 4 (L2 lineage) these are
a single Branchiostoma floridae (Chordata) sequence in subgroup 6 and a single Capitella species (Annelida) sequence in subgroup 3. In Figure 5
(Jockey lineage) this is a single Drosophila sequence in subgroup 2.
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on the organization and type of domain present [11]
(Figure 2). Elements from the Jockey superfamily/
group exhibit the highest ORF1 diversity. This diver-
sity is chiefly found in the CR1 elements, in which
three of the five types have been identified [11]. A
large scale analysis of the ORF1 of Jockey superfamily/
group elements has not been previously attempted.
Here we map the structure of the ORF1 from 448
Jockey superfamily/group elements onto a phylogen-
etic framework.
ORF2 phylogenetic and clade analysis
Full-length elements from the eight clades of the Jockey
superfamily/group, Jockey, Rex1, CR1, L2, L2A, L2B,
Daphne and Crack, were assigned by phylogenetic analysis to
three well supported lineages, L2, CR1 and Jockey (Figure 3).
This assignment is consistent with the ‘type’ classification
by Repeatmasker [19] [see Additional file 1]. Elements
were further assigned to clades using the RTclass1 tool
[9]. Repbase sequence names theoretically reflect the
clade that they are assigned to [17]. Clade assignments



Table 1 Identification of ORF1 domains
ORF1

Lineage/subgroupa No. Seqs Av. RT nt%
pairwise
identityb

Type/subtypec Domaind Length aae Av. aa%
pairwise
identityf

Top hitg Probh No. RRMs/CCHCs

L2_1 13 82.2 V No hits

L2_2 16 58.2 IC PHD 50 30.0 3zpv_A 98.2

RRM 155 26.0 2ghp_A 80.7 2

CCHC 67 46.1 PTHR23002 98.5 3

L2_3 43 57.6 IIA Tnp22 158 30.6 2yko_A 100.0 1

L2_4 7 64.8 IIIA PHD 51 43.0 2vpb_A 99.7

L2_5 8 52.2 IIB Tnp22 208 27.7 2yko_A 100.0 1

PHD 55 29.1 3lqh_A 99.7

L2_6 23 55.9 IIC PHD 51 42.5 2vpb_A 96.6

Tnp22 209 35.5 2yko_A 100.0 1

L2_7 7 50.3 IIA Tnp22 191 21.7 2yko_A 100.0 1

L2_8 4 62.7 IC RRM 188 34.5 3smz_A 86.7 2

CCHC 60 45.3 PTHR23002 99.2 3

L2_9 4 57.1 IVA Esterase 176 28.0 3p94_A 99.9

L2_10 2 79.0 IA RRM 63 85.9 2lkz_A 90.2

CCHC 64 76.9 PTHR23002 98.9

Jockey_1 75 51.8 IB RRM 143 29.1 2cjk_A 96.6 2

CCHC 55 46.2 PTHR23002 98.9 3

Jockey_2 12 51.6 IA RRM 74 32.5 2lxi 93.8 1

CCHC 54 39.4 PTHR23002 98.8 3

CR1_1 22 53.5 IIA Tnp22 186 23.5 2yko_A 98.5 1

CR1_2 11 70.0 V PHD 50 41.3 2vpb_A 94.6

CR1_3 8 58.8 IC PHD 53 48.1 2vpb_A 96.3

CC 34 22.3

RRM 144 37.1 1b7f_A 93.8 2

CCHC 65 46.8 PTHR23002 98.3 3

CR1_4 112 53.1 IIIB PHD 53 27.6 3zpv_A 95.0

RRM 53 28.4 2dhg_A 79.4 1

CR1_5 3 58.1 IIC PHD 50 71.9 2vpb_A 99.4

Tnp22 129 41.8 2yko_A 63.1 1

CR1_6 18 54.0 IIIA PHD 48 40.6 1wep_A 99.4

CR1_7 56 62.9 IVB lz 44 34.0 2yon_A 85.1

zf 44 34.0 2gmg_A 37.1

Esterase 174 43.5 2waa_A 99.7

CR1_8 4 61.5 Tnp22 175 36.5 2yko_A 100.0
aLineage and subgroup identified by phylogenetic analysis based on a concatenation of the ORF2 apurinic endonuclease (APE) and reverse transcriptase (RT)
domains. For further details please see the text.
bAverage percent pairwise nucleotide identity of the RT domain for each subgroup, estimated using Geneious [25].
cORF1 type (I-V) identified for each subgroup, based on ORF1 types described by Khazina and Weichenrieder [11]. Subtypes (A, B and C) are used to show the
diversity of ORF1 structures within types identified in this paper.
dDomains identified within the ORF1 by HMM-HMM comparision [26] or by Pcoils [23]. CC, coiled-coil domain; CCHC, gag-like Cys2HisCys zinc-knuckle; lz, leucine
zipper; PHD, plant homeodomain; RRM, RNA recognition motif; Tnp22, transposase 22, (RCSB Protein Data Bank entry 2yko_A and Pfam entry PF02994), which is
the L1ORF1 protein composed of a coiled-coil, RRM and CTD domain [24]; zf, zinc finger.
eMinimum length of the inferred amino acid sequence for each domain.
fAverage percent pairwise inferred amino acid identity for each domain, estimated using Geneious [25].
gTop hits starting with ‘PTHR’ are from the Panther Classification System, all other top hits are from the RCSB Protein Data Bank.
hProbability reported by HHPred [26].
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Figure 7 RNA recognition motif (RRM) domains fall into six clusters. All RRM domains were clustered using CLANS with Blastp
and default values [28]. Where two RRM domains were identified, the 5’ domain is labeled ‘U’ for upstream, the 3’ domain ‘D’ for
downstream. Single dots are single sequences and are color-coded by subgroup. ORF2 subgroup numbers are shown in circles. Dotted
lines connecting sequences represent the confidence in the Blastp hit and are colored from dark to light grey; lightest is the lowest,
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were concordant with our phylogenetic analysis and
Repeatmasker type except for the L2 sequences (Figure 3).
These were split into four clades, Daphne, Kiri, L2 and
L2B, by the RTclass1 tool (Figure 4). For these four
clades, the Repbase sequence names did not consistently
reflect clade assignments [see Additional file 1].

Diversity in ORF1 domains and structure
The ORF1s of the L2 and CR1 elements were found to
be highly diverse, both in terms of structure and the
number of types of ORF1s found (Figures 2, 4 and 6).
All five ORF1 types [11] were identified in the L2 and
CR1 lineages, in contrast, all elements in the Jockey
lineage have a single type of ORF1 (Figure 5). Three
structural variations of ORF1 types I and II [11] were
identified that contained a PHD domain (Figure 2). A
total of eight differently structured ORF1s were found in
the L2 lineage, and seven in the CR1 lineage. While the
type I and II ORF1s predominate in the L2 lineage and
the ORF1 type III B was only found in the CR1 lineage,
there is no clear ‘CR1-like’ or ‘L2-like’ ORF1.
For the ORF1 types II and III, the type classification is

somewhat concordant with a clustering analysis of the
RRM domains (Figure 7) and the top hits from the
HMM-HMM analysis (Table 1). However the RRM
domains from type I do not all cluster together and the
top hits are not the same, suggesting similarity at the
structural but not amino acid sequence level (Figure 7).
A major homology region (MHR) has been previously
identified in the TART, TAHRE and DOC elements of
the Jockey lineage [29]. In our analysis, these elements
have a type IB ORF1 [see Additional file 1]. A visual
comparison of the amino acid alignment of the MHR in
the TART and DOC elements of the Jockey lineage [30]
with our alignment of the RRM domain identifies the
MHR as a RRM domain (data not shown).
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Figure 8 Neighbor-joining phylogeny based on ORF1 Type I
domains. The ORF1 of CR1 group 3 sequences cluster with those of
L2 group 2, suggesting that this type of ORF1 may have been
horizontally acquired across lineages. The phylogeny was estimated
using MEGA 6 [20] and inferred using the JTT substitution matrix.
The robustness of the nodes was estimated by 1,000 bootstrap
replicates. Only bootstrap values for major groups are shown.
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Functions and putative functions of ORF1 domains
Current evidence suggests that the RRM, esterase and
CCHC zinc-knuckle domains are all involved in tran-
script binding, stabilization and chaperoning. The L1
ORF1 RRM domain is a single-stranded nucleotide bind-
ing protein with nucleic acid chaperone activity, prefer-
entially binding to RNA [24,31]. Many RNA binding
proteins have a modular structure, and the RRM domain
itself is often found in multiple copies [32], as in the
type I ORF1s (Figure 2). The CTD domain has been
shown experimentally to assist the RRM domain in nu-
cleic acid binding [24]. The CTD and CCHC domains
therefore probably act as accessory domains in RNA
binding. In the type I ORF1s, the CCHC zinc-knuckles
found are gag-like, a gene found in long terminal repeat-
retrotransposons and retroviruses. In the HIV retrovirus
the role of the CCHC domain has been demonstrated to
include the chaperoning of the transcript as well as the
full-length cDNA [33]. Consistent with these findings, in
SART1, a telomeric specific LINE R1 element, all three
CCHC zinc-knuckle motifs are involved in the specific
packaging of the mRNA into the ribonucleoprotein
(RNP) complex [34]. TART elements are Jockey clade
elements that form the telomeres in Drosophila and
therefore presumably perform an essential host cellular
function. Intriguingly, RNP complexes for TART were
found to be efficiently transported into the nucleus,
unlike non-telomeric Jockey clade elements [30], sug-
gesting that there may be a host control system of
‘friendly’ and ‘unfriendly’ RNP complexes. The structure
of the esterase domain has been recently elucidated [35].
The authors suggest that the esterase domain is involved
in membrane targeting, maybe driving RNP assembly on
membrane surfaces [35]. As far as we can tell, there have
been no functional studies specifically on the PHD
domain in LINE elements. However the PHD domain in
other proteins has been well-studied and have been
shown to recognize modified histones [36,37]. Domains
in this class are known as ‘epigenetic readers’. Although
there are examples of LINEs that target specific genome
regions, such as tRNA genes, telomeres or micro-
satellites, in most LINEs with an APE domain the target
specificity of host sequences has been relaxed [10,38,39].
This suggests that the PHD domain may be involved in
general targeting of the host genome during integration.
In some subgroups there is apparently a single ORF, with
a PHD domain at the N-terminus (L2 subgroup 4 and
CR1 subgroup 6). The 5’ UTR of LINE elements is
widely variable [38], so it is difficult to generalize about
their structure. However, some of these elements are
reported by Repbase as ‘autonomous’ and the region 5’
to the PHD domain is highly repetitive, suggesting that
these may be full-length elements. These elements may
therefore be a reversion to R2 like elements, with a
single ORF or may be TE parasites, using machinery of
other elements to transpose.

Reticulate evolution and horizontal ORF1 acquisition
The possibility of horizontal ORF1 acquisition has been
proposed to explain, for example, the presence of the
esterase type ORF1 in elements from diverse phyla in
phylogenetically disjunct LINE clades [35]. In our ana-
lysis the esterase type ORF1 was found only in two
exclusively vertebrate subgroups, the L2 subgroup 9 and
CR1 subgroup 7. This suggests that in the Jockey super-
family/group this ORF1 type may have been acquired in
a vertebrate common ancestor and then transferred
between the lineages. Our results also suggest that the
ORF1 of CR1 subgroup 3 and L2 subgroup 2 may also
have been horizontally transferred, possibly within a
mosquito host. This ORF1 has three CCHC zinc fingers
downstream from two RRM domains. In a clustering
analysis of individual RRM domains, the upstream RRM
domains from CR1 subgroup 3 and L2 subgroup 2 clus-
ter together (Cluster 4 in Figure 7), while the down-
stream RRM domains cluster together in a separate
subgroup (Cluster 3 in Figure 7). In a phylogenetic ana-
lysis of all five domains, the two RRM and three CCHC
domains, from all sequences with this type of ORF1,
CR1 subgroup 3 sequences cluster with those of L2 sub-
group 2 (Figure 8). All CR1 subgroup 3 sequences are
from the mosquito, Aedes aegypti, and all except one se-
quence in L2 subgroup 2 are from mosquitoes, including
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Aedes aegypti (Table 1). All other CR1 mosquito
sequences (subgroup 4) have the type III ORF1. We
therefore speculate that the ORF1 has been horizontally
acquired within a mosquito host. Recombination at the
DNA or RNA level is one way in which ORF1s may be
horizontally acquired [35]. Due to their mode of replica-
tion, LINEs are often 5’ truncated upon insertion. This
suggests a simple way an ORF1 may become associated
with an un-related ORF2, resulting in ORF1 shuffling. If
a TE is 5’ truncated in such a way that it has a complete
ORF2 but no ORF1 and the insertion occurs into other
type of TE in between the ORF1 and ORF2, this would
result in a hybrid TE with the ORF1 of one type of TE
and the ORF2 of another type of TE.

Modular organization and domain shuffling
A protein domain can be defined as an independent evo-
lutionary unit that can either have an independent func-
tion or contribute to the function of a multidomain
protein. The major molecular mechanism that leads to
multidomain proteins and novel combinations is non-
homologous recombination, sometimes referred to as
‘domain shuffling’ [40]. The variability in domain type
and organization in ORF1s identified here in the Jockey
superfamily/group is also suggestive of domain shuffling.
Within ORF1 types the chief difference we identified
(Figure 2) is the variable presence and position of a PHD
domain in the CR1 and L2 lineage elements. From our
data, we cannot determine the direction of domain shuf-
fling. The RRM and CCHC domains are found in the
ORF1 of L1, I and Jockey superfamily/group elements
[11,13] indicating that they are ancient components of
LINEs. The variability in ORF1 structure that is the re-
sult of the combination of various modules, seen here in
Jockey superfamily/group elements, is concordant with
an increasing body of data indicating that the origin and
evolution of TEs is reticulate, that is, it involves exten-
sive domain shuffling [2-6].

Conclusions
We inferred a phylogeny based on the APE and RT
domains for full-length Jockey superfamily/group ele-
ments from the Repbase database. ORF1s structures
were mapped onto the ORF2 phylogeny. All Jockey
lineage elements have the same type of ORF1, with one
to two RRM domains upstream of three CCHC domains.
In contrast, in the L2 and CR1 lineage elements, all five
ORF1 types are found, with no one type of ORF1 pre-
dominating. The structure of these ORF1s is indicative
of domain shuffling. The PHD domain is much more
prevalent than previously suspected; it was identified in
four ORF1 types in many subgroups within the L2 and
CR1 lineages and both upstream and downstream of the
RRM domain. There was also evidence of reticulate
evolution and possibly horizontal transfer of entire ORF1s.
The ORF1 of the CR1 subgroup 3 and L2 subgroup 2 is
unusual, a Jockey like ORF1 with a PHD domain upstream
of the RRM domains. Our analyses suggest that this ORF1
has been horizontally transferred. From our data we could
not determine the direction or origin of this transfer. The
esterase domain type ORF1 was found only in two exclu-
sively vertebrate subgroups from the L2 and CR1 lineages,
indicating that it has been acquired in a vertebrate com-
mon ancestor and then may have been transferred be-
tween the lineages. Within the Jockey superfamily/group,
while the structure of the ORF2 appears to be highly
constrained and its evolution tree-like, the ORF1 structure
of the L2 and CR1 lineages is much more variable and its
evolution reticulate.
Methods
Sequence retrieval from Repbase, Repeatmasker
classification and alignment
All 1,249 sequences from the Jockey superfamily/group
[9] were downloaded from the Repbase database in April
2014 [18]. The two lungfish sequences were taken from
Metcalfe et al. [41]. The sequences were classified into
‘type’ by screening against a database of transposable
element encoded proteins as implemented by the web-
based Repeatmasker program [19]. Sequences were then
conceptually translated, aligned using ClustalW as
implemented in BioEdit and adjusted by eye [42]. In-
complete sequences were removed.
Phylogenetic analysis and identification of subgroups
The ORF2 RT domain is typically used to classify TEs at
both the superfamily/group and clade levels [7,9]. Phy-
logenies based on the APE are generally concordant with
RT phylogeny, but with less resolution [10]. We there-
fore inferred two phylogenies, one based on the RT do-
main alone, and one based on a concatenation of the
APE and RT domains. For both regions, the optimal
model of amino acid substitution was estimated using
MEGA 6 [20] with default settings. A neighbor-joining
tree was inferred using the highest-ranked substitution
model (JTT matrix) and the robustness of the nodes es-
timated by 500 bootstrap replicates. The topology of the
two trees was similar. The chief difference between the
two was that in the tree based on APE and RT domains
the sequences fell into three well-defined groups consist-
ent with the Repeatmasker ‘type’ classification, whereas
in the tree based on the RT domain alone, the Repeat-
masker L2 ‘type’ sequences fell into two groups with
poor bootstrap support for the relationship between the
groups (data not shown). All subsequent analyses were
therefore based on the tree inferred from a concaten-
ation of the APE and RT domains.
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Subgroups within the three large ‘type’ groups were
identified based on ORF1 alignment and support by the
phylogenetic analysis. Sequences were renamed according
to the type identified by Repeatmasker and subgroup. The
RTclass1 tool [9] was used to classify subgroups into
clades. Because the RTclass1 tool allows the analysis of a
single sequence at a time, at least two sequences from
each subgroup were assigned to a clade. Percent pairwise
identity within the reverse transcriptase at the amino acid
level for both the lineages and the clades were estimated
using Geneious [25].
Open reading frame 1 analysis
For each subgroup identified the region 5’ to the endo-
nuclease domain and 3’ to the 5’ UTR was extracted as an
alignment. For simplicity’s sake this region will be referred
to ‘ORF1’, although some domains identified are most
likely at the beginning of ORF2 or are at the 5’ end of a
single ORF. The beginning of the ORF1 was identified by
a methionine and checked against the Repbase EMBL file
if the translation was available. Each subgroup was ana-
lyzed for similarity to known domains using HMM-HMM
comparisons as implemented in HHpred [22] against
the following databases, the RCSB Protein Data Bank
[43] as at 27 December 2012, the Pfam database [44] as
at 2 December 2011 and the Panther Classification Sys-
tem [45] as at 1 May 2012. For each region the top hit
was taken as the hit with the highest probability, or the
hit with the highest coverage with a high probability
(>85%).
For sequences with top hits against the RCSB Protein

Data Bank [43], the RCSB record was checked to deter-
mine the type of the domain identified. For RRM domains,
the publication associated with the top hit at the RCSB
Protein Data Bank [43] was used to find the RNP consen-
sus sequences. The JnetPred secondary structure predic-
tion software [46] as implemented in JalView [47] was
used to identify beta-sheets and alpha-helices. Pcoils [23]
was used to infer coiled-coil domains and to confirm the
position of coiled-coil domains in transposase 22 domains.
For each subgroup the pairwise percent identity at the
amino acid level for the ORF1 was estimated using
Geneious [25].
Clans clustering and phylogenetic analysis of ORF1
domains
Domains identified as RRM were extracted from the ORF1
sequences. The region between the RNP2 and RNP1 con-
sensus sequences was used because this was the only
region shared by all sequences. For sequences where two
RRM domains were identified, each domain was extracted
separately, the first domain labeled ‘U’ for upstream and
the second domain labeled ‘D’ for downstream. The RRM
domains were clustered using CLANS and Blastp with
default values [28].
For subgroups where the ORF1 structure was two RRM

domains upstream of three CCHC domains, the entire
region containing the RRM and CCHC domains were
extracted, aligned using MUSCLE [27] and a neighbor-
joining phylogeny inferred using MEGA 6 [20] with the
highest ranked substitution model (JTT matrix) .
Additional files

Additional file 1: List of all sequences analyzed in this paper,
classified according to lineage and subgroup. Repbase sequences
and Australian lungfish sequences from Metcalfe et al. [41] used. Lineages
and subgroups were identified by our phylogenetic analysis and ORF1
structure analysis. The sequences titles are those used by Repbase [18] or
Metcalfe et al. [41]. ORF1 types are based on Khazina and Weichenrieder
[11]. ORF1 type details are shown in Figures 2, 4, 5 and 6. Repeatmasker
type is the type assigned by the web-based Repeatmasker program using
a database of transposable element encoded proteins [19]. Clades were
assigned using the RTclass1 tool [9].

Additional file 2: Sequence logos of all PHD and CCHC domains
identified. The domains were aligned using MUSCLE [27]. Sequence
logos were created using Weblogo [48].

Additional file 3: Alignment of the two RRM domains from CR1
lineage subgroup 3 and L2 lineage subgroup 2. Alpha helices and
beta sheets were identified using Jnet secondary structure prediction
[49] as implemented by Jalview [47]. Putative RNP1 and RNP2 domains
are based on alignment outputs from the HMM-HMM HHpred [26]
analysis. Sequence titles are the lineage and subgroup, identified by
our phylogenetic analysis and ORF1 structure analysis, followed by the
Repbase title.
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