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Abstract

effect on clinically relevant miRNA genes.

susceptibility, Cancer, Diabetes

Background: MiRNA expression profiling is being actively investigated as a clinical biomarker and diagnostic tool
to detect multiple cancer types and stages as well as other complex diseases. Initial investigations, however, have
not comprehensively taken into account genetic variability affecting miRNA expression and/or function in
populations of different ethnic backgrounds. Therefore, more complete surveys of miRNA genetic variability are
needed to assess global patterns of miRNA variation within and between diverse human populations and their

Methods: Genetic variation in 1524 miRNA genes was examined using whole genome sequencing (60x coverage) in a
panel of 69 unrelated individuals from 14 global populations, including European, Asian and African populations.

Results: We identified 33 previously undescribed miRNA variants, and 31 miRNA containing variants that are globally
population-differentiated in frequency between African and non-African populations (PD-miRNA). The top 1% of
PD-miRNA were significantly enriched for regulation of genes involved in glucose/insulin metabolism and cell division
(p < 1077), most significantly the mitosis pathway, which is strongly linked to cancer onset. Overall, we identify 7
PD-miRNAs that are currently implicated as cancer biomarkers or diagnostics: hsa-mir-202, hsa-mir-423, hsa-mir-196a-2,
hsa-mir-520h, hsa-mir-647, hsa-mir-943, and hsa-mir-1908. Notably, hsa-mir-202, a potential breast cancer biomarker,
was found to show significantly high allele frequency differentiation at SNP rs12355840, which is known to affect
miRNA expression levels in vivo and subsequently breast cancer mortality.

Conclusion: MiRNA expression profiles represent a promising new category of disease biomarkers. However,
population specific genetic variation can affect the prevalence and baseline expression of these miRNAs in diverse
populations. Consequently, miRNA genetic and expression level variation among ethnic groups may be contributing in
part to health disparities observed in multiple forms of cancer, specifically breast cancer, and will be an essential
consideration when assessing the utility of miRNA biomarkers for the clinic.
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Background

MicroRNA (miRNA) expression profiles have been dem-
onstrated to be unique for a wide range of human dis-
eases, including different stages of tumor progression
and metastasis [1]. MiRNA expression levels and func-
tion can also be affected by global factors, such as gen-
omic variation due to population history, which have
been less well studied. MiRNAs function mainly to
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inhibit protein synthesis through binding between
miRNA seed sequences and complementary sequences on
target messenger RNA (mRNA) genes. This binding
causes degradation and/or translational repression of
mRNA genes [2-6]. A single mature miRNA (21-25 base
pairs) has the ability to inhibit protein synthesis of over
6,000 mRNA targets [7-13], and miRNAs are predicted to
regulate the protein expression of 30-60% of all human
protein-coding genes [14,15]. Therefore, changes in
miRNA expression in response to disease, the combined
effects of circulating miRNA being extremely stable in
blood and serum [16] and advances in miRNA detection
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methods, such as in situ hybridization and RT-PCR, have  action: (1) by affecting miRNA expression patterns and
made miRNAs excellent candidates as diagnostic and (2) by disrupting miRNA/mRNA target recognition
prognostic markers in the clinic [17,18]. As a result, miR-  through interfering with seed sequence binding.
NAs are currently under clinical investigation as bio- To date, the genetic coverage of miRNA genes has been
markers for a number of complex diseases, including low (3x to 5x coverage) in large-scale resequencing pro-
breast cancer, diabetes (types 1 and 2), asthma, sepsis, lung  jects, such as the 1000 Genomes, which can be problematic
cancer, prostate cancer, leukemia (ALL and AML), and for identifying low-frequency variants with high confidence
various pediatric cancers [1,19-27]. [35]. This is particularly true in African populations which
Most recent studies identifying potential miRNA bio-  have been shown to possess higher levels of genetic diver-
markers of disease have been performed in European or  sity, including low-frequency polymorphisms, compared to
Asian populations [28-32] with only a handful of studies other populations worldwide [36-39]. However, diverse
performed in populations of African descent [33,34]. None-  African populations are still highly underrepresented in
theless, data from these studies have demonstrated that cir-  studies of genomic variation [38]. Furthermore, recent
culating miRNA profiles were considerably different studies of population differentiation at miRNA variants
between African-Americans and European-Americans have used microarray technology, which captures only a
in early stage lung cancer [33] and were expressed dif-  fraction of the total number of miRNA in the genome,
ferentially between these populations in early stage resulting in ascertainment bias and also reduced power to
breast cancer [34]. Given the importance and ubiqui-  discover novel variants [3,40,41].
tous nature of miRNA-mediated gene expression, it has In the present study, we analyzed 1524 miRNA sequences
been proposed that SNPs mapping within miRNA, par-  at high coverage (60x) using whole genome sequence data
ticularly within the miRNA seed sequences base posi-  from 69 individuals representing 14 worldwide populations
tions 2—-8 of the mature miRNA, may have functional from Europe, Asia, the Americas and Africa, (Figure 1A)
consequences resulting in expression and/or phenotypic  including 3 African hunter-gatherer populations not in-
variation [4] (Figure 1B). Therefore, genomic variation cluded in the 1000 Genomes datasets [39]. These samples
within miRNA, due to human population history, may allow direct comparison of genetic variability in all anno-
be affecting ethnic disparities in complex diseases such  tated miRNAs without the ascertainment bias common to
as lung and breast cancer through two mechanisms of = SNP array data in geographically and ethnically diverse
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Figure 1 Variants per miRNA region. (A) The different colored circles on the world map indicate the geographic location of the 14 sampled
populations. Populations from Africa are shown in red (Pygmy, Hadza, Sandawe, Yoruba, Luhya, and Maasai), Asian populations in green (Gujarati
Indians, Japanese, and Han Chinese), European populations in blue (Toscani ltalians, Utah residents with Northern European ancestry), and
recently admixed populations in stripes (African-Americans, Mexican-Americans and Puerto Ricans) (See Methods). Representative regions are
enclosed by the thick black lines (B) The top panel shows the human miRNA hairpin, hsa-mir-302d, displayed in its modified form with a novel
SNP found in its seed sequence circled in black. Seed sequences are defined as the 2" -8" base of the 5" end of mature double-stranded MiRNA.
The mature sequence is highlighted with the guide strand shown in red and the passenger strand shown in blue. The bottom panel depicts the
summary of allele types in miRNA genes including novel and non-singleton alleles. Here, mature sequences (green) are defined as all bases within
the mature miRNA excluding those within the seed sequence (red). Consistently, stem loops (blue) are defined as all bases excluded from the
mature and seed sequences but included in the pre-miRNA hairpin (grey).
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populations. Based on our data, we identified 33 previously
unidentified variants in miRNA genes and 31 significantly
population-differentiated (PD) variants based on estimates
of Fst between African and non-African populations. We
identified 7 PD variants within miRNA that have been ex-
perimentally linked to onset, progression, and/or metastasis
of cancers with known health disparities between patients
of European and African descent. Specifically, we find a T-
allele at SNP rs12355840 in hsa-mir-202, that has been
shown to increase miRNA expression iz vivo and to be pro-
tective against breast cancer mortality [42], and to be highly
PD between African and non-African populations. To our
knowledge, a complete survey of genetic variation in all
miRNA using high-coverage whole genome data has not
previously been performed and has uncovered novel
miRNA variants, and determined miRNA biomarker candi-
dates that may differ among diverse population groups.

Results

Novel variants identified in miRNA hairpins

In a sample of 69 unrelated individuals, we identified a
total of 773 polymorphisms (700 SNPs and 73 insertion-
deletions) in pre-miRNA hairpins which passed strict
quality control filters (Figure 1B). Of these 773 variants,
411 mutations occurred in pre-miRNA stem/loop regions,
242 in mature miRNA, and 120 in the seed sequences
(Figure 1B and Additional file 1: Table S1). Among these
polymorphisms, we identified 198 previously undescribed
mutations that are currently not present in dbSNP v135.
The number of alleles per base was calculated separately
for each region of the miRNA (stem-loop, mature, and
seed). In our dataset, allele frequencies were slightly higher
in the stem-loop region compared to the mature miRNA
and seed region (0.013, 0.011 and 0.011, respectively).

To control for somatic mutations, undescribed mutations
found in a single individual (ie. singletons) were removed
from analyses and 33 novel variants present in multiple
individuals (non-singletons) were analyzed (Figure 1B).
Among the non-singleton mutations identified in pre-
miRNA hairpins, 5 novel mutations were in highly con-
served miRNA seed sequences (Figure 1B and Additional
file 1: Table S2). The first novel seed variant, a “C/T” SNP
at chr3 128081086, was located in the 3’ strand of human
miRNA hsa-mir-1280 and was present in one Hadza and
one Sandawe, two hunter-gatherer populations from
Tanzania. The second, a “C/T” SNP at chrl 62544469, was
located in the 3’ strand of hsa-mir-942 and was present in
one Hadza and two Sandawe individuals. Two novel seed
sequence indels found at low frequency were an “ACA”
deletion in miRNA hsa-mir-4483 at chrl0 115537763-
115537766, found in 2 Yoruban individuals, and a “T”-
allele insertion in hsa-mir-3940 at chrl9 6416444 in 2
individuals with northern European ancestry from Utah.
Lastly, a “CT” deletion located on chromosome 6 in the
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3’ strand of hsa-mir-4640 was found in 9 individuals from 7
global populations (namely, 1 Pygmy, 2 Sandawe, 1 Yoruba,
1 Maasai, 2 African-Americans, 1 Mexican-American
and 1 Gujarati Indian individual). Using miRNA target
prediction software, we determined that in the absence of
the “CT” mutation in miRNA hsa-mir-4640, the 3’ strand
was predicted to individually target 316 binding sites in 79
genes (Additional file 1: Table S3). With the “CT” deletion,
however, the number of predicted targets dropped to 11
binding sites in 3 genes, where gene targets did not over-
lap between the original and modified miRNA.

MicroRNA conservation and frequency of population-specific
miRNA alleles

We compared levels of nucleotide diversity in miRNA to
other genomic sequence classes (for examples, exons
and introns) in each population group using Watterson’s
estimator of theta (Bvw) (Figure 2A). We found in our
high-coverage sequence data that miRNAs were among
the most conserved sequences in the genome, at the
same level as exons (Figure 2A), consistent with results
from prior lower-coverage sequencing studies [41].
Overall, however, African populations had the highest
level of nucleotide diversity across all sequence classes
(By =5.0 £ 0.7 x 10%) compared to European and Asian
populations (B = 3.6 + 0.2 x 10*) (Figure 2A).

In addition, we identified 319 population-specific
miRNA alleles (PSMAs), defined as variants present exclu-
sively in 1 of the 14 globally sampled populations. About
two-thirds (66.8%) of PSMAs were present in African pop-
ulations and the proportion of population-specific alleles
(ie. population-specific density) was highest in Africans
relative to non-Africans, consistent with prior analyses of
human genetic variation [41]. In particular, Pygmy hunter-
gatherers had the highest population-specific density with
11 PSMAs per genome (Figure 2B). Among the Hadza
hunter-gatherers, we found two high frequency PSMAs
with allele frequency >50% in the Hadza only, a novel
“A/C” SNP in the stem-loop of hsa-mir-1291 and an “A/G”
SNP (rs111566161) in the 3’ mature sequence of miRNA
hsa-mir-4711. This “A/G” SNP was found to be exclusively
shared by two Hadza and a Southern Kalahari San individ-
ual, a population thought to share an ancient genetic ances-
try with the Hadza and other African click speaking
populations [43,44].

Population differentiation of human miRNA

To measure population differentiation, we calculated
pairwise Fgt at variants in miRNA genes (See Methods).
Fsr ranges from O to 1 with an estimate of 0 indicating
no population differentiation and an estimate of 1 indi-
cating complete differentiation. Estimates of Fst at
miRNA variants were calculated hierarchically: (a) be-
tween individual populations (Figure 3A-B), (b) between
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Figure 2 Population specific SNPs. (A) Genomic nucleotide diversity, as estimated by Watterson's (6), for each population. Within populations,
nucleotide diversity was measured for different genomic sequence classes including miRNA genes (black) which were conserved to a level
comparable to exons (blue), in all populations. (B) The number of population specific miRNA alleles (PSMA) divided by the number of genomes
collected for each population (shown in black). The right axis displays the number of high frequency PSMAs, with an allele frequency greater
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major geographic regions (for example, Europe-Africa,
Europe-Asia, Africa-Asia) (Additional file 2: Figure S1)
and (c) between pooled African and pooled non-African
populations (Figure 3C). We then compared the individual
estimates of Fgt to empirical distributions of miRNA Fgr.
The pairwise Fgy values that were outliers (ie. within the
top 5% of the empirical distribution or above the 95" per-
centile) were classified as population-differentiated (PD)
and variants with these extreme values were inferred to be
enriched for SNPs under recent selection [45]. Our data
showed that among major geographic regions, African
populations had the highest average Fsr values among
populations, with 34 PD-miRNA alleles between Africa
and Asia, 33 PD-miRNA alleles between Europe and
Africa, and 18 PD-miRNA alleles between Europe and
Asia (Figure 3B; Additional file 2: Figure S1).

In a comparison of pooled African and pooled non-
African populations, we identified 31 PD-miRNAs con-
taining variants with outlier Fgr values above the 95" per-
centile of the distribution of miRNA Fgr values (Fgr >
0.186 with p <0.05) (Figure 3C and S2; Additional file 1:
Table S4), with 4 PD-miRNA variants in seed sequences
(Additional file 2: Figure S3). Furthermore, when we apply
a more stringent criteria for population-differentiation
among miRNA variants, we found 8 highly population-
differentiated miRNAs (HPD-miRNAs) with variants
above the 99™ percentile representing the top 1% of all
pairwise Fsr estimates (Fst>0.366; p <0.05) (Figure 3C
and Additional file 1: Table S4).

Messenger RNA target and functional enrichment of
HPD-miRNAs

Experimentally-validated mRNA targets of the 8 HPD-
miRNAs were identified by querying 45 publically available

deep sequencing and microarray datasets (See Methods).
We found that these 8 HPD-miRNAs experimentally
down-regulated the expression of 2,139 unique human
mRNA target genes in at least two datasets (Figure 4A).
Target gene enrichment analysis revealed that 72 of the
2,139 mRNA targets were significantly over-regulated (p <
0.05) by these 8 HPD-miRNAs compared to a null or
random set of 8 miRNA (See Methods) (Figure 4A-B
and Additional file 1: Table S5). The genes of these over-
regulated mRNA targets were involved in immune
response, metabolism, developmental processes, cell com-
munication, transport and response to stress (Additional
file 2: Figure S4). Additionally, 14 of the 72 enriched gene
targets were reported to be candidate loci in genome-wide
association studies (GWAS) (Additional file 1: Table S6).
Functional enrichment was performed by two methods
for the 2,139 mRNA gene targets of HPD-miRNA. First,
genomic functional enrichment was used to determine
if particular biological functions regulated by the 8
HPD-miRNAs were overrepresented compared to the
null expectation across the genome (Figure 4B) [46].
Based on this analysis, we identified 319 statistically
over-represented functions (p <0.05; n=319) (Figure 4).
The top hits included sugar (mannose, fructose, and glu-
cose) metabolism and the regulation of insulin (p <107)
(Additional file 1: Table S7). Secondly, we performed a
bootstrapping analysis of miRNA functional enrichment
to account for the non-random distribution of miRNA
targets throughout the genome and identified biological
pathways overrepresented by HPD-miRNAs as compared
to other non population-differentiated miRNA sets
(Figure 4B). In particular, the 2,139 experimentally-
validated gene targets of the 8 HPD-miRNAs were found
to function in 5,475 annotated biological processes based
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Figure 3 Pairwise Fst for each miRNA allele. (A) Boxplots of pairwise Fst between African populations (green), between non-African populations
(red), and between African and non-African populations (blue) are grouped hierarchically by major geographic region: Europe-Asia, Africa-Europe,
Africa-Asia, and between African and non-African samples (grey). Black circles are outliers above 1.5 times the interquartile range. The red circles and
the black solid lines are the mean and median of the distributions, respectively. (B) Zoom in of boxplots in A showing the median (black lines) and
average Fst of each pairwise group (red circles). (C) Pairwise Fsy for all miRNA variants between African (n = 32) and non-African (n = 25) samples.
Population differentiated miRNAs (PD-miRNAs) contain variants above the 95™ percentile (F<r > 0.186) shown as a solid blue line. Highly population
differentiated miRNAs (HPD-miRNAs) contain variants above the 99" percentile (Fst > 0.366) shown as a dotted red line and are annotated with miRNA
affiliation and rs numbers.

on the ENSEMBL gene ontology. Each of the 5,475 func-
tions were assigned a probability of being regulated by a
random null set of 8 miRNAs (See Methods) and this prob-
ability was compared to the observed regulation by the 8
HPD-miRNAs. We found 55 biological processes that
were significantly enriched for regulation by our set of 8
HPD-miRNAs (p < 0.05) (Additional file 1: Table S8), and
identified 120 HPD-miRNA gene targets involved in
enriched biological processes; of particular interest, these
targets include DICERI and BRCAI among other genes
(Additional file 1: Table S8).

In addition, clustering analysis of the 55 significant
biological processes, based on gene ontology similarity,
revealed nine major pathways affected specifically by
the 8 HPD-miRNAs: the mitosis pathway, axons and mor-
phogenesis, response to toxins, signaling, acid regulation,
transcription, ion sequestration, muscle movement and

immune response (Additional file 2: Figure S5). The mi-
tosis pathway contained the highest number of signifi-
cantly over-represented processes, specifically mitotic
transitions (G1 and metaphase/anaphase transition), cell
cycle checkpoints, and cytokinesis, representing over 20%
of the 55 biological processes. Interestingly, the altered ex-
pression of mitotic genes, which can occur through
miRNA regulation, is one of the known characteristics of
the onset and progression of cancer.

Disease association analysis reveals links to

multiple cancers

Disease associations were also identified for all 31 PD-
miRNAs through the miRNA disease database MiRGator
[47] (Figure 5A). Of the 31 PD-miRNAs, 7 miRNAs (hsa-
mir-202, hsa-mir-196a-2, hsa-mir-423, hsa-mir-943, hsa-
mir-520h, hsa-mir-1908 and hsa-mir-647) were identified
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Figure 4 Analysis flowchart. (A) Blue boxes represent allele counts, with 773 alleles found in miRNA genes and 31 population-differentiated
alleles within miRNA (PD-miRNA). Red boxes represent messenger RNA targets regulated by the 8 highly population-differentiated miRNAs
(HPD-miRNAs). These targets were found to be involved in over 8000 gene ontology functions (GO terms) (orange boxes) and over 5,000
biological processes (green boxes). Seven PD-miRNAs were also found to be differentially expressed in 37 diseases, with cancer being the top hit.
(B) Description of Target enrichment, Genomic Functional Enrichment, and MiRNA functional enrichment that was performed and displayed in A.
Output of statistical function enrichments were clustered to determine overrepresented functions of HPD-miRNAs. Sugar and insulin metabolism
were among the top hits in genomic functional enrichment (p < 0.001), including regulation of the glucose/insulin response pathway. Mitosis was
the top hit in miRNA functional enrichment (p <0.001), including regulation of mitosis transition and checkpoint genes by HPD-mIiRNA.

in prior studies as being differentially expressed in human
diseases representing a significant increase above expect-
ation (1.1 out of 31) for disease-associated miRNAs (95%
CL = 1.08 — 1.11; p=2.2 x 10"*%) (Figure 5B). The 7 PD-
miRNAs were associated with 37 diseases, most exten-
sively cancer, with all 7 PD-miRNAs being implicated in
cancer risk or as biomarkers for one or multiple can-

cers, specifically, breast cancer, prostate cancer,

testicular cancer, ovarian cancer, lung cancer, renal cell
carcinoma, gastric cancer, pancreatic cancer, head and
neck cancer, colon cancer, esophageal cancer, brain tumors,
thyroid cancer, glioblastoma, glioma, and germ cell tumors
(Figure 5C). The hsa-mir-196a-2 T-allele at SNP
rs11614913 has been significantly associated with in-
creased risk for esophageal cancer in non-smoking
European males [48] but decreased risk for breast, lung
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and gastric cancers in Chinese populations [48]. In the
present study, we observed a significantly lower fre-
quency of the hsa-mir-196a-2 T-allele at SNP rs11614913
in Africans compared to non-African populations (Fgt =
0.41; p < 0.001) (Figure 5D).

Notably, one of our PD-miRNAs, hsa-mir-202, contains
a T-allele with known effect on miRNA expression and a
protective effect on breast cancer mortality [42]. In our
dataset, we found that the frequency of the T-allele at hsa-
mir-202 was lower in African populations (26%) compared
to non-African populations (65%), on average (Figure 6A
and Additional file 1: Table S9). We observed similar fre-
quencies of the T-allele in African and non-African popu-
lations in the 1000 Genomes Project data, that sampled
only one African population (YRI) (16%) and 2 non-

African populations (CEU, CHB +JPT) (83.3% and 92%,
respectively) (See Methods). In addition, we also observed
variability in the frequency of the T-allele within Africa; specif-
ically, the T-allele occurred at lower frequency in the non-
hunter-gatherer Yoruba, Maasai, and Luhya populations
((0.08%) compared to hunter-gather Pygmy, Hadza, and
Sandawe populations (43%), on average (Figure 6A and
Additional file 1: Table S9). We also found the T-allele at mod-
erate frequency in African-American populations (Figure 6B).

Discussion

Population differentiation and functional enrichment

of miRNA

Based on analysis of high-coverage whole genome se-
quence data in 69 individuals from 14 worldwide
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populations, we identified 33 novel polymorphisms in
miRNA genes and 31 variants with high levels of genetic
population differentiation between Africans and non-
Africans (PD-variants). Five novel variants (2 SNPs and 3
indels) were located in miRNA seed sequences where they
could have a large effect on the number, strength, and spe-
cificity of each miRNA/mRNA target interaction. Specific-
ally, a novel “CT” deletion found in 7 of the 14 globally
diverse populations altered the predicted mRNA targets
of hsa-mir-4640 to include 3 additional targets and re-
moved all of its 79 original predicted targets from regu-
lation, indicative of the disruptive potential of seed
sequencing indels on miRNA function. In addition,
among the 31 PD-variants we found 8 HPD-miRNAs
with variants that lie in the top 1% of pairwise estimates
of Fst, indicating extensive population differentiation at
these loci between African and non-African populations
consistent with a model of local adaptation (Figure 4)
[5,45,49].

From functional enrichment analysis we observe that
HPD-miRNAs are significantly enriched for regulation
of genes involved in the glucose/insulin metabolism
pathway (p < 1077), and cellular division (p < 0.001), not-
ably the regulation of genes involved in mitosis (specific-
ally, mitotic checkpoints, transitions, and cytokinesis)
(Figures 4 and 5; Additional file 1: Tables S7 and S8).
Aberrant cell division during mitosis or aberrant gene
expression levels during chromosome segregation often
result in chromosomal instability, which is a key diag-
nostic feature of most cancers [50]. The disruption of
cell division by altering gene expression levels in re-
sponse to mitotic instability has been strongly correlated
with tumor development and progression; both in vitro

and in vivo evidence have demonstrated that in the ab-
sence of other cell cycle and DNA repair defects, mitotic
disruption can transform cells and predispose them to-
ward cancer [50]. Given that mis-regulation of cellular div-
ision is the hallmark of cancer, it is striking that miRNAs
with highly population-differentiated alleles are observed
to be significantly enriched for regulation of mitotic path-
way genes including genes such as SI00A8 and P2RX3
whose expression profiles are currently used as
biomarkers for multiple cancers.

The Role of miRNA in ethnic disparities in cancer
susceptibility

In addition, we identified 7 population-differentiated
miRNAs where expression level differences of these PD-
miRNAs have been correlated with cancer and other dis-
ease phenotypes (Figure 5B-C). Among the identified
cancers, higher mortality rates have been reported for
breast, ovarian, gastric, prostate and testicular-germ cell
cancers in individuals of recent African ancestry com-
pared to individuals of either European or Asian descent
(p<0.001) [51-54]. Of particular interest is hsa-mir-202
which contained one of the most highly population-
differentiated variants in our dataset and is one of two
miRNAs currently under investigation as a circulating
blood-based marker for the detection of non-Hodgkin
lymphoma and early stage breast cancer [42,55]. Recent
in vitro functional data demonstrated that the T-allele was
protective against breast cancer mortality by first increas-
ing mature hsa-mir-202 expression levels, leading to sub-
sequent down-regulation of its gene targets, including
cancer related genes CRYBB2, DICERI, SARTI1, SI00AS,
P2RX3, and BRCA1 [42]. Diminished expression of mature
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hsa-mir-202 in individuals harboring at least one non T-
allele resulted in a significantly elevated risk of non-
Hodgkin lymphoma (OR=1.83, 95% CI: 1.17-2.85; P =
0.008) [42]. Our data showed that African and African
American populations had a lower frequency of the T-
allele compared to European and Asian populations, sug-
gesting decreased baseline expression levels of mature
hsa-mir-202 in African populations. In the context
of tissue specific expression, hsa-mir-202 expression
varies considerably by tissue type and is more highly
expressed in prostate cells compared to breast or ovar-
ian tissues (Additional file 2: Figure S7). Therefore,
lower frequencies of the T-allele in African populations
have the potential to reduce gene expression levels
down below critical thresholds in the breast and ovarian
tissues. This reduction may contribute to population
differences seen in the onset of breast and ovarian
cancer in women of African and European descent
(Additional file 2: Figure S7).

Similarly, the other 6 PD-miRNAs identified (hsa-mir-
423, hsa-mir-196a-2, hsa-mir-520h, hsa-mir-1908, hsa-mir-
647 and hsa-mir-943) have also been implicated in cancer
susceptibility in human populations [56]. First, the hsa-
mir-423 SNP rs6505162 has been shown to confer reduced
risk for breast cancer in women of European decent in
GWAS [57]. Second, the hsa-mir-196a-2 SNP rs11614913
CC genotype has been significantly associated with in-
creased risk for breast, lung and gastric cancers in Chinese
populations; conversely, the homozygous TT genotype has
been significantly associated with esophageal cancer in
non-smoking European males [48]. Based on these results,
recent studies have called for more detailed analysis of the
frequency of this allele in different ethnic groups [58].
We observed a significantly higher frequency of the
hsa-mir-196a-2 C-allele at SNP rs11614913 in African
compared to non-African populations (Fst=0.41; p<
0.001) (Figure 5D). Third, hsa-mir-520h expression was
determined to be significantly associated with E1A-
mediated tumor suppression and cell migration during
cancer metastasis and inhibition of hsa-mir-520h sig-
nificantly decreased the downstream ability of cancer
cells to migrate and invade other areas of the body [59].
This pattern has also been observed consistently in dif-
ferent types of cancer including pancreatic, breast and
ovarian cancer [59-61]. Also, up-regulation of hsa-mir-
520h was shown to increase the effects of the anticancer
drug resveratrol in slowing lung cancer tumor mobility
[62]. Finally, multiple studies have linked miRNAs hsa-
mir-1908, hsa-mir-647 and hsa-mir-943 expression to
various cancers known to have ethnic specific dispar-
ities [63-65]. Overall, these studies demonstrate that
genetic variability within miRNA has the potential to
vary miRNA expression and/or mRNA target binding
which can be strongly correlated with the onset of
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multiple cancers, the progression of cancer metastasis
and the response to drug therapies. We demonstrate
that the frequency of clinically important genomic
miRNA variants varies significantly among ethnic popu-
lations, particularly between African and non-African
groups. Thus, we suggest that population-differentiated
variation in miRNA may contribute to ethnic disparities
seen in certain forms of cancer.

Conclusions

Here, we identified several miRNA genetic variants that
are highly differentiated among human populations and
uncovered a set of HPD-miRNAs that play a role in the
suppression, susceptibility, and metastasis of cancer
cells. We also found that some of the HPD-miRNA vari-
ants are in regions of strong linkage disequilibrium (D'=1)
with markers in a commonly used genotyping array
(lumina 1 M Duo) in African populations that could be
included in genome-wide association studies of disease
(Additional file 2: Figure S6). Finally, although we fo-
cused on population-differentiated miRNAs known to be
associated with disease, we also identified an additional
24 PD-miRNAs that represent interesting candidate loci
for further study of differential disease risk in ethnically
diverse populations. Further investigation is needed in
order to understand the patterns of variation at miRNA
and their role in phenotypic variation and human adap-
tation, particularly in African populations which are
greatly underrepresented in genomic studies. Additional
RNA-sequencing studies, together with eQTL mapping,
will be needed in order to assess the effect of PD-
variants on gene expression in global populations. Fur-
thermore, future follow-up studies could integrate SNPs
within downstream miRNA target sites [66] and up-
stream miRNA-regulomes (i.e. transcription factors that
regulate miRNA genes) [67] with our findings to exam-
ine population differentiation or disease association in
all phases of the miRNA cycle.

Methods

Whole genome sequencing and sample collection

High quality whole genome sequencing (~60x coverage)
was obtained for 69 globally diverse individuals from
publically-available datasets. Fifteen African hunter-
gathers were obtained from Lachance et al. 2012 [39],
including 5 Pygmy (Py) (three Baka, one Bakola, and one
Bedzan), 5 Hadza (Hz) (plus two technical replicates),
and 5 Sandawe (Sw) using the Complete Genomics se-
quencing platform [68,69].

Additionally, 54 unrelated individuals were obtained dir-
ectly from Complete Genomics including 9 individuals of
Northern European ancestry (combined as CEPH - in-
cluding 4 CEPH and 5 CEU individuals), 9 individuals
of Yoruban ancestry (YRI), 5 individuals of Mexican
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ancestry (MEX), 5 African-Americans living in Dallas
(ASW), and 2 individuals of Puerto Rican ancestry
(PUR), and 4 individuals each of Toscani Italians (TSI),
Japanese ancestry (JPT), Han Chinese (CHB), Gujarati In-
dian (GIH), Maasai Kenyan ancestry (MKK), Luhya Kenyan
ancestry (LWK) [70]. Variants were defined as autosomal
alleles that differ from the human reference genome build
(GRCh37/hg19), and novel variants are defined as variants
that are absent from dbSNP (db135). Complete Genomic
Data is available through their public site: http://www.com-
pletegenomics.com/public-data/69-Genomes/.

Nucleotide diversity and population differentiation
Pre-miRNA locations and mature miRNA sequences were
downloaded from the database mirbase (v18) and included
1524 known pre-miRNAs. We filtered known pre-miRNAs
into high and low confidence miRNA, based on experi-
mental validation of their function as target suppressors
[71]. High confidence miRNAs were classified as those
with at least one experimentally-validated mRNA target,
using 45 public datasets (See Messenger RNA Target En-
richment and Analysis). Among novel variants, 165 muta-
tions were identified within high confidence miRNA, 83
were found in miRNA stem-loops, 82 in mature miRNA,
and 28 in seed sequences. Seed sequence locations were
computed in R software and defined as the 2"¢ — 8™ base
pair of the mature miRNA [72]. Novel miRNA target pre-
diction was done in DIANA software [73] for hsa-mir-
4640 “CT” deletion. Predicted targets were also filtered for
those with experimental validation, based on 45 public
datasets (See Messenger RNA Target Enrichment and Ana-
lysis). Nucleotide diversity for each sequence class was
measured using Watterson’s estimator of 0 (Bv) [74].
Whole genome sequence data were annotated using
the UCSC genome browser for sequence class determin-
ation. Pairwise population Fgsr values were calculated
using Weir and Cockerham’s weighted equations adjust-
ing for small sample size using the R statistical software
[75,76]. MiRNAs were determined to be population dif-
ferentiated (PD-miRNA) if they contained an allele with
a Fgr value in the top 95T percentile of the empirical
distribution of Fgp values (Fgr>top 5% with p <0.05).
Highly population differentiated miRNA (HPD-miRNA)
were defined as miRNA containing variants with Fgst
values above the 99™ percentile between African and non-
Africans (Fst>top 1% with p<0.05). P-values for Fsr’s
were determined by testing the allele frequency difference
at each allele between African and non-African samples
using a Welsh two-sided t-test (Additional file 2: Figure S2).

Messenger RNA target enrichment and analysis

For HPD-miRNA, messenger RNA (mRNA) targets were
identified from the consensus of 45 paired miRNA/
mRNA experimental datasets, and subject to the
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following quality control filters: (1) the mRNA targets
have to be correlated with miRNA expression with a cor-
relation coefficient of r < 0.5 and (2) that this level of cor-
relation was observed in at least 2 publicly available
experimental deep sequencing or microarray datasets. Ex-
perimental datasets consisted of: 6 ENCODE (Encyclopedia
of DNA elements) cell line RNA sequencing datasets
(GM1287- a lymphoblastoid cell line produced from the
blood of a female donor with northern and western Euro-
pean ancestry, H1I_hESC- a human embryonic stem cell
line, Hela_S3- an immortalized cell line from an African-
American female patient with cervical cancer, K562- an
immortalized cell line from a female patient with chronic
myelogenous leukemia (CML), HepG2- a cell line pro-
duced from a male patient with liver carcinoma, and
NHEK- a epidermal keratinocyte cell line), 13 cancer deep
sequencing datasets from the Cancer Genome Atlas
(TCGA) (BLCA - Bladder Urothelial Carcinoma, BRCA -
Breast invasive carcinoma, COAD - Colon adenocarcin-
oma, HNSC - Head and Neck squamous cell carcinoma,
KIRC - Kidney renal clear cell carcinoma, KIRP - Kidney
renal papillary cell carcinoma, LAML - Acute Myeloid
Leukemia, LIHC - Liver hepatocellular carcinoma, LUAD -
Lung adenocarcinoma, LUSC - Lung squamous cell
carcinoma, READ - Rectum adenocarcinoma, STAD -
Stomach adenocarcinoma, and UCEC - Uterine Corpus
Endometrioid Carcinoma), 2 deep sequencing Gene Ex-
pression Omnibus (GEO) datasets (GSE31999 and
GSE37765), and 24 microarray datasets from GEO
(GSE2564, GSE9234, GSE11255, GSE12250, GSE14224,
GSE14473, GSE14794, GSE14834, GSE15387, GSE15745,
GSE16558, GSE16654, GSE16759, GSE17306, GSE17491,
GSE17498, GSE18155, GSE18693, GSE18899, GSE19350,
GSE20692, GSE21032_1, GSE21032_2, GSE21321). Data-
set correlation was done through MiRGator v3 soft-
ware [77].

Two HPD-miRNA (hsa-mir-5007 and hsa-mir-4634)
had no targets that passed quality control filters and were
excluded from downstream analyses. The number of tar-
gets that passed quality control filters for the remaining
HPD-miRNA were hsa-mir-202 (1145 targets), hsa-mir-
1304 (710 targets), hsa-mir-1269a (488 targets), hsa-mir-
4482-1 (144 targets), hsa-mir-449c (69 targets), and
hsa-mir-4707 (1 target). Each unique mRNA target was in-
dividually analyzed using bootstrapping analysis to test for
significant enrichment in HPD-miRNA. Specifically, tar-
gets were identified for (n = 2000) randomly chosen sets
of 8 miRNA. The distribution of random targets was
then compared to the 2,139 targets regulated by the 8
HPD-miRNA, and 72 targets were significantly enriched
for regulation by HPD-miRNA (p < 0.05) (Figure 4 and
Additional file 1: Table S5). Enriched targets were then an-
notated with the PANTHER pathway software (Additional
file 2: Figure S4).
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MiRNA target prediction was done with and without
the novel “CT” deletion observed in hsa-mir-4640 using
DIANA prediction software [73]. Canonical hsa-mir-
4640 targets were compared among 6 different target
prediction algorithms (TargetScan, miRNAorg, Micro-
cosm Targets, PITA, PICTAR and miRDB) using MiR-
Gator v3 software [77].

Experimentally validated gene targets were analyzed
for reported genome wide significance in a GWAS study
using the NHGRI GWAS catalog (Additional file 1:
Table S6) [78]. We determine the extent of linkage dis-
equilibrium (LD) in the regions surrounding the 8 HPD-
miRNA SNPs, by using common tagging SNPs from the
[Mlumina 1 M-Duo array in African samples (Additional
file 2: Figure S6). The program PHASE v.2.1, which im-
plements a Bayesian statistical method [79], was used to
reconstruct multi-site haplotypes from genotype data for
15 SNPs from the Illumina 1 M-Duo SNP array flanking
the miRNAs of interest on chromosomes 4, 5, 10,11,13
and 14 in 697 African individuals (Additional file 2: Figure
S6). Haploview [80] was then used to calculate pairwise
measures of LD among SNP loci, creating a graphical rep-
resentation of the LD relationships among these loci
(Additional file 2: Figure S6).

Functional enrichment

Genomic functional enrichment was analyzed with
GOEAST software to determine statistically overrepre-
sented GO terms within our set of 2,139 mRNA gene
targets [46]. GO terms include annotated biological pro-
cesses, molecular functions, and cellular components.
The GOEAST algorithm assumes genes should be
evenly distributed across the genome. MiRNA, as a
class, may favor targeting a specific range of biological
processes. To address this fact we perform miRNA
functional enrichment.

MiRNA functional enrichment identifies biological
pathways overrepresented by HPD-miRNA as compared
to a set of 8 randomly sampled miRNA. We found the
2,139 mRNA gene targets of HPD-miRNA to be in-
volved in 5,475 annotated biological processes using the
ENSEMBL Gene Ontology database (Figure 4) [81]. For
miRNA functional enrichment, the null distribution was
created by, (1) randomly resampling 8 miRNA from the
mirbase database, (2) identifying all mRNA targets
(meeting the quality control filters described above in
Messenger RNA Target Enrichment and Analysis), (3)
identifying all biological processes associated with mRNA
targets (using the ENSEMBL Gene Ontology database).
Steps 1-3 are replicated n = 2000 times. The frequency of
obtaining each of the 5,475 biological processes seen in
HPD-miRNA is calculated. Finally, the actual frequency of
each of the 5,475 biological processes associated with
HPD-miRNAs is then compared to the null distribution
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above to ascertain enrichment of biological processes in
our sample. Biological processes overrepresented in HPD-
miRNA, having p-values < 0.05, were considered signifi-
cantly enriched in HPD-miRNA and further clustered by
gene ontology similarities using Revigo software [82].

Disease association

Disease associations were assessed through the MiRGator
v2 disease database [47]. Disease associations are defined as
differentially expressed miRNA in a published gene expres-
sion profile [47]. The significance of disease association re-
sults was tested by bootstrapping 31 miRNAs from mirbase
and testing for disease association, n = 10,000 times. Net-
work analysis was done using R with disease network
visualization performed with Gephi software [83].

Additional files

Additional file 1: Table S1. All miRNA variants. Table S2. Novel
variants within miRNA seed sequences. Table S3. Predicted changes in
gene targets of hsa-mi-4640-3p with novel "CT" deletion. Table S4. All
PD-miRNA with Fsr above the 95th percentile between African and
non-Africans. Table S5. Significantly enriched targets of HPD-miRNA.
Table S6. Significantly enriched genes that were reported in genome-
wide association studies. Table S7. GOEAST: genetic functional
enrichment of the 2,139 mRNA gene targets. Table $8. MiRNA functional
enrichment of the 2,139 mRNA gene targets. Table S9. Allele Frequency for
hsa-mir-202 T-allele. T-allele has known effect on miRNA expression and a
protective effect on breast cancer mortality [42]. N is the number of
chromosomes in each sample group.

Additional file 2: Figure S1. Pairwise Fs; for populations grouped by
continent. Figure S2. Distribution of p-values for pairwise Fsi's measured
between African and non-African populations. Figure S3. Allele frequencies
for the 4 PD-variants in miRNA seed sequences. Figure S4. Biological
functions of the 72 significant gene targets of HPD-miRNA. Figure S5.
Linkage disequilibrium plots for HPD-SNPs in African populations based on
the lllumina 1M Duo. Figure S6. Tissue specific expression of hsa-mir-202.
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