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Abstract

Background: Nonlinear methods provide a direct way of estimating complexity of one-dimensional
sampled signals through calculation of Higuchi's fractal dimension (I1<FD<2). In most cases the signal is
treated as being characterized by one value of FD and consequently analyzed as one epoch or, if divided
into more epochs, often only mean and standard deviation of epoch FD are calculated. If its complexity
variation (or running fractal dimension), FD(t), is to be extracted, a moving window (epoch) approach is
needed. However, due to low-pass filtering properties of moving windows, short epochs are preferred.
Since Higuchi's method is based on consecutive reduction of signal sampling frequency, it is not suitable
for estimating FD of very short epochs (N < 100 samples).

Results: In this work we propose a new and simple way to estimate FD for N < 100 by introducing
'normalized length density' of a signal epoch,

N
NID = &3 |1, (0) - 7ai- D)

i=2
where y, (i) represents the ith signal sample after amplitude normalization. The actual calculation of signal
FD is based on construction of a monotonic calibration curve, FD = f(NLD), on a set of Weierstrass
functions, for which FD values are given theoretically. The two existing methods, Higuchi's and consecutive
differences, applied simultaneously on signals with constant FD (white noise and Brownian motion),
showed that standard deviation of calculated window FD (FD,) increased sharply as the epoch became
shorter. However, in case of the new NLD method a considerably lower scattering was obtained,
especially for N < 30, at the expense of some lower accuracy in calculating average FD,. Consequently,
more accurate reconstruction of FD waveforms was obtained when synthetic signals were analyzed,
containig short alternating epochs of two or three different FD values. Additionally, scatter plots of FD,, of
an occipital human EEG signal for 10 sample epochs demontrated that Higuchi's estimations for some
epochs exceeded the theoretical FD limits, while NLD-derived values did not.

Conclusion: The presented approach was more accurate than the existing two methods in FD(t)
extraction for very short epochs and could be used in physiological signals when FD is expected to change
abruptly, such as short phasic phenomena or transient artefacts, as well as in other fields of science.
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Background

It is well known that only in mathematically generated
one-dimensional signals one can expect a particular quan-
tity Q, characterizing the signal, to be constant (independ-
ent of the domain variable, usually time). In other words,
in real (and not only biomedical) signals, Q = Q(t), and in
many cases it is of interest to calculate such a waveform as
accurately as possible. Along that line, the usual approach
is to introduce a moving window, calculate the quantity Q
for this subset of samples, Q,, and extract an approxima-
tion of Q(t) in the form of Q,(t;), where ¢; = t,+(i-1)t,
denotes the ith window position along the signal, t,and
being the initial position and moving window step,
respectively. In case of amplitudes, as it is known from the
classical Fourier signal analysis, a moving window acts as
a low-pass filter - attenuating amplitudes of signal oscil-
lations according to the equation

At(fn)=sm(7;TL“’) )
TIntw

where At(f,) denotes amplitude attenuation at frequency
f,s f,, - nth Fourier frequency; L, window length (Fig. 1).
The first cutoff frequency, f,, is then calculated as

where f, represents the sampling frequency, N, number of
samples in the window.

According to equation (2), in order to extract accurately
the waveform Q(t), i.e. avoid the attenuation of as many
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Low-pass filtering properties of a series of moving

windows. A, — amplitude attenuation; different lines corre-

spond to different window lengths (N,, = 10,12,...,20 sam-

ples); signal sampled at f, = 100 samples/s.
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Fourier components as possible, it is desirable to have
large values of f, according to (2) small values of N,
(short windows) for a given sampling frequency. Impor-
tance and limitations of estimating nonlinear properties
of biological (particularly EEG) signals for short epochs
has already been recognized (cf. [1,2]).

Although these filtering properties were derived for oscil-
lations (waveforms) of signal amplitudes, we showed in
our previous work dealing with meteorological data (cf.
[3,4]) that they are also valid for oscillations of signal
complexity, expressed quantitatively as "running fractal
dimension" Q(t) = FD(t) (cf. [5]).

Estimation of fractal dimension of one-dimensional sam-
pled signals is usually performed by Higuchi's algorithm
(cf. [6]), although other methods have also been pro-
posed (cf. [7,8]) and their performance evaluated (cf. [9]).
In Higuchi's method, the signal is observed as consisting
of a time sequence x(1), x(2),..., x(N) and k new self-sim-
ilar time series are constructed as:

x(m), x(m + k), x(m + 2k),..., x(m + int[ (N —m) / k]k),

form =1, 2,..., k; where m is the initial time; k = 2,..., k..
being the degree of time stretch, int(r) is integer part of a
real number r. The length L,,(k) is computed for each of

the k time series or curves as

.‘N—m
k

S Jatm+ i)~ x(m+ (i~ DK % .
i=1 1r1t|: " :|k

(3)

L, (k) is then averaged for all m, forming the mean value
of the curve length L(k), foreach k = 2,...,k, . as

'max

1
Lm(k) = E

k
)y , Lyp(k) (4)

_ m=

L(k) k .

An array of mean values L(k) is thus obtained and the FD
estimated as the slope of least squares linear best fit from
the plot of In(L(k)) versus In(1/k). However, since
Higuchi's method is based on consecutive reduction of
signal sampling frequency, it is not suitable for estimating
FD of very short epochs (N < 30 samples), while 100 sam-
ples could be regarded as a conventional low limit for its
application (cf. [5]). Another disadvantage of this method
is the fact that the maximal degree of reduction (k,,,,) is
left to be determined arbitrarily by the researcher (cf.
[10]). In our previous paper (cf. [8]), we described an orig-
inal method for calculating FD, using consecutive differ-
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ences (CD) of one-dimensional sampled signals. Namely,
if we denote mean absolute values of the nth order consec-
utive finite differences of a signal y(t) with m("),, we found
that logarithms of m®, n = 2, 3,..., n,,,. were linearly
dependent on n:

y

(5)

with stable slopes and Y-intercepts proportional to signal
FD. To establish a relation between Y;,, and signal fractal
dimension, we used a family of Weierstrass functions,
which have a theoretically defined value of fractal dimen-
sion. Since we found that their FD values were linearly

dependenton Y,

log(mgn)) = (slope)n + Y,

FD = A(nmax)Yi + B(n (6)

nt max)'

we were able to calculate parameters A(n,,,,) and B(n,,,,)
for n,,,, = 3,...,7. In this method, the need to choose a
value for k,,,, is eliminated. More, introducing n,,,, instead
of k. did not mean substituting one indeterminacy with
another, since the smallest numerical error, on the used
set of Weierstrass function, was obtained with n,,,. = 3.

Results

Normalized length density

How to approach measuring of signal complexity on very
short epochs? One of the ways could be to count the local
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extrema, where the signal complexity is expected to be
directly proportional to their number. However, complex-
ity is not equal if there are e.g. 3 local extrema on 5 or 50
samples. Therefore, if N;, denotes the number of local
extrema and N number of samples, one may introduce
'local extrema density’, L,;, as the measure of complexity:

Nie

N ()

Led =

But this quantity has a substantial drawback: because both
N;,and N are integers, L,; tends to group such short signal
epochs into 'quantized' classes. For example, if N = 4, the
method is able to classify all epochs into only three classes
of complexity, having L ;= 0.00; 0.25; 0.50 (values of 0.75
and 1.00 should be excluded since we do not know
whether edge samples are local extrema or not). Obvi-
ously, a continuous measure of signal complexity would
be more suitable. We propose that such a quantity could
be, 'normalized length density' (NLD). In fact, it is the sig-
nal length divided by the number of samples, and nor-

malized for average signal amplitude and it is
proportional (Fig. 2A) to the local extrema density:
1 &
NLD:EZ|yn(i)—yn(i—l)|, (8)
i=2
1000
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A. Linear dependence of normalized length density (NLD) on the local extrema density (Led) in the log-log
scale. Data on each line were derived from 30000 short epochs with different lengths (0 - 7; x - 6; A - 5; O - 4 samples).
Epochs consisted of randomly generated samples in the range (0,1). B. Distributions of number of generated epochs, N(NLD),
by their NLD values, derived from the 30000 seven-sample epochs from panel A. Histograms differ in the number of local
extrema detected on the epochs (N,.), and positions of their peaks correspond to ordinate values of circles on A.
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where y,(i) represents ith signal sample after amplitude
normalization:

o v
" LS 10 ©)

where

N
HORSTURE WD) (10)
j=1

How to relate NLD with FD? For this purpose we used the
same set of Weierstrass functions as in [8]:

Wh(1) = ZWH cos(27y 1) (11)
1
(y > 1, 0<H<1), where FD = 2-H is given theoretically. A
family of these functions was generated, with parameter
values being y = 1.1,1.2,..,50 (N, = 40), H =
0.99,0.98,...,0.01 (N = 99). The latter values resulted in
an even distribution of FD values across their possible
numerical range (1 <FD < 2). The whole set, therefore,
numbered N,Nj; = 3960 functions. Sampling frequency
and signal duration were chosen to resemble a biological
signal: f, = 256 samp/s, T = 30s, making the total number
of samples within each Weierstrass function to be N =

NLD

FD

Figure 3

Relationship between theoretical fractal dimension
(FD) of 3960 tested Weierstrass functions and their
normalized length density (NLD). Forty thin black lines
correspond to Weierstrass functions with forty fixed values
of the intrinsic parameter j thick red line to their average.
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7680. For each set of 99 Weierstrass functions, having a
fixed value of , NLD = ¢,(FD) functions were calculated
after amplitude normalization according to formulas (9)
and (10) and presented as 40 thin black lines on Fig. 3.
Since real biological signals are not characterized by any
intrinsic parameter such as , by averaging all 40 NLD ,val-
ues for a fixed FD, inverse of the final calibration curve

5.0 5.0
1 1
NLD N E NLD, = No E ¢y(FD) (12)
Y y=11 Y y=11

was calculated and presented as a thick red line on Fig. 3.
As this and its inverse function FD = ¢-1(NLD) = f(NLD)
turned to be monotonous, the latter fulfilled the necessary
condition to be used as a calibration curve in further cal-
culations.

For computational purposes, a mathematical model of
this relation must be established. In this work we tested
two models:

- logarithmic model: FD = a log (NLD - NLD,) + C
- power model: FD = a (NLD - NLD,)*.

Nonlinear fitting was performed on the obtained points
FD = f(NLD) (circles, Fig. 4) for both mathematical mod-
els. As can be seen, the power model showed better results
(smaller square fitting error per point). A better matching
of the power model to the experimental points could also
be seen visually, especially for higher values of NLD and
FD.

When extracting complexity waveforms from one-dimen-
sional signals, a problem arises which is not present when
conventional FD measurements are applied (averaging of
window FD values for the whole signal). Namely, since in
every natural signal both amplitude and complexity
simultaneously vary, it is essential to eliminate, as much
as possible, influence of amplitude variations on com-
plexity measurements. Fortunately, Higuchi's method is
invariant to amplitude variations. However, this is not the
case when NLD analysis is performed. Two procedures are
possible for signal amplitude normalization: a) to nor-
malize signal amplitudes for the whole signal, by applying
formulas (9) and (10) before the NLD procedure. Such a
procedure is in accordance with the way the calibration
curves, presented on Fig. 3 and Fig. 4B were obtained after
amplitude normalization of the Weierstrass functions.
However, this version (integral normalization, IN) is not
entirely immune on signal amplitude variations that nec-
essarily occur while the window of analysis moves along
the signal. b) According to the other version of the
method, amplitude normalization is to be performed on
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Circles: fractal dimension (FD), as a function of normalized length density (NLD), obtained from a set of
Weierstrass functions (FD = 1.01 — 1.99; y= 1.1 — 5.0). Solid line: nonlinear fitting with two mathematical models — loga-
rithmic (A) and power (B).
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Mean (A, C) and standard deviation (B, D) of window fractal dimension (FD,) values, obtained by analyzing
white noise (A, B) and Brownian motion (C, D) with Higuchi's (green, *), consecutive differences (black, o) and
the power model version (WN) of the NLD method (red, A).
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every part of the analyzed signal selected by the moving
window (window normalization, WN). Each of these two
versions of the NLD method showed more or less accurate
results in extracting complexity waveforms for very short
signal epochs, depending on the measurement condi-
tions. Therefore, the problem of current signal amplitude
variations and elimination of their influence on FD(t) is
still to be elucidated in future studies.

Dependence of accuracy of FD calculation on epoch
length

All natural signals are of variable complexity. Accuracy of
any method for measuring FD could be estimated by scat-
tering (standard deviation) of epoch (window) FD values,
FD,, if signals with constant FD are being analyzed (such
as white noise, FD = 2, and fractal Brownian motion, FD
= 1.5). Standard deviation of all measured FD,, increases
with shortening of windows, causing numerical errors. We
compared this scattering obtained by Higuchi's, consecu-
tive differences and NLD method (power model version,
WN) on these two types of noise (Fig. 5). Integral normal-
ization was also performed, but since the results for
mean(FD,,) obtained with IN version were less accurate
than with WN, they are not presented. However, std(FD,,)
obtained with IN version were also considerably smaller
than those with Higuchi's or the CD method. As well,
because more accurate results were obtained with power
than with logarithmic model (lower fitting error on Fig.
4B), these and all following measurements were not per-
formed with the logarithmic model. As expected, when
the epoch shortened, std(FD,,) increased for all methods
(Fig. 5B and 5D). The new NLD method showed a signif-
icantly lower FD,, scattering than Higuchi's or CD, espe-
cially for short epochs, reducing the numerical error.
However, this improvement was obtained at the expense
of an increased difference between mean FD,,and the the-
oretical FD value (Fig. 5, upper panels, A and C). Fortu-
nately, when extracting complexity waveforms from one-
dimensional signals, it is more important to have lower
scattering of window FD values than the preciseness of
their mean value. The latter contributes merely to the
"DC" level of the extracted complexity waveform, while
the waveform quality (signal-to-noise ratio i.e. window-
to-window fluctuations) depends heavily on the standard
deviation of the FD,, values. This statement will be illus-
trated on several examples.

Extraction of complexity waveforms from synthetic signals
In order to compare the new method with Higuchi's when
dynamical change of signal FD occurs, two synthetic sig-
nals were constructed from different Weierstrass func-
tions: one consisted of a series of 50 sample epochs,
having two alternating FD values: 1.2 and 1.8 (Fig. 6A),
while the other was formed by composing three FD val-
ues: 1.1, 1.5 and 1.9 (Fig. 6B). Both signals had y = 3.4 and

http://www.nonlinearbiomedphys.com/content/3/1/8

were 1000 samples long. This particular value for param-
eter y was chosen because its corresponding calibration
curve (one of the black lines on Fig. 3) was positioned
closest to the average calibration curve (red line on Fig. 3),
minimizing the induced systematic error (optimal "DC"
level of FD(t) on Fig. 7A, C). Prior to further processing,
each 50 sample epoch underwent amplitude normaliza-
tion according to expressions (9) and (10), in order to
eliminate influence of amplitude differences of compo-
nential Weierstrass functions on FD(t) extraction.

The complexity waveforms of these synthetic signals were
analyzed with both power model (WN, IN) versions of
the NLD method (Fig. 7A, C and Higuchi's method (Fig.
7B, D), all methods using 5 sample moving epochs, step
2 samples. When compared with the ideal output (series
of rectangular impulses/stairs shown in red on all four
panels), greater accuracy of the IN version of the new
method (WN not shown), presented on panels A and C of
Fig. 7, is obvious. Expressed quantitatively, square error
per sample for the first waveform (Fig. 7A, B) was 0.0466
in case of NLD, while 0.5998 for the Higuchi's method
(=12.9 times higher). For the second waveform (Fig. 7C,
D), the corresponding figures were 0.0463 and 0.3902
(=8.4 times higher).

Final adjustment of the calibration curve based on the
analysis of natural (EEG) signals

The new method and the corresponding calibration curve
were constructed by analyzing the formerly described set
of Weierstrass functions. However, its applicability on real
biomedical signals could only be tested if applied on such
natural signals and the obtained results observed criti-
cally. We present on Fig. 8 how lower scattering of short
window FD,values, obtained with NLD method (com-
pared to Higuchi's), looks on real biomedical signals. In
this case a human occipital O1 derivation of the EEG
activity was analyzed from a healthy adult in the relaxed
awake state with closed eyes.

Fig. 8A presents part of this signal in time domain (4s),
while total signal duration was 60s. It was analyzed simul-
taneously by Higuchi's and the NLD method (power
model, WN) with moving non-overlapping short epochs
of 10 samples. Resulting values of FD,, are given in Fig. 8B
in form of a scatter plot. One can observe that points
obtained with Higuchi's method are "spilling over" the
allowed limits (1<FD<2), while in case of the NLD analy-
sis they remain within the marked boundaries. Values cal-
culated with NLD are, however, overestimated in the low
FD region. We tried to correct this systematic error by con-
structing a more accurate calibration curve than the one
presented on Fig. 4, which was derived only from the
Weierstrass functions.

Page 6 of 11

(page number not for citation purposes)



Nonlinear Biomedical Physics 2009, 3:8

http://www.nonlinearbiomedphys.com/content/3/1/8

0 100 200 300 400

signal value

500

600 700 800 900 1000

sample

0 100 200 300 400

500

600 700 800 900 1000

sample

Figure 6

Two synthetic signals, obtained by alternating 50 sample epochs from two (A) or three (B) Weierstrass func-
tions. (A) FD, = 1.2; FD,= 1.8; (B): FD, = I.I; FD,= |.5, FD; = 1.9.

First, we explored how the initial calibration curve is mod-
ified when each of the power model parameters (a, NLD,,
and k) are being varied. In fact, according to the direction
and location of the bias shown on Fig 8B, one needs to
modify the calibration curve in such a way that FD values
are decreased in the low FD region (left part of the plot),
while they stay unchanged in the high FD region. Influ-
ence of parameters a and k on the calibration curve are
presented on Fig. 9 (parameter NLD,was not varied, since
it simply shifts the calibration curve horizontally). One
can note that increase of k (dashed line) decreases FD in
the low, while decrease of a (dotted line) decreases FD in
the high FD region. Therefore, by increasing parameter k,
the calibration curve is being modified as required - FD
values decrease in the low, while they remain mostly
unchanged in the high FD region.

Further, the optimal new value for k could be determined
by analyzing a sufficiently large ensemble of biomedical,
e.g. EEG signals (so that short epoch FD,, values populate
more or less evenly all regions of the scatter plot on Fig.
8B) and by observing that all FD,, values fall between the
required limits (1<FD<2). We analyzed 140 EEG signals,
each 60s long, from ten adult wake healthy subjects. The
electrodes were positioned at 14 locations (F7, F8, T3, T4,
T5, T6, F3, F4, C3, C4, P3, P4, O1 and O2) according to
the International 10-20 System with an average reference.
Signals were sampled at a rate of 256 samples/s, band pass
filtered between 0.5 and 70 Hz and artifacts were removed
manually based on a visual inspection. Other details
about data collection and preparation can be found in
[11]. For each signal, a series of 6 analyses (NLD method,
epoch 10 samples) were performed, where parameter k
was varied (0.2 - 0.45, step 0.05). For each of the 140 EEG
signals, the minimal FD,, was plotted against the varied
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Figure 7

Results of the comparative analysis, performed by applying the power model IN version of the NLD method
(A, C) and Higuchi's method B, D on two synthetic signals, obtained by alternating 50 sample intervals from
two Weierstrass functions. A, B: FD, = 1.2, FD,= 1.8; C, D: FD, = I.1; FD, = 1.5, FD; = |.9. The two target waveforms
(series of rectangular pulses/stairs) are indicated in red.
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Figure 8
A. Part of a typical occipital human EEG signal. B. Scatter plot of FD,, values, obtained by Higuchi's and power model
WN version of the NLD method from the signal presented in A, using short windows (10 samples).

Page 8 of 11

(page number not for citation purposes)



Nonlinear Biomedical Physics 2009, 3:8

FD =

http://www.nonlinearbiomedphys.com/content/3/1/8

a (NLD-NLD )"

2 T

1.8

1.6f

FD

1.4

1.2f

Figure 9

1.5

NLD

Influence of power model parameters on the calibration curve. Initial calibration curve is drawn with solid line. Dot-
ted curve was plotted by decreasing parameter a from 1.9079 to 1.8, in case of the dashed curve parameter k was increased

from 0.18383 to 0.3.

value of k and all 140 crossings with min(FD,)) = 1 were
determined (Fig. 10). Optimal value for k was then calcu-
lated as the average of these crossing values: k,, = 0.3523
(+ 0.0122). Analogously, as parameter a influences the
calibration curve in the high FD region, maximal FD,, val-
ues were also calculated and 140 crossings with max(FD,,)
= 2 were determined. The obtained optimal value for a
was d,, = 1.8399 (+ 0.0980). Finally, using these new
parameters, as an example, we analyzed again the signal
from Fig. 8. The corresponding new scatter plot, shown on
Fig. 11, confirmed that these corrections (red points)
eliminated the formerly detected bias in the low FD
region.

The method described in this work could find its applica-
bility in those situations where signal complexity changes
occur and are of special interest for the researchers. There
are two possible cases of such changes:

a) short or intermittent disturbances of the existing signal
complexity: external artefacts or internal phasic phenom-
ena, e.g. those occurring in NREM (K-complexes, delta
bursts) and in REM sleep (muscle twitches, central and

peripheral phasic events such as PGO waves, bursts of
autonomic nerves, surges of blood pressure, etc.), as well
as microarousal (cf. [12]);

b) slowly evolving FD variations, caused by physiological
processes themselves.

In the first case, it is to be expected from the present
approach to detect such occurrences, while slower FD var-
iations should be extracted as a function of time (com-
plexity waveforms).

In both cases, it is to be expected that extracted signal
complexity changes should be more accurately measured
(i-e. less "noisy") if performed by the NLD method than
by the existing ones. As well, the new method could be
tested in other areas where changes of signal complexity
occur, such as engineering, geology, meteorology, astron-
omy (cf. [13]).

Conclusion
The new NLD method is more accurate than Higuchi's or
consecutive differences for extracting signal complexity
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Figure 10
Minimal FD,, values, obtained by NLD method, epoch 10 samples, applied on 140 healthy human EEG signals,
as a function of the power model parameter k. Each blue line corresponds to one EEG signal. All 140 crossings with

min(FD,) = | (dashed line) were averaged to calculate k,, = 0.3523.
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Figure 11
Scatter plots of 10-sample FD,, values of the same human EEG signal as in Fig. 8, obtained by using old (black
dots) and the new, corrected (red dots) calibration curve, where the low FD region bias is eliminated.
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waveforms (FD(t), current changes of signal FD), when
using short signal epochs (<30 samples). This result fol-
lows the fact that standard deviation of its moving win-
dow FD values (FD,,) is considerably smaller than those
obtained by the two other methods. However, this
improvement is achieved at the expense of lower accuracy
in measuring mean FD,,. Initially detected overestimation
of the FD,, values, calculated by NLD in the low FD region,
was due to an imperfect calibration curve FD = {(NLD),
derived from a set of Weierstrasss functions. The bias was
corrected by a procedure of modification of power model
parameters, based on the analysis of natural (EEG) sig-
nals. The present approach might be used whenever "run-
ning" signal FD changes are of interest, eg. in
physiological signal analysis for automatic detection of
short phasic phenomena or transient artefacts, as well as
in other areas where changes of signal complexity occurs,
such as engineering, geology, meteorology, astronomy (cf.

[12]).
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