RESEARCH ARTICLE

Open Access

New thermodynamic data for CoTiO₃, NiTiO₃ and CoCO₃ based on low-temperature calorimetric measurements

Stephan Klemme^{1*}, Wilfried Hermes², Mathias Eul², Clazina H Wijbrans¹, Arno Rohrbach¹ and Rainer Pöttgen²

Abstract

The low-temperature heat capacities of nickel titanate (NiTiO₃), cobalt titanate (CoTiO₃), and cobalt carbonate (CoCO₃) were measured between 2 and 300 K, and thermochemical functions were derived from the results. Our new data show previously unknown low-temperature lambda-shaped heat capacity anomalies peaking at 37 K for CoTiO₃ and 26 K for NiTiO₃. From our data we calculate standard molar entropies (298.15 K) for NiTiO₃ of 90.9 ± 0.7 J mol⁻¹ K⁻¹ and for CoTiO₃ of 94.4 ± 0.8 J mol⁻¹ K⁻¹. For CoCO₃, we find only a small broad heat capacity anomaly, peaking at about 31 K. From our data, we suggest a new standard entropy (298.15 K) for CoCO₃ of 88.9 ± 0.7 J mol⁻¹ K⁻¹.

Background

Nickel titanate (NiTiO₃) and cobalt titanate (CoTiO₃) belong to an important group of ilmenite-type transition metal bearing phases with a number of interesting magnetic and electric properties [1-5]. They are also important for technical applications due to their catalytic properties [6-8]. CoCO₃ is a phase with interesting magnetic properties, which has not been studied in detail [9-12]. Structures, phase relations and physical properties of these phases are well documented [5,9,13-21], there is, however, a lack of low-temperature calorimetric data and associated third-law entropies. Other transition metal bearing oxide phases have recently been shown to exhibit large, hitherto unknown low-temperature heat capacity anomalies [22-31] and the aim of this paper is to investigate low-temperature heat capacities for NiTiO₃, CoTiO₃, and CoCO₃. To our knowledge, for NiTiO₃, CoTiO₃, there are no reported low-temperature C_P data published in the literature, and the only data for $CoCO_3$ date back to the 1960s.

Experimental

Samples

Heat capacity measurements were performed on synthetic polycrystalline $NiTiO_3$, $CoTiO_3$, and $CoCO_3$ samples. The $NiTiO_3$ and $CoTiO_3$ sample used in our study

* Correspondence: Stephan.klemme@uni-muenster.de

¹Institut für Mineralogie, Westfälische-Wilhelms-Universität Münster, Corrensstr. 24, 48149 Münster, Germany

Full list of author information is available at the end of the article

were synthesized from equimolar mixtures of CoO (Merck, 99.999% purity), NiO (Merck, 99.999% purity) and TiO₂ (Merck, 99.99% purity). The TiO₂ powder was previously fired at 1,000°C for 12 h to release any absorbed water or hydroxide. The oxides were mixed under acetone in an agate mortar and pestle for 15 min and subsequently pressed into several high density pellets of 3 mm diameter. CoCO₃ was purchased from Alfa Aesar (99.5% purity, metals based). X-ray diffraction indicated CoCO₃ only, with cell parameters of a = $4.662 \pm$ 0.002 and c = 14.955 \pm 0.005 Å. The NiTiO₃ and CoTiO₃ pellets were placed in a vertical drop furnace in a small, hand-crafted basket made of platinum wire, were fired in air at 1,150°C for 24 h, then slowly cooled to 1,000°C for 24 h, and further cooled to 900°C and held for another 24 h. The samples were then rapidly drop-quenched in distilled water and dried at 110°C for 1 h. X-ray diffraction indicated CoTiO₃ and NiTiO₃ only, no impurities or other unreacted oxides were detected. Our synthetic $CoTiO_3$ had cell parameters of a = 5.029 ± 0.004 and c = 13.79 \pm 0.02 Å and the NiTiO₃ sample had cell parameters of a = 5.061 ± 0.006 and c = 13.91 ± 0.08 Å which compares well with previous results [1].

Low-temperature calorimetry

The heat capacities were measured with a commercially available low temperature Quantum Design Physical Properties Measurement System (PPMS) at the University of Münster. The heat capacities were measured using the heat pulse method, measuring the response of the calorimeter to a heat pulse, which is evaluated as a function of time [32]. The accuracy of the method has been tested by several groups [33,34] who found that the PPMS is capable of reproducing heat capacities of reference materials to better than 1% at T > 100 K and around 3-5% at T < 100 K. We have performed further tests using the Münster PPMS, coming to the identical conclusions. Our measurements on synthetic Al_2O_3 (NIST SRM-720, [35]) are depicted in Figure 1. The data show that we reproduce the heat capacity of SRM-720 to better than 1% (with an average of 0.4%) at temperatures higher than 90 K, and around 4% at T < 90 K. Overall, the standard

entropy of NIST SRM-720 corundum was reproduced with our calorimeter within 0.8%, a value which is used to estimate the overall uncertainty of our calculated standard entropy values.

For the actual measurements, the sample pellets were fixed onto a pre-calibrated sample holder using Apiezon N-Grease. To compensate for the heat capacity and anomalies caused by the grease [36], addenda measurements were first performed without the sample. These heat capacity values were then subtracted from the sample measurement. Heat capacities were measured from below 5 to 303 K in increments that varied between 0.5 and 20 K at the highest temperatures (Figure 1; Tables 1, 2 and 3).

Table 1	Experimental	Molar Heat	Capacities	for NiTiO ₃

<u>т</u> к	<u>Cp</u> J mol ⁻¹ K ⁻¹								
2.70	0.02	51.0	7.45	163.1	59.1	274.7	88.7	21.0	15.2
3.24	0.05	53.0	8.21	165.1	59.9	276.7	89.1	21.6	16.6
3.78	0.09	55.0	9.01	167.2	60.6	278.7	89.4	22.1	18.6
4.32	0.18	57.1	9.81	169.2	61.3	280.7	89.8	22.6	13.9
4.84	0.29	59.1	10.6	171.2	62.0	282.7	90.0	23.0	6.4
5.37	0.45	61.2	11.5	173.3	62.8	284.8	90.3	23.6	4.8
5.90	0.65	63.2	12.3	175.3	63.5	286.8	90.6	24.1	4.0
6.43	0.88	65.3	13.2	177.3	64.3	288.8	91.0	24.6	3.5
6.95	1.15	67.3	14.2	179.3	64.9	290.9	91.3	25.2	3.2
7.45	1.44	69.4	15.1	181.4	65.6	292.9	91.6	25.7	3.0
7.98	1.77	71.4	16.1	183.4	66.3	294.9	91.9	26.2	2.8
8.20	1.91	73.4	17.1	185.4	66.9	296.9	92.1	26.7	2.7
9.20	2.60	75.5	18.2	187.4	67.7	299.0	92.4	27.3	2.6
10.2	3.35	77.5	19.2	189.5	68.3	301.0	92.5	27.8	2.5
11.2	4.14	79.6	20.3	191.5	69.0	303.1	92.7	28.3	2.5
12.2	4.97	81.6	21.4	193.5	69.6			28.8	2.5
13.2	5.84	83.6	22.5	195.6	70.3	Series 2		29.3	2.5
14.2	6.72	85.7	23.6	197.6	70.9	Т	Ср	29.9	2.5
15.2	7.72	87.7	24.7	199.6	71.6	K	J mol ⁻¹ K ⁻¹	30.4	2.5
16.2	8.70	89.8	25.7	201.7	72.2	2.17	0.010	30.9	2.5
17.2	9.76	91.8	26.8	203.7	72.8	2.70	0.023	31.4	2.6
18.2	10.91	93.8	27.9	205.7	73.3	3.24	0.048	32.0	2.6
19.2	12.17	95.9	29.0	207.8	73.9	3.78	0.094	32.5	2.7
20.2	13.69	97.9	30.0	209.8	74 5	4 32	0.18	33.0	27
21.2	15.61	100.0	31.0	211.8	75.1	4.84	0.29	33.5	2.8
22.1	19.00	102.0	32.0	213.9	75.7	5 37	0.45	34.0	2.9
23.1	5.92	104.0	33.0	215.9	76.3	5.90	0.65	34.5	3.0
24.1	4.04	106.1	33.9	217.9	76.8	6.43	0.88	35.1	3.0
25.1	3.25	108.1	34.9	219.9	77.4	7.0	1.2	35.6	3.1
26.1	2.84	110.1	35.9	222.0	77.9	7.5	1.4	36.1	3.2
27.1	2.62	112.2	36.8	224.0	78.4	8.0	1.8	36.6	3.3
28.1	2.50	114.2	37.7	226.0	78.9	8.5	2.1	37.1	3.4
29.1	2.46	116.3	38.6	228.0	79.4	9.0	2.5	37.7	3.5
30.1	2.48	118.3	39.5	230.1	79.9	9.5	2.9	38.2	3.7
31.1	2.53	120.3	40.5	232.1	80.3	10.1	3.3	38.7	3.8
32.1	2.62	122.4	41.4	234.1	80.8	10.6	3.6	39.2	3.9
33.1	2.74	124.4	42.4	236.2	81.3	11.1	4.1	39.7	4.0
34.0	2.87	126.5	43.4	238.2	81.8	11.6	4.5	40.3	4.1
35.0	3.03	128.5	44.3	240.2	82.3	12.2	5.0	40.8	4.2
36.0	3.21	130.5	45.3	242.3	82.8	12.7	5.4		
37.0	3.40	132.6	46.1	244.3	83.2	13.2	5.9		
38.0	3.61	134.6	47.1	246.3	83.6	13.7	6.3		
39.0	3.83	136.6	48.0	248.4	84.0	14.3	6.8		
40.0	4,05	138.7	48.9	250.4	84.4	14.8	7.3		
41.0	4.30	1407	49.8	252.4	84.8	15.3	78		
42.0	4.56	142.7	50.7	254.4	85.2	15.8	83		
43.0	4.85	144.8	51.6	256.5	85.6	163	89		
44.0	5.15	146.8	52.4	258.5	85.9	16.9	94		
45.0	5.46	148.8	53 3	260.5	863	17.4	10.0		
16.0	5.10	150.0	54.2	262.6	86.7	17.0	10.6		

47.0	6.09	152.9	55.0	264.6	87.0	18.4	11.2
48.0	6.41	155.0	55.9	266.6	87.4	18.9	11.8
49.0	6.74	157.0	56.7	268.6	87.7	19.5	12.6
49.9	7.08	159.0	57.5	270.6	88.0	20.0	13.3
50.9	7.47	161.1	58.3	272.6	88.4	20.5	14.2

Table 2 Experimental Molar Heat Capacities for CoTiO₃

<u>т</u> к	<u>C</u> _P J mol ⁻¹ K ⁻¹	<u>т</u> к	<u>C</u> P J mol ⁻¹ K ⁻¹	<u>т</u> к	<u>C</u> _P J mol⁻¹K⁻¹	<u>т</u> к	<u>C</u> P J mol ⁻¹ K ⁻¹	<u>т</u> к	<u>C</u> P J mol ⁻¹ K ⁻¹	<u>т</u> к	<u>C</u> P J mol ⁻¹ K ⁻¹
2.17	0.002	95.0	34.89	127.2	49.74	155.3	61.01	8.15	0.093	46.7	9.6
3.92	0.006	96.7	35.78	127.7	49.95	155.8	61.22	9.14	0.15	47.2	9.8
5.65	0.022	98.3	36.62	128.2	50.17	156.3	61.40	10.12	0.22	47.8	10.0
7.34	0.065	100.0	37.42	128.7	50.37	156.8	61.56	11.1	0.31	48.3	10.1
9.04	0.131	101.6	38.00	129.3	50.62	157.3	61.79	12.1	0.43	48.8	10.3
10.8	0.286	101.7	38.25	129.8	50.85	157.8	61.92	13.1	0.58	49.3	10.5
12.4	0.491	102.2	38.49	130.3	51.07	158.3	62.13	14.1	0.75	49.8	10.7
14.2	0.774	102.7	38.73	130.8	51.24	158.9	62.31	15.1	0.95	50.3	10.9
15.8	1.14	103.2	39.01	131.3	51.46	159.4	62.47	16.0	1.17	50.9	11.1
17.5	1.59	103.7	39.22	131.8	51.70	159.9	62.67	17.0	1.42	51.4	11.4
19.2	2.11	104.2	39.47	132.3	51.89	160.4	62.85	18.0	1.70	51.9	11.6
20.9	2.73	104.8	39.73	132.8	52.12	160.9	63.01	19.0	2.01	52.4	11.8
22.6	3.44	105.3	39.95	133.3	52.35	161.4	63.20	20.0	2.35	52.9	12.0
24.3	4.23	105.8	40.18	133.8	52.58	161.9	63.33	20.9	2.71	53.4	12.3
26.0	5.11	106.3	40.45	134.3	52.80	162.4	63.34	21.9	3.11	53.9	12.5
27.7	6.11	106.8	40.69	134.9	52.96	162.4	63.46	22.9	3.55	54.5	12.7
29.3	7.18	107.3	40.91	135.4	53.19	167.3	65.01	23.9	4.02	55.0	13.0
31.0	8.38	107.8	41.17	135.9	53.42	172.2	66.53	24.9	4.49	55.5	13.2
32.7	9.77	108.3	41.38	136.4	53.61	177.0	68.01	25.8	5.00	56.0	13.5
34.4	11.32	108.8	41.63	136.9	53.83	181.9	69.38	26.8	5.54	56.5	13.7
36.1	13.20	109.3	41.86	137.4	54.11	186.8	70.68	27.8	6.11	57.0	14.0
37.6	14.08	109.9	42.07	137.9	54.30	191.6	72.00	28.8	6.77	57.6	14.2
39.4	10.69	110.4	42.32	138.4	54.48	196.5	73.31	29.7	7.38	58.1	14.5
41.1	9.24	110.9	42.52	138.9	54.73	201.4	74.40	30.6	7.82	58.6	14.7
42.8	8.97	111.4	42.75	139.5	54.88	206.2	75.52	30.7	8.12	59.1	14.9
44.5	9.13	111.9	42.96	140.0	55.10	211.1	76.59	31.2	8.50	59.6	15.2
46.2	9.51	112.4	43.16	140.5	55.34	216.0	77.77	31.8	8.91	60.1	15.4
47.9	10.02	112.9	43.41	141.0	55.54	220.8	78.73	32.3	9.33	60.6	15.7
49.6	10.64	113.4	43.58	141.5	55.76	225.7	79.58	32.8	9.75	61.2	15.9
51.3	11.31	113.9	43.77	142.0	55.97	230.5	80.34	33.3	10.2		
52.9	12.05	114.5	43.99	142.5	56.16	235.4	81.07	33.8	10.7		
54.6	12.84	115.0	44.20	143.0	56.35	240.3	81.96	34.3	11.2		
56.3	13.62	115.5	44.44	143.5	56.51	245.2	82.62	34.8	11.7		
58.0	14.43	116.0	44.67	144.0	56.73	250.0	83.15	35.4	12.3		
59.7	15.21	116.5	44.89	144.6	56.95	254.9	83.70	35.9	13.0		
61.4	16.04	117.0	45.14	145.1	57.15	259.8	84.11	36.4	13.8		
63.0	16.88	117.5	45.35	145.6	57.36	264.6	84.53	36.9	14.5		
64.7	17.75	118.0	45.59	146.1	57.55	269.4	85.05	37.4	14.6		
66.4	18.62	118.5	45.79	146.6	57.71	274.3	85.48	37.9	13.8		
68.1	19.51	119.1	46.06	147.1	57.93	279.1	85.82	38.4	12.6		
69.8	20.41	119.6	46.26	147.6	58.11	284.0	86.18	38.9	11.5		
71.5	21.33	120.1	46.49	148 1	58.31	288.8	86.29	39.4	10.7		

73.1	22.33	120.6	46.74	148.6	58.52	293.7	86.52	40.0	10.0
74.8	23.30	121.1	46.99	149.2	58.75	298.6	86.80	40.5	9.6
76.5	24.26	121.6	47.21	149.7	58.92	304.3	90.15	41.0	9.3
78.2	25.27	122.1	47.45	150.2	59.13			41.5	9.1
79.9	26.29	122.6	47.70	150.7	59.31	Series 2		42.1	9.0
81.5	27.25	123.1	47.93	151.2	59.51	T	CP	42.6	9.0
83.2	28.24	123.6	48.14	151.7	59.69	K	J mol ⁻¹ K ⁻¹	43.1	9.0
84.9	29.21	124.2	48.41	152.2	59.88	2.24	0.0018	43.6	9.0
86.6	30.21	124.7	48.62	152.7	60.06	3.19	0.0034	44.1	9.1
88.3	31.13	125.2	48.88	153.2	60.24	4.20	0.0085	44.7	9.2
89.9	32.06	125.7	49.07	153.7	60.44	5.20	0.0164	45.2	9.3
91.6	33.05	126.2	49.30	154.3	60.65	6.19	0.0285	45.7	9.4
93.3	33.99	126.7	49.49	154.8	60.86	7.21	0.0572	46.2	9.5

Table 2 Experimental Molar Heat Capacities for CoTiO₃ (Continued)

Table 3 Experimental Molar Heat Capacities for CoCO₃

T	Ср	T	Ср	<u>T</u>	Ср	T	Ср
К	J mol ⁻¹ K ⁻¹	ĸ	J mol ⁻¹ K ⁻¹	К	J mol ⁻¹ K ⁻¹	ĸ	J mol⁻¹K⁻¹
2.21	0.02	24.8	3.23	47.3	10.17	282.8	82.56
2.60	0.03	25.2	3.28	47.7	10.35	287.9	83.26
3.01	0.04	25.6	3.34	48.1	10.54	293.0	83.84
3.43	0.06	26.0	3.39	48.5	10.72	298.1	84.79
3.86	0.08	26.4	3.45	48.9	10.90	304.0	86.19
4.27	0.11	26.8	3.52	49.3	11.08		
4.68	0.15	27.2	3.58	49.7	11.29		
5.10	0.19	27.7	3.68	50.1	11.47		
5.51	0.24	28.1	3.77	50.5	11.66		
5.92	0.33	28.5	3.84	50.8	11.67		
6.34	0.39	28.9	3.92	51.0	11.93		
6.75	0.45	29.3	4.00	56.1	14.51		
7.18	0.52	29.7	4.09	61.3	17.03		
7.54	0.58	30.1	4.20	66.5	19.66		
7.95	0.73	30.5	4.31	71.7	22.30		
8.35	0.81	30.9	4.39	76.8	25.28		
8.76	0.90	31.3	4.48	82.0	28.12		
9.17	0.99	31.8	4.57	87.2	30.85		
9.58	1.08	32.2	4.68	92.3	33.40		
9.99	1.30	32.6	4.80	97.5	35.82		
10.4	1.41	33.0	4.92	102.7	37.95		
10.8	1.53	33.4	5.01	107.8	39.99		
11.2	1.64	33.8	5.14	113.0	41.75		
11.6	1.90	34.2	5.26	118.2	43.56		
12.0	2.06	34.6	5.40	123.3	45.43		
12.5	2.20	35.0	5.50	128.5	47.20		
12.9	2.50	35.4	5.59	133.6	48.95		
13.3	2.66	35.8	5.71	138.8	50.65		
13.7	2.83	36.2	5.83	144.0	52.24		
14.1	3.15	36.7	6.00	149.1	53.85		
14.5	3.26	37.0	6.13	154.3	55.46		
14.9	3.22	37.5	6.25	159.5	56.93		
15.3	3.05	37.9	6.40	164.6	58.27		
15.7	2.91	38.3	6.57	169.8	59.60		

-			-			
16.1	2.82	38.7	6.68	174.9	60.84	
16.6	2.76	39.1	6.79	180.1	62.22	
17.0	2.71	39.5	6.94	185.2	63.43	
17.4	2.69	39.9	7.11	190.3	64.64	
17.8	2.67	40.3	7.25	195.5	65.84	
18.2	2.66	40.7	7.39	200.6	66.91	
18.6	2.66	41.1	7.55	205.8	68.13	
19.0	2.67	41.5	7.72	210.9	69.25	
19.4	2.67	42.0	7.88	216.1	70.36	
19.8	2.69	42.4	8.05	221.2	71.34	
20.3	2.77	42.8	8.23	226.4	72.16	
20.7	2.80	43.2	8.40	231.5	73.25	
21.1	2.82	43.6	8.57	236.6	74.31	
21.5	2.85	44.0	8.74	241.8	75.37	
21.9	2.88	44.4	8.90	247.0	76.42	
22.3	2.91	44.8	9.10	252.1	77.36	
22.7	2.96	45.2	9.26	257.2	78.22	
23.1	3.00	45.6	9.42	262.4	79.16	
23.5	3.03	46.1	9.62	267.5	80.16	
24.0	3.09	46.5	9.80	272.6	81.02	
24.4	3.18	46.9	9.98	277.7	81.90	

Results and Discussion

The experimental values for the low-temperature heat capacity of NiTiO₃, CoTiO₃ and CoCO₃ are compiled in Tables 1, 2 and 3.

Figures 2, 3, and 4 depict the heat capacity of NiTiO₃, CoTiO₃ and CoCO₃ as a function of temperature. The data for NiTiO₃ and CoTiO₃ were recorded in two scans, the first one ranging from about 1.5 to about 60 K, the other scan continuously up to room temperature.

Figures 2 and 3 show excellent agreement between the two separate measurements. The data for $CoCO_3$ were collected in only one scan, as only a broad low-temperature anomaly was found (Figure 4).

The standard entropies at 298.15 K (S₂₉₈) were calculated from the C_P data (using a T³ extrapolation to 0 K) and resulted in S₂₉₈ = 90.9 \pm 0.7 J mol⁻¹ K⁻¹ for NiTiO₃, 94.4 \pm 0.8 J mol⁻¹ K⁻¹ for CoTiO₃ and 88.9 \pm 0.7 J mol⁻¹ K⁻¹ for CoCO₃ (Tables 4, 5 and 6). Our data for S₂₉₈ are

Table 4	Thermodynamic	properties at selected	temperatures	for NiTiO
	Inclinuuynannic	properties at selected	temperatures	

· · ·		3	
<u>Т</u> К	<u>Cp</u> J mol ⁻¹ K ⁻¹	<u>Cp/T</u> J mol ⁻¹ K ⁻²	<u>S (T)</u> J mol ^{−1} K ^{−1}
300	92.4	0.308	91.5
298.15	92.3	0.309	90.9
290	91.2	0.314	88.4
280	89.7	0.320	85.2
270	87.9	0.326	82.0
260	86.2	0.332	78.7
250	84.3	0.337	75.3
240	82.2	0.343	71.9
230	79.9	0.347	68.5
220	77.4	0.352	65.0
210	74.5	0.355	61.4
200	71.7	0.358	57.9
190	68.5	0.360	54.3

		J (,	
180	65.1	0.362	50.7
170	61.6	0.362	47.1
160	57.9	0.362	43.4
150	53.8	0.359	39.8
140	49.5	0.354	36.3
130	45.0	0.346	32.8
120	40.3	0.336	29.3
110	35.8	0.325	26.0
100	31.0	0.310	22.9
90	25.9	0.287	19.9
80	20.5	0.257	17.1
70	15.4	0.220	14.8
60	11.0	0.183	12.7
50	7.11	0.142	11.1
40	4.05	0.101	9.89
30	2.48	0.083	9.01
20	13.4	0.672	6.03
15	7.53	0.502	3.13
10	3.20	0.320	1.05
5	4.15	0.830	0.080

Table 4 Thermodynamic properties at selected temperatures for NiTiO₃ (Continued)

Table 5 Thermodynamic properties at selected temperatures for CoTiO₃

<u>T</u>	Ср	Cp/T	<u>S (T)</u>
κ	J mol ⁻¹ K ⁻¹	J mol ⁻¹ K ⁻²	J mol ⁻¹ K ⁻¹
300	87.6	0.292	95.0
298.15	86.8	0.291	94.4
290	86.3	0.298	92.0
280	85.9	0.307	89.0
270	85.1	0.315	85.9
260	84.1	0.324	82.7
250	83.1	0.333	79.4
240	81.9	0.341	76.1
230	80.3	0.349	72.6
220	78.6	0.357	69.1
210	76.3	0.364	65.5
200	74.1	0.370	61.8
190	71.6	0.377	58.1
180	68.9	0.383	54.3
170	65.9	0.387	50.4
160	62.7	0.392	46.5
150	59.1	0.394	42.6
140	55.1	0.394	38.7
130	51.0	0.392	34.7
120	46.5	0.387	30.8
110	42.1	0.383	27.0
100	37.4	0.374	23.2
90	32.1	0.357	19.5
80	26.4	0.330	16.1
70	20.5	0.293	13.0
60	15.4	0.256	10.2
50	10.8	0.216	7.86

40	10.2	0.254	5.71
30	7.65	0.255	2.56
20	2.39	0.120	0.72
15	0.96	0.064	0.26
10	0.22	0.022	0.058
5	0.02	0.003	0.006

Table 5 Thermodynamic properties at selected temperatures for CoTiO₃ (Continued)

compared to previous results in Table 7. For $CoCO_3$, our new data agree very well with more than 40 year old data [37]. However, our measured entropies do not agree well with estimated values [38], probably due to the fact that low temperature heat capacity anomalies occur in NiTiO₃ and CoTiO₃.

Our data for NiTiO₃ show that a lambda-shaped lowtemperature heat capacity anomaly occurs at around 26 K (Figure 2), coinciding with the antiferromagnetic transition [15,16,39]. In a similar fashion, CoTiO₃ exhibits a lowtemperature heat capacity anomaly peaking at 37 K, which is in excellent agreement with the old structural and magnetic data [18,40]. In contrast, CoCO₃ shows only a broad

Table 6 Thermodynamic properties at selected temperatures for CoCO₃

<u>T</u>	Ср	Cp/T	S (T)
К	J mol ⁻¹ K ⁻¹	J mol ⁻¹ K ⁻²	J mol ⁻¹ K ⁻¹
300	85.2	0.284	89.4
298.15	84.8	0.284	88.9
290	83.5	0.288	86.6
280	82.2	0.294	83.7
270	80.6	0.298	80.7
260	78.7	0.303	77.7
250	77.0	0.308	74.7
240	75.0	0.312	71.6
230	72.9	0.317	68.4
220	71.1	0.323	65.2
210	69.0	0.329	61.9
200	66.8	0.334	58.6
190	64.6	0.340	55.3
180	62.2	0.346	51.8
170	59.7	0.351	48.4
160	57.1	0.357	44.8
150	54.1	0.361	41.2
140	51.0	0.364	37.6
130	47.7	0.367	33.9
120	44.2	0.369	30.3
110	40.7	0.370	26.6
100	36.9	0.369	22.9
90	32.2	0.358	19.2
80	27.0	0.338	15.7
70	21.4	0.306	12.5
60	16.4	0.273	9.62
50	11.4	0.228	7.09
40	7.14	0.178	5.06
30	4.17	0.139	3.49
20	2.72	0.136	2.16
15	3.18	0.212	1.37
10	1.31	0.131	0.46
5	0.18	0.036	0.062

NiTiO ₃	CoTiO ₃	CoCO ₃	reference	
<u>S (298.15)</u>	<u>S (298.15)</u>	<u>S (298.15)</u>		
J mol ⁻¹ K ⁻¹	J mol ⁻¹ K ⁻¹	J mol ⁻¹ K ⁻¹		
90.9(0.7)	94.4(0.8)	88.9(0.7)	this study	
80.1(3.7)	96.9*		[38]	
		88.7(1.7)	[37]	

Table 7 Comparison of our data with previous results

Uncertainties given in brackets. * Note that the value for S₂₉₈ for CoTiO₃ reported in [38] did not contain uncertainties.

anomaly peaking at around 31 K (Figure 4), which may be caused by the transition to an antiferromagnetic state [9,11,12]. Our data agree well with a recent study [11] which found that the weak antiferromagnets (Co, Ni)CO₃ exhibit magnetic ordering temperatures of well below 40 K. Whilst our data indicate a transition temperature of 31 K, the older magnetic susceptibility data [10] gave a transition temperature of 18 K. The reason for the discrepancy is unknown.

Conclusions

We present new low-temperature calorimetric data for the ilmenite-type oxides $NiTiO_3$ and $CoTiO_3$, and for the weak antiferromagnet $CoCO_3$. Our data show that all three phases show low-temperature heat capacity anomalies peaking between 20 and 40 K. The calorimetric data are used to calculate standard molar entropies (298.15 K), which are, due to the low-temperature anomalies, significantly higher than those previously anticipated.

Acknowledgements and Funding

We are indebted to V. Rapelius and A. Breit for their help with sample synthesis and characterization. Furthermore, our thanks go to two anonymous reviewers for their helpful and constructive reviews.

Author details

¹Institut für Mineralogie, Westfälische-Wilhelms-Universität Münster, Corrensstr. 24, 48149 Münster, Germany. ²Institut für Anorganische und Analytische Chemie, Westfälische-Wilhelms-Universität Münster, Corrensstr. 30, 48149 Münster, Germany.

Authors' contributions

SK drafted the manuscript, synthesized the samples, and performed the data analysis. ME and WH carried out the calorimetric measurements and participated in the design of the experiments and helped to draft the manuscript. RP, AR, CHW participated in the experimental design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 19 July 2011 Accepted: 19 September 2011 Published: 19 September 2011

References

 Baraton MI, Busca G, Prieto MC, Ricchiardi G, Escribano VS: On the vibrational-spectra and structure of FeCrO₃ and of the ilmenite-type compounds CoTiO₃ and NiTiO₃. J Solid State Chem 1994, 112:9-14.

- Chao TS, Ku WM, Lin HC, Landheer D, Wang YY, Mori Y: CoTiO₃ highkappa, dielectrics on HSG for DRAM applications. *IEEE Trans Electr Dev* 2004, 51:2200-2204.
- Chuang SH, Hsieh ML, Wu SC, Lin HC, Chao TS, Hou TH: Fabrication and Characterization of high-K dielectric nickel titanate thin films using a modified sol-gel method. J Am Ceram Soc 2011, 94:251-255.
- Kang YM, Kim KT, Kim JH, Kim HS, Lee PS, Lee JY, Liu HK, Dou SX: Electrochemical properties of Co₃O₄, Ni-Co₃O₄ mixture and Ni-Co₃O₄ composite as anode materials for Li ion secondary batteries. *J Power* Sources 2004, 133:252-259.
- Lerch M, Laqua W: Contributions to the properties of titanates with ilmenite structure 2. Study on the thermodynamics and the electricalconductivity of NiTiO₃ and other phases with ilmenite structure. Z Anorg Allg Chem 1992, 610:57-63.
- Arvanitidis I, Kapilashrami A, Du SC, Seetharaman S: Intrinsic reduction kinetics of cobalt- and nickel-titanates by hydrogen. J Mater Res 2000, 15:338-346.
- Brik Y, Kacimi M, Ziyad M, Bozon-Verduraz F: Titania-supported cobalt and cobalt-phosphorus catalysts: Characterization and performances in ethane oxidative dehydrogenation. J Catal 2001, 202:118-128.
- 8. Voss A, Borgmann D, Wedler G: Characterization of alumina, silica, and titania supported cobalt catalysts. *J Catal* 2002, **212**:10-21.
- Alikhanov RA: Antiferromagnetism of CoCO₃. Soviet Physics JETP-USSR 1961, 12:1029-1030.
- Borovik-Romanov AS, Ozhogin VI: Weak ferromagnetism in an antiferromagnetic CoCO₃ single crystal. Soviet Physics JETP-USSR 1961, 12:18-24.
- 11. Meshcheryakov VF: **Crystal field and magnetization of canted antiferromagnet CoCO₃**. *J Exp Theor Phys* 2007, **105**:998-1010.
- Ozhogin VI: The Antiferromagnets CoCO₃, CoF₂, and FeCO₃ in strong fields. Soviet Physics JETP-USSR 1964, 18:1156-1157.
- 13. Birnbaum H, Scott RK: X-ray diffraction studies of the system- Zn_2TiO_4 NiTiO₃. J Am Chem Soc 1950, 72:1398-1399.
- Ishikawa Y, Sawada S: The study on substances having the ilmenite structure 1. Physical properties of synthesized FeTiO₃ and NiTiO₃ ceramics. J Phys Soc Jpn 1956, 11:496-501.
- Shirane G, Pickart SJ, Ishikawa Y: Neutron diffraction study of antiferromagnetic MnTiO₃ and NiTiO₃. J Phys Soc Jpn 1959, 14:1352-1360.
- Heller GS, Stickler JJ, Kern S, Wold A: Antiferromagnetism in NiTiO₃. J Appl Phys 1963, 34:1033-1035.
- Kaczer J: Hexagonal anisotropy and magnetization curves of antiferromagnetic CoCO₃. Soviet Physics JETP-USSR 1963, 16:1443-1448.
- Newnham RE, Santoro RP, Fang JH: Crystal structure and magnetic properties of CoTiO₃. Acta Crystallogr 1964, 17:240-245.
- Rudashevskii EG: Antiferromagnetic resonance in CoCO₃. Soviet Physics JETP-USSR 1964, 19:96-97.
- Lerch M, Boysen H, Neder R, Frey F, Laqua W: Neutron-scattering investigation of the high-temperature phase-transition in NiTiO₃. J Phys Chem Solids 1992, 53:1153-1156.
- Busca G, Ramis G, Amores JMG, Escribano VS, Piaggio P: FT Raman and FTIR studies of titanias and metatitanate powders. J Chem Soc-Faraday Trans 1994, 90:3181-3190.
- Klemme S, Ahrens M: Low-temperature heat capacity of magnesioferrite (MgFe₂O₄). Phys Chem Miner 2005, 32:374-378.
- Klemme S, Neill HSO, Schnelle W, Gmelin E: The heat capacity of MgCr₂O₄, FeCr₂O₄, and Cr₂O₃ at low temperatures and derived thermodynamic properties. *Am Mineral* 2000, 85:1686-1693.

- 24. Klemme S, van Miltenburg JC: Thermodynamic properties of nickel chromite (NiCr₂O₄) based on adiabatic calorimetry at low temperatures. *Phys Chem Miner* 2002, **29**:663-667.
- Klemme S, Van Miltenburg JC: Thermodynamic properties of hercynite (FeAl₂O₄) based on adiabatic calorimetry at low temperatures. *Am Mineral* 2003, 88:68-72.
- 26. Klemme S, Van Miltenburg JC: The entropy of zinc chromite (ZnCr₂O₄). Mineral Mag 2004, 68:515-522.
- Klemme S, van Miltenburg JC: The heat capacities and thermodynamic properties of NiAl₂O₄ and CoAl₂O₄ measured by adiabatic calorimetry from T = (4 to 400) K. J Chem Thermod 2009, 41:842-848.
- Manon MRF, Dachs E, Essene EJ: Low T heat capacity measurements and new entropy data for titanite (sphene): implications for thermobarometry of high-pressure rocks. *Contr Mineral Petrol* 2008, 156:709-720.
- Dachs E, Geiger CA, Withers AC, Essene EJ: A calorimetric investigation of spessartine: Vibrational and magnetic heat capacity. *Geochim Cosmochim Acta* 2009, 73:3393-3409.
- Klemme S, van Miltenburg JC, Javorsky P, Wastin F: Thermodynamic properties of uvarovite garnet (Ca₃Cr₂Si₃O₁₂). Am Mineral 2005, 90:663-666.
- OrtegaSanMartin L, Williams AJ, Gordon CD, Klemme S, Attfield JP: Low temperature neutron diffraction study of MgCr₂O₄ spinel. J Physics: Condens Matter 2008, 20:104238.
- Hwang JS, Lin KJ, Tien C: Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter. *Rev Sci Instr* 1997, 68:94-101.
- Dachs E, Bertoldi C: Precision and accuracy of the heat-pulse calorimetric technique: low-temperature heat capacities of milligram-sized synthetic mineral samples. *Eur J Mineral* 2005, 17:251-259.
- Lashley JC, Hundley MF, Migliori A, Sarrao JL, Pagliuso PG, Darling TW, Jaime M, Cooley JC, Hults WL, Morales L, et al: Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system. Cryogenics 2003, 43:369-378.
- Ditmars DA, Ishihara S, Chang SS, Bernstein G, West ED: Enthalpy and heatcapacity standard reference material: synthetic sapphire (alpha-Al₂O₃) from 10 to 2250 K. J Res Nat Bur Stand (USA) 1982, 87:159-163.
- Schnelle W, Engelhardt J, Gmelin E: Specific heat capacity of Apiezon N high vacuum grease and of Duran borosilicate glass. *Cryogenics* 1999, 39:271-275.
- Kostryukov VN, Kalinkina IN: Heat capacity and entropy for manganese, iron, cobalt, and nickel carbonates at low temperatures. *Russ J Phys Chem* 1964, 38:780-781.
- Kubaschewski O: The thermodynamic properties of double oxides. High Temp High Pressure 1972, 4:1-12.
- Ishikawa Y: Magnetic properties of NiTiO₃-Fe₂O₃ solid solution series. J Phys Soc Jpn 1957, 12:1165-1165.
- Ishikawa Y, Akimoto S: Magnetic property and crystal chemistry of ilmenite (MeTiO₃) and hematite (alpha-Fe₂O₃) system 2. Magnetic property. J Phys Soc Jpn 1958, 13:1298-1310.

doi:10.1186/1752-153X-5-54

Cite this article as: Klemme *et al.*: New thermodynamic data for CoTiO₃, NiTiO₃ and CoCO₃ based on low-temperature calorimetric measurements. *Chemistry Central Journal* 2011 5:54.

