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Abstract
Background: A systems biology interpretation of genome-scale RNA interference (RNAi)
experiments is complicated by scope, experimental variability and network signaling robustness.
Over representation approaches (ORA), such as the Hypergeometric or z-score, are an established
statistical framework used to associate RNA interference effectors to biologically annotated gene
sets or pathways. These methods, however, do not directly take advantage of our growing
understanding of the interactome. Furthermore, these methods can miss partial pathway activation
and may be biased by protein complexes. Here we present a novel ORA, protein interaction
permutation analysis (PIPA), that takes advantage of canonical pathways and established protein
interactions to identify pathways enriched for protein interactions connecting RNAi hits.

Results: We use PIPA to analyze genome-scale siRNA cell growth screens performed in HeLa and
TOV cell lines. First we show that interacting gene pair siRNA hits are more reproducible than
single gene hits. Using protein interactions, PIPA identifies enriched pathways not found using the
standard Hypergeometric analysis including the FAK cytoskeletal remodeling pathway. Different
branches of the FAK pathway are distinctly essential in HeLa versus TOV cell lines while other
portions are uneffected by siRNA perturbations. Enriched hits belong to protein interactions
associated with cell cycle regulation, anti-apoptosis, and signal transduction.

Conclusion: PIPA provides an analytical framework to interpret siRNA screen data by merging
biologically annotated gene sets with the human interactome. As a result we identify pathways and
signaling hypotheses that are statistically enriched to effect cell growth in human cell lines. This
method provides a complementary approach to standard gene set enrichment that utilizes the
additional knowledge of specific interactions within biological gene sets. 
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Background
The ability to study a gene's contribution to phenotype
through RNA interference (RNAi) has provided unprece-
dented insight to the essential biology of mammalian cell
lines. RNAi knockdowns inhibit messenger RNA transla-
tion leading to changes in protein concentration, protein
interactions, transcription, and ultimately an effect on
phenotype [1-3]. Genome-scale siRNA phenotype screens
consist of thousands of targeted perturbation experiments
to identify significant effectors on a phenotype of interest,
such as cell growth. As these high-throughput screens
become more automated and less expensive, there is a
growing demand to associate siRNA hits with the interac-
tome.

Unfortunately, the interpretation of genome-scale RNAi
phenotype screens is complicated by several sources of
experimental variability. Off-target effects arise when the
change in phenotype is not a result of a targeted mRNA
knockdown, but rather the knockdown of some other
mRNA. Cell-line specific differences in RNAi efficacy may
result in attenuated knockdown phenotypes for essential
effector genes [4-6]. Furthermore, the robustness of
genetic regulatory networks complicates the analysis of
RNAi phenotype data. Gene knockout studies have dem-
onstrated that a minority of genes, only 19% in S. cerevi-
siae, are lethal when deleted under laboratory growth
conditions [7]. Genome-scale knockdown studies in Dro-
sophila and human cell lines also demonstrate that a rela-
tively small proportion of knockdowns affect growth
phenotypes [8,9]. Several reasons for robustness include
signaling modularity, redundancy and feedback loops
[2,10-12]. As a result, knockdowns that cause an impaired
growth phenotype provide a glimpse to uncommonly
sensitive areas of cell signaling.

Gene set enrichment methods are a conventional tool in
the analysis of high throughput datasets. These estab-
lished statistical protocols were originally used to associ-
ate differentially expressed genes from microarray
experiments with biologically annotated gene sets such as
Gene Ontology (GO) categories, canonical pathways, or
protein complexes [5,8,13-16]. These over representation
approaches (ORA) use a statistic, such as Hypergeometric
or average z-score, to assign a p-value that is the probabil-
ity of seeing the observed overlap of a gene hit list and
gene set by chance. ORA methods, however, do not
directly take interactions between specific set members
into account and this is additional biological information
that can be utilized in knowledge-based enrichment
approaches. For example, the EGFR pathway contains
four types of ErbB family tyrosine kinase receptors that are
activated by distinct ligands (e.g. EGF, TGFα) and initiate
distinct signal transduction cascades [17]. Consequently,
the specific combination of screen hits represented in a

pathway provides additional information beyond the
simple count of hits occurring in this pathway. An ORA
that takes advantage of known connectivity between gene
set members provides a complementary view to the results
provided by conventional enrichment methods (i.e. the
Hypergeometric) and identify signaling events that are
enriched for siRNA hits.

To our knowledge, the only pathway enrichment method
that takes advantage of knowledge of specific interactions
within gene sets was presented by Draghici et al. to ana-
lyze gene expression signatures[18]. An impact analysis is
used to count all possible paths (interactions) between
differentially expressed genes in KEGG pathways. Unfor-
tunately the pathway score is weighted by classic Hyperge-
ometric enrichment analysis (HGA) and the authors do
not discuss how results differ based solely on intra-path-
way connectivity. This method is also subject to connec-
tivity biases of each gene product causing highly
connected genes to be counted in more paths.

Several other papers have interpreted RNAi data using
protein interactions. Work by Friedman et al. combined
an RNAi screen assayed by protein readout of extra-cellu-
lar regulating kinase (ERK) with literature-curated protein
interactions to produce a protein interaction network [4].
Another approach recently published by Huang et al. uses
gene set enrichment of GO categories to select hits and
then connects them with literature-reported protein inter-
actions [19]. The interactome is known to be highly-con-
nected so it is not surprising that protein interactions are
found between hits. These approaches do not take into
account difference in connectivity between gene products.
This bias is cause for concern because knockdown gene
hits that are involved in many annotated protein interac-
tions are more likely to be connected with other hits sim-
ply by chance.

We propose here an ORA method called protein interac-
tion permutation analysis (PIPA) that takes advantage of
literature-curated protein interactions between gene prod-
ucts within gene sets. This method uses a graph permuta-
tion algorithm to create a null distribution that takes into
account connectivity biases of the known interactome to
identify genet sets with statistically enriched interactions
between RNAi targeted gene products. It is our hypothesis
that pathways enriched for interactions connecting RNAi
hits effecting cell growth capitulate essential signaling.

We use PIPA to analyze siRNA cell growth phenotype
screens performed on HeLa and TOV cell lines. To justify
using a gene interaction ORA, we show that hits mapping
to interacting gene pairs are more reproducible between
replicate screens. Next we show that PIPA uniquely iden-
tifies statistically enriched pathways that the Hypergeo-
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metric does not. Finally we produce a global essential
signaling network using enriched protein interactions and
annotate portions of this network using GO categories.

Results and Discussion
Protein Interaction Permutation Analysis (PIPA) Algorithm
For a given gene set, PIPA identifies the probability of see-
ing an observed number of protein interactions between
siRNA hits by chance. We start with a gene set derived
from a GeneGo Metacore Pathway. This gene set, G, is fil-
tered to only contain genes targeted in the siRNA screen.
Gene set members are labeled as "hits" or "non-hits" as
described in the methods section. Gene set members are
connected using literature-curated interactions to create a
network NG where genes are represented as nodes and
interactions are represented as edges. We label the
number of observed edges connecting hits as O.

A network permutation method is used to derive a null
distribution by permuting node labels. This approach is
an extension of the graph permutation algorithm pre-
sented by Balasubramanian et al. and allows the topology
of NG to remain constant [20]. By shuffling node labels we
sidestep the connection bias of highly annotated (highly
connected) gene set members. A minority of the knock-
down genes in our siRNA screen are identified as hits
(~6%) and accordingly a minority of permutations will
label these highly connected nodes as hits.

Starting with network NG, we shuffle node labels with all

other genes targeted in the screen to create a shuffled ver-

sion of NG we refer to as . The number of edges con-

necting hits within  is recorded. This process is

iterated 10,000 times and a p-value is calculated as the
proportion of sampled permutations that have O or
greater edges connecting hits. We use a p-value threshold
of 0.05 to reject the null hypothesis that the number of
observed edges connecting hits is what we would expect
by chance. Because of differences in overlap between
members and networks across gene sets, we leave p-values
unadjusted for multiple testing for a fair comparison
between PIPA and conventional hypergeometric enrich-
ment analysis.

We divide the global interactome network into sub-net-
works that are based on canonical gene sets for several rea-
sons. As an initial experiment, we applied the above
permutation algorithm to the global network and found
that hits were not significantly connected. However when
focusing on sub-networks derived from gene sets, we find
significant enrichment for highly connected hits. This
finding is consistent with work by Horvath et al. where
network properties from co-expression sub-networks
(modules) are more predictive than network properties

from the global co-expression network [21]. Another
advantage to dividing the global interactome into gene
sets, is that by their definition canonical gene sets are bio-
logically annotated and provide an intrinsic systems biol-
ogy explanation of hits. Finally, by focusing on these sub-
networks we are able to divide-and-conquer the global
network in a biologically supported and computationally
tractable manner.

Interacting gene pair siRNA hits are more reproducible 
than single gene hits
While replicate screens ideally should result in identical
hit lists, experimental variability makes this not the case.
A guiding principle behind ORA approaches is hits from
pathways enriched for hits are more likely to be true pos-
itives and represent relevant biological processes. Simi-
larly, a guiding hypothesis behind the development of
PIPA is that screen hits that are directly connected in the
global interactome are more likely to be true positives
than are individual hits. To test this hypothesis we com-
pared the overlap of single gene screen hits (node hits) to
the overlap of interacting gene pair siRNA hits (edge hits)
from replicate screens carried out in HeLa and TOV cell
lines (Figure 1). Experimental description, data pre-
processing, and labeling of hits are detailed in the Meth-
ods section. While significant overlap is observed for node
hits in both screens, the overlap between edge hits indeed
shows greater statistical significance.

Of note, the requirement that two hits share an interac-
tion substantially reduces the number of edge hits com-
pared to node hits. If we view nodes that are connected by
edges as random independent variables with a ~6%
chance of being a hit, the likelihood of drawing two hits
by chance (~0.36%) is dramatically smaller. The use of
interaction data to select among hits, consequently, sub-
stantially reduces the total number of hits while simulta-
neously enriching for hits that are more likely to be
reproduced in replicate screens. This observation supports
our hypothesis that analyzing high-throughput siRNA
data in the context of protein interactions is likely to ena-
ble identification of essential signaling cascades.

PIPA identifies both protein complexes and signaling 
interactions
To utilize gene interaction information in combination
with gene sets, the PIPA algorithm identifies gene sets in
which edge hits are statistically overrepresented compared
to a null distribution obtained by shuffling the node
labels in each gene set. In the analysis of the HeLa and
TOV screening data, we identified enriched pathways by
combining GeneGO Metacore canonical signaling path-
ways with a human interactome map comprised of the
union of binding, phosphorylation and expression regu-
lation edges from three data sources (see Methods). The
intersection of this interactome map with the canonical

′NG

′NG
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pathway gene sets yields 16,478 interactions, roughly
evenly distributed among the three interaction types (Fig-
ure 2).

When PIPA is carried out using all 16,478 protein interac-
tions, the majority of edge hits in enriched gene sets result
from binding interactions (86.9%). Of these enriched
binding edges, 72.5% are from protein complexes, as
defined by GO Cellular Component categories that are
children of the "protein complex" category
(GO:0043234). It is expected that sub-units of protein
complexes will have similar phenotypes in RNAi screens,
and in fact RNAi studies often use essential protein com-
plexes to identify false negatives because each knockdown
targeted complex sub-unit is known to have a significant
effect on phenotype [9,15]. Additionally protein interac-
tion databases typically include binding interactions
between each sub-unit of large complexes, for example
the eukaryotic initiation factor 3 (EIF3) or proteasome,
resulting in highly-connected graphs between 13 or 27
complex sub-units (respectively) [22]. As a result, any
edge-based ORA will be biased by these highly-connected
portions of the global interactome map.

Although the identification of interactions between sub-
units of essential protein complexes represents true biol-

ogy, these highly connected pieces of the interactome
obscure regulatory protein interactions which are of more
interest for understanding cell signaling. Consequently, to
identify essential signaling cascades, we restricted the
interaction data set to 11,017 phosphorylation and
expression regulation interactions. With this signaling-
focused interaction set, 80 edge hits in enriched pathways
were identified using PIPA. Of note, while the initial inter-
action set contained roughly equal proportions of phos-
phorylation and expression regulation edges, the edge hits
from the enriched pathways were significantly enriched
for phosphorylation interactions (Figure 2), additionally
supporting the hypothesis that PIPA is detecting essential
signaling events. Interestingly, this result also suggests
that expression regulation is more robust to perturbation
than is phosphorylation. This observation may reflect the
fact that expression regulation interactions reported in
these databases are more likely to be indirect interactions
mediated by other genes and gene products than are phos-
phorylation interactions.

PIPA identifies distinct enriched pathways relative to the 
Hypergeometric
We applied PIPA to the HeLa and TOV siRNA screens to
identify pathways that show significant enrichment for
protein interactions connecting siRNA hits (Figure 3).

"Node hits" represent all single gene siRNA hits while "edge hits" represent siRNA hits connected by a literature-curated pro-tein interactions from Metacore, HPRD, and/or IngenuityFigure 1
"Node hits" represent all single gene siRNA hits while "edge hits" represent siRNA hits connected by a litera-
ture-curated protein interactions from Metacore, HPRD, and/or Ingenuity. Higher odds ratios for edge hits (right) 
show a stronger overlap across replicate HeLa and TOV screens than node hits (left). Odds ratios calculated with universe 
sizes 18,586 and 11,426 for node hits and edge hits respectively.
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Pathways with expected biological relevance to cell cycle
regulation, translation, cell structure and various signal
transduction cascades are shown to be enriched. Five
enriched pathways are common to both HeLa and TOV
cell lines: metaphase checkpoint, spindle assembly and
chromosome separation, cytoskeletal remodeling focal
adhesion kinase (FAK) signaling, role of SCF complex in
cell cycle regulation, and role of Akt in hypoxia induced
HIF1 activation.

PIPA identifies a distinct set of enriched pathways relative
to HGA (Figure 4). Odds ratios and p-values indicate a
strong agreement between methods, but approximately
half of the enriched gene sets identified by PIPA are not
detected by HGA (see Figure 3). Of note, because the cov-
erage of the interactome is incomplete, many pathways
have sparse interaction coverage, leading to fewer
enriched gene sets detected by PIPA relative to HGA. As
annotation and completeness of the interactome
progresses, this limitation of edge-based approaches such
as PIPA is expected to diminish.

PIPA detects active signaling branches with pathway gene 
sets
The Cytoskeletal Remodeling: FAK Signaling pathway (Fig-
ure 5) is significantly enriched for both HeLa and TOV
siRNA hits using PIPA and not significantly enriched

using HGA. FAK-mediated signal transduction has been
implicated in control of cell migration, cell cycle progres-
sion and apoptosis [23]. Interestingly, both cell lines
showed the VEGFA growth factor as being a hit while dif-
ferent branches of the pathway showed enrichment for
edge hits. TOV hits highlight hits on FAK, PI3K and Akt
signaling whereas HeLa hits show enrichment of MAPK
signaling via Raf1 and Mek2. PIPA identifies enrichment
in this pathway using protein interactions despite their
being few scattered hits on the right side. Our results indi-
cate that bombesian receptor signaling is not essential to
HeLa and TOV cell lines.

Essential Signaling Network Identified in HeLa and TOV 
screens
To identify a sub network of essential signaling interac-
tions detected in the siRNA screens, edge hits from gene
sets enriched using HeLa and TOV hits were combined
into a single large network (Figure 6). After visualizing the
network using a force-based clustering algorithm, major
clusters pertaining to GO categories relevant to cell
growth rate can be identified. Of note, starting with the
original hit list, no enriched GO terms are identified by
HGA. Application of PIPA, as a result enables core signal-
ing interactions and processes to be identified from com-
paratively noisy genome-wide siRNA screening data.

The integrated interactome data set is comprised of 16,478 protein interactions, roughly evenly distributed between binding, phosphorylation and expression regulation (left)Figure 2
The integrated interactome data set is comprised of 16,478 protein interactions, roughly evenly distributed 
between binding, phosphorylation and expression regulation (left). Phosphorylation and expression regulation inter-
actions (11,017 total) were used to identify enriched gene sets in HeLa and TOV genome wide siRNA screens using PIPA. The 
edge hits from enriched gene sets (right) are enriched for phosphorylation interactions.
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Conclusion
Genome scale siRNA screens provide an exciting opportu-
nity to investigate the interactome. One caveat of these
high-throughput screens is that generally only a few cell
attributes are measured after each perturbation. There is a
strong need to map hits to the interactome for biological
interpretation and generation of signaling hypotheses.
Here we present an ORA that incorporates protein interac-
tions to identify canonical signaling pathways enriched
for siRNA hits. This method extends and complements
traditional gene set enrichment methods by specifically
incorporating prior knowledge about the interactions
within a pathway using a graph-based permutation algo-
rithm. Also, PIPA provides an enrichment framework to
exclusively examine signaling events within canonical
pathways without the biases introduced by highly-con-
nected multi-subunit complexes. When applied to
genome wide siRNA screens in HeLa and TOV cell lines,

the edge hits in identified pathways are enriched for GO
categories relevant to the cell cycle, anti-apoptosis, and
cytoskeletal structure. Of note, different branches of the
FAK Signaling pathway are specifically effected by siRNA
perturbations in HeLa versus TOV cells lines.

Protein interaction databases provide an initial view of
the human interactome that is known to be incomplete
[24]. In addition, there is no universal standard for defin-
ing and annotating interactions across databases leading
to differences in interaction accuracy. Also, the contextual
information about interactions is generally absent from
such databases, making it difficult to identify coherent
sets of interactions that constitute functional signaling
networks. These limitations in the known interactome
inevitably lead to limitations in any methods relying on
interactome data. Here we combine interactome interac-
tions with canonical gene sets to partially address some of

Enriched pathways identified using PIPA for (A) HeLa and (B) TOV siRNA hits are shownFigure 3
Enriched pathways identified using PIPA for (A) HeLa and (B) TOV siRNA hits are shown. Enriched pathways 
uniquely identified using PIPA are highlighted in green.
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these limitations. As the quality of interactome databases
increase, it is expected that the increased coverage and
contextual information will be reflected in the improved
ability of edge-based enrichment methods, including
PIPA, to identify biologically meaningful signaling mod-
ules.

The process of natural selection is present in human
tumors and a driving force behind cancer treatment resist-
ance [25]. Thus, it is critical to understand what pathways
and protein interactions are sensitive to perturbations in a
given interactome. Pathways enriched for interactions
connecting siRNA hits make available an exciting portrait
of essential signaling that is cell line specific and has the
potential to guide future treatment strategies.

Methods
Genome-scale siRNA screens
Genome-scale siRNA knockdown screens were performed
in duplicate on HeLa and TOV cell lines essentially as
described before [26]. The siRNA library is comprised of
18,586 unique siRNA pools, where each pool is an equi-
molar mixture of three siRNAs targeting different
sequences of the same mRNA transcript. Both Hela and
TOV21G cells were cultured in Dulbecco's Modified
Essential Medium (DMEM) supplemented with 10% fetal
bovine serum and penicillin/streptomycin. For the assay,
400 cells/well (Hela) or 1000 cells/well (TOV21G) in
DMEM were seeded in wells of a 384-well TC-treated
microplate. 24 hrs after cell plating, diluted Oligo-
fectamine (1:40 in Opti-MEM) was incubated with siRNA
for 20–30 min, and cells were transfected with the Oligof-
ecatmine/siRNA mixture. Final concentration of siRNA
pools was 50 nM and 25 nM for Hela and TOV21G
screens, respectively. 72 hours post-transfection, cell via-
bility was measured by Alamar Blue fluorescence assay.

An siRNA to luciferase was used as a negative control
(100% viability) and a no cell control was used a 0% via-
bility control. A siRNA to Polo-like kinase 1 (Plk1) was
used as a positive biological control to monitor transfec-
tion efficiency throughout the screens.

Cell growth phenotype values from siRNA screens were
converted to z-scores, and quantile normalization was
performed across all four screens to make a z-score hit
threshold comparable across screens. Note that normali-
zation steps result in the same number of node hits for
replicate screens shown in Figure 1. For enrichment anal-
yses, z-scores for each knockdown in duplicate screens
were averaged together within each cell line. Averaged z-
scores less than -1.5 were labeled as siRNA hits having a
strong negative effect on cell growth. This threshold is
based on other published genome-scale RNAi analyses
and chosen to include expected essential genes (PLK1,
KIF11, ARPC3) [4,27-29]. In our enrichment analysis,
1,133 (6.1%) HeLa and 1,108 (6.0%) TOV knockdowns
meet this criterion and are labeled as hits. Results shown
in Figure 1 comparing replicate screens are non-averaged
z-scores using the same z-score threshold to label hits.

Interactome Data Set and Canonical Gene Sets
Literature-curated interactions from GeneGo, Inc., Inge-
nuity®, and the Human Protein Reference Database
(HPRD) were combined and filtered to be unique, non-
self, and non-reciprocal [30-32]. There were 98,561 anno-
tated interactions pertaining to phosphorylation, gene
expression and physical binding events that mapped to
siRNA targeted genes. We focused on these three interac-
tion types as they were universal between all three protein
interaction databases and made up the majority of inter-
actions. GeneGo's Metacore canonical pathways (524
total) were used to provide contextual information to the

Venn diagrams indicate the number of overlapping and unique enriched pathways identified by using PIPA and Hypergeometric analysis (HGA) methodsFigure 4
Venn diagrams indicate the number of overlapping and unique enriched pathways identified by using PIPA and 
Hypergeometric analysis (HGA) methods. While there is strong agreement, nearly half of the PIPA enriched pathways 
are not found using HGA.
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The Cytoskeletal Remodeling: FAK Signaling pathway is enriched for HeLa and TOV edge hits using PIPA but not node hits using HGA enrichmentFigure 5
The Cytoskeletal Remodeling: FAK Signaling pathway is enriched for HeLa and TOV edge hits using PIPA but 
not node hits using HGA enrichment. Red indicators are HeLa siRNA hits and blue indicators are TOV hits. Both HeLa 
and TOV show significant enrichment of protein interactions connecting hits (p-value = 0.048 and p-value = 0.015 respec-
tively). Different signaling branches in this pathway have lethal effects in the two different cell lines when perturbed, although 
both branches are annotated as associated with a cell growth phenotype. [GeneGo Metacore (2008)].
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global interactome map by grouping genes and/or gene
products into sets that function together in a canonical
biological processes. The intersection of the global inter-
actome map and each canonical gene set was used to
approximate topologically well-defined signaling path-
ways.

Overlap effect size calculations
Overlap effect size is estimated by computing the odds
ratio on a 2 × 2 table obtained by classifying the relations
of replicate screens. The edge hit universe (11,426) is cal-
culated by counting the number of unique siRNA knock-
downs belonging to protein interactions where both
interacting partners are targeted in the screen. The edge hit
overlap is calculated by taking the intersection of hits
belonging to protein interactions connecting two siRNA
hits.

Abbreviations
GO: Gene Ontology; RNAi: RNA interference; siRNA:
small interfering RNA; ORA: over-representation
approaches; PIPA: protein interaction permutation analy-
sis; HPRD: human protein reference database; FAK: focal
adhesion kinase; HGA: Hypergeometric enrichment anal-
ysis.
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Combined edge hits from PIPA enriched gene sets from HeLa and TOV screensFigure 6
Combined edge hits from PIPA enriched gene sets from HeLa and TOV screens. The three major clusters show 
enrichment for a variety of biological functions that allow cells to maintain cytoskeletal organization, proteolysis, and prevent 
apoptosis. The indicated GO Biological Process categories were shown to be significantly enriched after Bonferroni correction. 
Orange nodes are HeLa hits, yellow nodes are TOV hits, and red nodes are hits in both screens. Edge color indicates the type 
of protein interaction (red = phosphorylation, green = expression regulation). GO category enrichments were calculated using 
the Hypergeometric and p-values (< .001) are Bonferroni corrected.
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