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Abstract
Background: Signal duration (e.g. the time over which an active signaling intermediate persists) is
a key regulator of biological decisions in myriad contexts such as cell growth, proliferation, and
developmental lineage commitments. Accompanying differences in signal duration are numerous
downstream biological processes that require multiple steps of biochemical regulation.

Results: Here we present an analysis that investigates how simple biochemical motifs that involve
multiple stages of regulation can be constructed to differentially process signals that persist at
different time scales. We compute the dynamic, frequency dependent gain within these networks
and resulting power spectra to better understand how biochemical networks can integrate signals
at different time scales. We identify topological features of these networks that allow for different
frequency dependent signal processing properties.

Conclusion: We show that multi-staged cascades are effective in integrating signals of long
duration whereas multi-staged cascades that operate in the presence of negative feedback are
effective in integrating signals of short duration. Our studies suggest principles for why signal
duration in connection with multiple steps of downstream regulation is a ubiquitous motif in
biochemical systems.

Background
Signal duration (e.g. the length of time over which a sign-
aling intermediate is active) is a critical determinant in
mediating cell decisions in numerous biological processes
including cell growth, proliferation, and developmental
lineage commitments (Fig. 1) [1-8]. One fundamental
issue in signal transduction and cell decision making then
is how differences in signal duration are detected to
achieve the appropriate biological response.

Accompanying changes in signal duration are multiple
stages of biochemical regulation of differing network

topology that collectively integrate an incoming signal to
deliver a specific biological response. The sequential acti-
vation of multiple steps in a biochemical pathway is a
ubiquitous regulatory motif involved in many aspects of
gene regulation, metabolism, and intracellular signal
transduction. Many advantages of having multiple steps
of regulation as opposed to having activation occur
through a single step have been documented. A signaling
cascade can allow for attenuation of noise, incorporation
of additional regulatory checkpoints or proofreading
steps, and increased tunability of the input signal [9-12].
Other studies have established conditions under which
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signaling cascades amplify or attenuate incoming signals
[13-15]. These conditions are established by rates of acti-
vation, rates of deactivation that are set by phosphatase
activities, and the presence of scaffold proteins [14-16].
However, how these features synergize with downstream
effector pathways to detect differences in signal duration
has not been fully studied.

A recent study has proposed a model that predicts how
signals with different dynamical characteristics can be dis-
tinguished upon integration into different network archi-
tectures [17,18]. We develop a formalism to complement
their approach and, as a consequence, identify general
principles for how different network topologies can differ-
entially integrate signals that persist at different time
scales. We focus on a simple model of the sequential enzy-

matic activation of multiple species along a pathway to
understand mechanistic principles underlying how multi-
ple stages in a biochemical pathway can integrate differ-
ences in signal duration. We use a model of a weakly
activated cascade[13,14,19], whose assumptions we first
motivate, to study the question of how biochemical cas-
cades detect the time scale dependence of input signals.
Our approach is similar to previous work [20] that inves-
tigated the frequency dependent signal processing proper-
ties of single enzymatic cycles. The model allows us to
characterize the dynamics by obtaining exact expressions
for the power spectra of linearized biochemical networks
of multiple stages with arbitrary length and connectivity
and we focus on how these frequency dependent signal
processing properties of cascades are used to detect differ-
ences in signal duration.

Physiological examples of signal duration determining the phenotypic outcome in signal transductionFigure 1
Physiological examples of signal duration determining the phenotypic outcome in signal transduction. Four 
examples of physiological processes in which branching phenotypic decisions are believed to be controlled by the detection of 
differences in signal duration [5,6,8,28-30].
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We first show that biochemical cascades can function as
both high low and high pass filters depending on the
topology of the network architecture. A low pass filter
removes high frequency (short duration) components of
a signal and a high pass filter removes low frequency (long
duration) components of a signal. These filtering capabil-
ities are determined by differential positive and negative
regulation within the biochemical pathway. Importantly,
the filtering capabilities are determined by the presence of
feedback as well as the amplification and attenuation
properties at different steps in the cascade that are set by
the differences in phosphatase activities at different stages
along the cascade. Ultimately, our findings suggest design
principles that characterize how biochemical cascades are
well suited for detecting time scale dependent differences
in biochemical signals.

Results
Detection of long duration signals
In the model as previously developed[14], an input sig-
nal, f(t), activates the first member of the pathway whose
activation can then activate the next member. In turn,
each upstream species activates its immediate down-
stream target and can also be deactivated by, for example,
a phosphatase. Assuming Michaelis Menten kinetics for
the activation and deactivation of each species along the
cascade, we can write an equation for the dynamics of the
active form of the ith species xi along the cascade:

where Epase is the concentration of the enzyme that deacti-

vates species i, ,  are the catalytic constants of

the activation and deactivation steps, ,  are the

Michaelis constants and  is the total amount species

available at step i. We take ,  at each step to be

large ( ,  > ) so that the kinetics of the reac-

tions are not limited by the availability of the enzyme
[21]. This assumption implies that the enzyme kinetics
operate in a linear, first-order regime. Next, we assume
that the cascade is weakly activated (i.e. at each stage, the
total number of species is much larger than the number of

active species,  >> xi). In many biologically relevant

instances (e.g. the Mitogen activated protein kinase
(MAPK) cascade), the neglect of saturation effects is often
reasonable [22]. Further, modeling the deactivation as a
first order reaction is often valid when phosphatases are in

excess as is the case in many physiological scenarios[23].
Eq. 1 simplifies to a system of linear first order differential
equations[14]:

where the first species is activated at a rate f(t);

 and . This scheme is

depicted in Fig. 2a.

The weakly activated cascade model has the advantage
that the linearity of the equations allows for analytical
tractability. Eq. 2 can be conveniently analyzed by intro-

ducing Fourier transformed variables: Xi(ω) = ∫dteiωtxi(t)

and F(ω) = ∫dteiωt f(t). The number of activated species at

stage i becomes . The power spec-

trum Pi(ω) ≡ |Xi(ω)|2 at the ith step can also be obtained:

. After iterating at each suc-

cessive stage of the n step cascade, an expression for Pn(ω)

as a function of the power spectrum of the input signal

(S(ω) ≡ |F(ω)|2) is obtained:

Pn(ω) = gn(ω)S(ω), (3)

in which a frequency dependent gain gn(ω) is defined as:

gn(ω) is a transfer function that converts the input S(ω)

into a response and provides a measure of the signal
processing capabilities of the network. The change in the
amplitude of the signal output is determined by the
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 term and the time dependence of the output is

modulated by the  term.

From the formula of gn(ω), one consequence of having

multiple stages is readily apparent. In the high frequency

regime , for each , gn(ω) rapidly decays with

increasing n (gn(ω) ~ ω-2n). Thus, longer cascades are more

efficient at filtering the high frequency components of the
signal from the output. This behavior is illustrated in Fig.

2b. Fig. 2b contains plots of gn(ω) for different values of n;

cascades of lengths n = 1, 2, 3, 4 are shown.

In eq. 4, the relative values of  along different stages of

the cascade also affects the scaling behavior of gn(ω) as ω
changes as well as the overall amplitude. The change in
signal amplitude at the steady state (that leads to amplifi-
cation or attenuation) at step i is given by the ratio of the
effective rate constants for activation and deactivation

.  results in signal amplification and 

leads to attenuation of the signal at step i [13,14]. Ampli-
fication or attenuation also leads to different time
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Filtering of high frequency signalsFigure 2
Filtering of high frequency signals. Time dependence of signal integration in a linear biochemical cascade. a.) the sequential 
activation of multiple stages in a signaling cascade. Superscripts (I) and (A) denote inactive and active forms of each chemical 
species and are dropped from the equations in the text. b.) same kinetic constants, all kinetic constants are taken to be: 

 c.) a positive gradient of activation/deactivation rates keeping  fixed.  = 1.0,  = 3.3,  = 6.6, 

 = 10.0. c.) plots of gn(ω) for n = 1, 2, 3, 4 with successively different values of  while keeping  fixed (  = 1.0, 
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dependent behaviors of gn(ω). For example, consider an n

staged cascade with rate constants  such that

, at frequencies ω > , gn(ω) ~ ω-

2n while at frequencies  > ω > , gn(ω) ~ ω-2(n-1) and

so forth. Thus, at intermediate frequencies, a time scale
separation (as determined by different deactivation rates
along the cascade), along with signal amplification and
attenuation, also leads to different frequency dependent

behaviors of gn(ω).

Also, from the plots in Fig. 2c (and inspection of eq. 4), it
is observed that incorporation of faster steps along the cas-
cade influences the frequency dependence of gn(ω) to a
lesser extent than would be the case when the kinetics of
activation are same for each successive step. Since signal
propagation in these cases is limited by the slower stages
of the cascade, the faster steps are effectively removed
from gn(ω). This observation suggests a principle in the
ability of a biochemical pathway to filter signals of short
duration: when there is a positive gradient of deactivation
rates (that also leads to amplification or attenuation of
signal amplitude), the time dependence of signal integra-
tion for multi staged cascades more closely resembles that
of a pathway involving a single step. This effect is a result
of a single dominant time scale in the pathway and pro-
vides a mechanism for regulating the amplitude of the sig-
nal output while keeping the time dependence of the
output the same as that of a single-staged pathway.

Detection of short duration signals
While the sequential activation of multiple steps in a bio-
chemical pathway allows for effective filtering of the high
frequency, short duration components of a signal, often
the desired signal output is regulated by feedback. We will
now show with our analysis that feedback control in some
instances also allows for the filtering of the low frequency,
long duration components of a signal. Previous work has
characterized this behavior with numerical simulations
[17,18]. In these instances, signals that occur at short
times can be integrated while signals with a longer dura-
tion are effectively filtered because at longer times, the
negative feedback loop affects the signal output.

For instance, the signal output can be affected by a feed-
back loop that is initiated downstream of the output. This
scenario would be the case when the signal output from a
biochemical cascade activates its own positive or negative
regulators. For instance, in mammalian cells, the activa-
tion of extracellular regulatory kinase (ERK) often leads to
the upregulation or activation of its own phos-
phatases[24]. In this scenario, a signal output in the form
of phosphorylated ERK (ERK is known to phosphorylate

on the order of one hundred substrates) is deactivated as
a result of the upregulation of phosphatases that dephos-
phosphorylate residues in the TxY motif whose phospho-
rylation is necessary for activation.

Signal output is the activity of the kinase at the mth step
and feedback control to the signal output at step m is ini-
tiated at a later step (i.e. n > m) and the modified set of
dynamical equations becomes:

where kf is the feedback strength and sets the time scale of

the feedback and . This

scheme is depicted in Fig. 3a.

Another biologically important example involves a nega-
tive feedback loop that acts upon a downstream layer in
the cascade. However, in the linear cascade approxima-
tion that is used in this paper (that allows for extensive
mathematical analysis) such a feedback loop would sim-
ply act to effectively increase the rate of deactivation of the
species involved in the layer of the cascade that is involved
in the feedback interaction. A model with nonlinear neg-
ative feedback (and one that is not analytically tractable)
would be required to show the effect mathematically.

After applying a Fourier transformation as before, an

expression for  from eq. 5, albeit now more compli-

cated, can be obtained as a function of S(ω) in closed-
form:

where,
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the species involved in the signal output, and the others
for the additional interactions derived from the feedback
loops to propagate and interact with the species involved
in the output. The competition between these effects in
principle may lead to a frequency dependent optimal

value of . At high frequencies as before, signal

propagation is limited by the time it takes to move
through the cascade and high frequency components of

 are filtered. Also, at low frequencies, signals can

potentially be attenuated when the response is dominated
by the activity of the feedback loop. If the interaction from
the feedback is sufficiently strong, then the low frequency

components of the signal are also filtered by the cascade.
In this scenario, the frequency dependent behavior of

 would be non monotonic.

We illustrate these ideas through consideration of a three
tiered cascade that consists of a chemical species carrying
the input signal, a species conferring the signal output,
and a species activated downstream to the output that
provides a feedback interaction to the species conferring
the signal output. In this scheme, m = 1 and n = 2, and eq.

7 is simplified and  becomes:
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Filtering of low frequency signalsFigure 3
Filtering of low frequency signals. A three tiered biochemical cascade with competing processes occurring at different 
time scales that is sufficient to filter signals at long time scales (Low pass filtering). a.) An initial stimulus activates a downstream 
species that confers a signal output and activates a downstream species that, through feedback, interacts with the species that 
carries the signal output. Superscripts (I) and (A) denote inactive and active forms of each chemical species and are omitted 

from the equations in the text. b.) parameter values were taken to be: υ = -1, ;  = 0.1. kf = 2.5 (solid 

lines), kf = 1.0 (dashed lines), kf = 0.5 (dotted lines), kf = 0.1 (dash-dotted lines). c.) parameter values were taken to be: υ = -1, 
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The optimal frequency ωopt is obtained by differentiating

,

ωopt increases monotonically for decreasing values of 

and increasing values of kf. For negative feedback υ = -1,

ωopt exists (Im ωopt = 0) when

. Positive feed-

back υ = +1 requires that two conditions are satisfied for

ωopt to be real,  and

. The height at the optimal fre-

quency  is:

We can also compute the width ω1/2 of  at half max-

imum . ω1/2 has the form:

Where ,

, , and

. Fig. 3b considers

plots of  for different feedback strengths kf. The

curves in Fig. 3b illustrate changes in , ,

and ω1/2. Fig. 3c illustrates how , , and ω1/

2 change for different values of .

Differential detection of long and short signals by two 
interacting species
In the previous sections, we illustrated how long and short
duration signals can be differentially detected with differ-
ent network structures. Alternative schemes for detecting
long and short duration signals are also possible. Con-
sider a mechanism that illustrates the time dependence of
signal transduction involving the competition of two
interacting products. One product is produced in greater
amounts at one time scale and the other is produced in
great amounts at a different time scale. Similar schemes
have been investigated in the context of MAPK signaling
and have shown to have many effects on integrated signal
output[17,18,24,25]. For example, in Yeast MAPK path-
ways, the output of one pathway (e.g. the stress-induced
MAPK HOG1 pathway), can inhibit the activity of the
(mating response-induced MAPK FUS3 pathway) as has
been previously shown [25].

Here, we focus on the dynamics and time scale depend-
ence of these mechanisms. Consider the following
scheme depicted in Fig. 4a. In this scenario, two interact-
ing products X and Y are produced by the same signal such
as is the case of two parallel, interacting MAPK pathways.
A set of two kinetic equations for species X and Y (denoted
by x and y respectively) can be written as follows:

γ is the strength of the negative interaction from species Y
to species X. The other parameters that are introduced in
this model are α1 and α2, that set the strength of interac-
tion between the signal stimulus f(t) and X and Y respec-
tively. The constitutive degradation rate constants of X
and Y are β1 and β2.

We can solve eq. 12 using Fourier transformation as

before. We define the following as before: PX(ω) ≡ |X(ω)|2

and PY(ω) ≡ |Y(ω)|2; where,  and

, and S(ω) = |F(ω)|2 and
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PX(ω) = gX(ω)S(ω) (13)

and

PY(ω) = gY(ω)S(ω).

The frequency dependent gain for species X and Y are
obtained,

and

Plots of gX(ω) (solid) and gY(ω) (dashed) are considered
in Fig. 4b. From Fig. 4b, the following behavior is appar-
ent. At very high frequencies, signals from f(t) are filtered
by both products X and Y. At intermediate frequencies (ω
~ 1.0 to ω ~ 10.0) signals deriving from f(t) are integrated
more efficiently by species X. Therefore, short duration
signals are integrated more efficiently by species X. At low

frequencies, ω < 1.0, signals originating from f(t) are inte-
grated more efficiently by species Y. As a result, long dura-
tion signals are integrated more efficiently by species Y
since at long times, X is affected by the negative interac-
tion from Y.

This simple two species model illustrates how signal spe-
cificity can be achieved from two competing products by
introducing changes in signal duration of the upstream
signal. Short duration signals are more effectively inte-
grated by one species and long duration signals are more
effectively detected by the other.

Integration of signals of differing duration
In the previous sections, we considered the frequency
dependent gain of different network structures. In this sec-
tion, we consider an incoming signal of differing duration
and observe how it is differentially processed by networks
that filter signals at different time scales. First, we consid-
ered the case in which the network filters short duration
(high frequency) signals (Fig. 2). Next, we considered the
case (Fig. 3) in which the network filters signals of long
duration (low frequency).

A convenient way to parameterize signals of differing
duration, while keeping the total amount of signal ∫ f(t)dt
= α fixed, is to consider the function,

g X ω
α β ω γα γα α β

ω ω β β
( ) =

( ) ( ) +⎡
⎣⎢
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⎦⎥
+ −( )

+ ( ) +( )⎡
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1
2

2
2 2

2 2 2 1 2

4 2
1

2
2

2
⎢⎢

⎤
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+( )β β1 2

2

(14)

gY ω
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2

2
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2
.

A model of two interacting species produced by the same signalFigure 4
A model of two interacting species produced by the same signal. Differential time dependent signal detection by two 
competing products. a.) two species, denoted by X and Y in are produced by the same signal f(t). Species Y negatively interacts 
with species X. Species X can positively interact with itself. The activity of species f is transient with associated signal duration. 
b.) frequency dependent gain of two interacting products. Plots of gX(ω) (solid line) and gY(ω) (dashed line) are shown. All 
parameters are taken to be 1.0 (in appropriate units) with the exception of α1; α2 = 1.5.
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where Θ(t) is a Heaviside step function, τd sets the signal
duration, and α is taken to be 1 (α = 1) in the appropriate
units. This form of f(t) models the behavior of a typical
experimental signaling time course [4]. Plots of f(t) are
shown in Fig. 5a. For this choice of signal, S(ω) is easily
computed;

S(ω) is plotted in Fig. 5b for different values of τd ranging

from  = 2.0 (short duration) to  = 0.1 (long dura-

tion).

Figs. 5c and 5d illustrate how signals S(ω) of large (  =

0.5 dotted lines) and small (  = 2.0 dashed lines) dura-

tion are integrated by the internal gains g3(ω) (Fig. 5c,

from eq. 4) and  (Fig. 5d, from eq. 8) of these

multistage cascades of differing network topologies. In

Fig. 5c, the signal output P3(ω) (from eq. 3), upon integra-

tion by a three-tiered kinase cascade is shown. Taking

f t
te t t

te t t dt
( ) =

− ( )
− ( )∫

α
τ

τ

/ d

/ d
,

Θ

Θ
(15)

S

d

ω α

τ ω
( ) =

− +( )
2

2 2 2
. (16)

τ d
−1 τ d

−1

τ d
−1

τ d
−1

g f
1 ( )ω

Integration of differences in signal durationFigure 5
Integration of differences in signal duration. Differences in signal duration parameterized by τdeg a.) time domain. b.) fre-

quency domain;  = 0.1 (dash-dotted), 0.5 (dashed), 1.0 (solid), 2.0 (dotted) lines. Plots of S(ω) ≡ |F(ω)|2 are shown. Corre-

sponding plots of f(t) are shown in the inset. Short  = 2.0 and long  = 0.5 duration signals are filtered through b.) 

g3(ω) and c.)  resulting in b.) P3(ω) and c.)  for  = 0.5 (dashed lines) and  = 2.0 (dotted lines). Parame-

ters taken to be: b.) c)  = 2.0,  = 1.0,  = 1.0,  = 0.01, kf = -5.0.
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 for i ∈ 1, 2, 3, g3(ω) effectively filters the

short (  = 2.0) duration signal and results in an output

P3(ω) of small magnitude at all time scales 2πω-1 in the

frequency spectrum. In contrast, for the signal character-

ized by  = 0.5, signal processing through g3(ω) results

in a signal of larger amplitude. The ratio of amplitudes
(with the superscript denoting the duration used)

 at the optimal frequency (ω = 0) for the two sig-

nals is  ≈ 17.

In Fig. 5d, the signal output  (from eq. 6), obtained

from a signal output that is also affected by a downstream

negative (υ = -1) feedback loop, is shown. Parameters

used are:  = 2.0,  = 1.0,  = 1.0,  = 0.01, kf = -

5.0. For the signal of long duration  = 0.5, only the

small frequency components of the signal are integrated.
This behavior is in contrast with the signal output of a

short duration signal  = 2.0. The amplitude difference

in this case is  ≈ 0.2.

Discussion
Our models illustrate features of biochemical pathways
that allow for the discrimination of signals that only differ
in their duration. It is important to note that many impor-
tant, nonlinear effects, at the expense of analytical tracta-
bility, were excised in making the linear, weakly activated
cascade approximation. For example, nonlinear positive
feedback is known to give rise to bistability. Also nonlin-
ear negative feedback can lead to oscillatory behavior.
These effects, however, correspond to long time, steady
state behavior and the present analysis focused on tran-
sient signals of different duration and it is therefore
expected that such nonlinear effects are not expected to
influence the qualitative behavior of the results in this
study.

In summary, we computed the frequency dependent
internal gain for two classes of biochemical pathways
involving multiple stages of regulation. The first model
consisted of a cascade of steps and showed how changes
in the number of steps as well as the amplification/atten-
tion of the signal changed the networks' ability to filter
high frequency (short duration) components of a signal.

Another network consisted of a sequence of steps in the
form of biochemical intermediates in which the output is
connected to a downstream feedback loop or an interact-
ing product. The gain in this network can have non
monotonic behavior in which the low frequency compo-
nents of the signal are also filtered at time scales commen-
surate with the induction of the regulatory loop. This
behavior enables the network to filter out signals of long
duration. The minimal topological features of these bio-
chemical networks provide distinct and robust mecha-
nisms for integrating signals that persist with different
characteristic time scales. As different temporally regu-
lated signals often lead to different transcriptional pro-
grams such as in NF-κB signaling [26,27], it is tempting to
speculate on the role that such filtering mechanisms may
have in regulating gene expression.
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