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Abstract

Background: Accurate classification of microarray data is critical for successful clinical diagnosis and treatment. The
“curse of dimensionality” problem and noise in the data, however, undermines the performance of many
algorithms.

Method: In order to obtain a robust classifier, a novel Additive Nonparametric Margin Maximum for Case-Based
Reasoning (ANMM4CBR) method is proposed in this article. ANMM4CBR employs a case-based reasoning (CBR)
method for classification. CBR is a suitable paradigm for microarray analysis, where the rules that define the
domain knowledge are difficult to obtain because usually only a small number of training samples are available.
Moreover, in order to select the most informative genes, we propose to perform feature selection via additively
optimizing a nonparametric margin maximum criterion, which is defined based on gene pre-selection and sample
clustering. Our feature selection method is very robust to noise in the data.

Results: The effectiveness of our method is demonstrated on both simulated and real data sets. We show that the
ANMM4CBR method performs better than some state-of-the-art methods such as support vector machine (SVM)
and k nearest neighbor (kNN), especially when the data contains a high level of noise.

Availability: The source code is attached as an additional file of this paper.

Background
Recently gene microarray technology has become a fun-
damental tool in biomedical research, enabling us to
simultaneously observe the expression of thousands of
genes on the transcriptional level. Two typical problems
that researches want to solve using microarray data are:
(1) discovering informative genes for classification based
on different cell-types or diseases [1]; (2) clustering and
arranging genes according to their similarity in expres-
sion patterns [2]. Here we focus on the former, espe-
cially on microarray classification using gene expression
data, which has attracted extensive attentions in the last
few years. It is believed that gene expression profiling
could be a precise and systematic approach for cancer
diagnosis and clinical-outcome prediction [3].
With about ten years of research, many algorithms

have been applied to microarray classification, such as
nearest neighbor (NN) [4], artificial neural networks [5],
boosting [6], support vector machine (SVM) [7], etc.

Many commonly used classifiers are rule-based or statis-
tical-based. One challenge of these methods on microar-
ray data is the small sample size problem. With the
limited number of training samples, it is difficult to
obtain domain knowledge for rule-based systems or get
accurate parameters (such as mean value and standard
deviation) for statistical-based approaches.
Other than adopting rule-based or statistical-based

classification methods, in this paper we use a case-based
reasoning (CBR) [8] approach to design a robust microar-
ray classifier. CBR usually requires much less domain
knowledge than rule-based or statistical-based systems,
because it does not heavily rely on the statistical assump-
tions on the data during the classification procedure. It
maintains a case-base of previous problems and their
solutions, and solves new problems by reference to this
case-base. NN can be viewed as the simplest form of
CBR methods. With a complicated comparative study, in
[9] it was concluded that NN performed better compared
with more sophisticated ones. Moreover, [10] observed
that CBR is particularly useful for applications in life
sciences, where we lack sufficient knowledge either for
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formal representation or for parameter estimation. [11]
reviewed previous research works in applying CBR to
bioinformatics domains. In the problem of microarray
classification, however, except the simplest form NN,
CBR classifiers were considered in only a few literatures
[11,12] and was only tested on some simple data sets.
In order to design an effective classifier, dimension of

the microarray data should be reduced. Of the thou-
sands of genes in a microarray data, only a small frac-
tion are informative from the aspect of biological
meaning or classification performance [13]. In this work
we propose a novel additive nonparametric margin max-
imum (ANMM) method for feature selection. Three
properties determine ANMM’s superiority in feature
selection for microarray data: (1) ANMM is a nonpara-
metric method which requires less restrictive assump-
tions about the original data, and thus is suitable for
dealing with microarray data [14]. (2) The feature reduc-
tion criterion for ANMM is defined based on gene pre-
selection and sample clustering, which renders ANMM
insensitive to outliers or mislabeled samples. (3) There
exist some relationships between ANMM and CBR, and
therefore the performance of CBR classification can be
improved by ANMM feature selection.
Using ANMM for feature selection and CBR for clas-

sification, a novel ANMM4CBR method is established in
this paper. The performance of ANMM4CBR is tested
on one simulated data and four publicly available data
sets, comparing with some well-known methods includ-
ing SVM, kNN and LogitBoost, as well as the other CBR
methods that have been applied to microarray classifica-
tion. We show that ANMM4CBR can result in exciting
classification results, especially on the data which con-
tains a high level of noise.

Methods
Overview of ANMM4CBR
In a microarray data classification problem, we are given
N training samples { , }x yi i i

N
1 , where xi is an M-dimen-

sional vector in the feature space and yi Î {0, ... K - 1}
is the class label. The set of samples in the kth class are
denoted as ωk, i.e. xi Î ωk means yi = k. The genes are
denoted as   { }m m

M
1 , where jm (x) is the expression

value of sample x on the mth gene. The learning task is
to select a subset from all the genes, and define a simi-
larity measurement based on the selected genes. When
given an unlabeled sample, we expect to predict the
category of this sample using the selected genes and the
defined similarity measure.
In this paper, we propose a CBR-based method to

construct the classifier. CBR classifiers use a philosophy
that plays a vital role in human decision making. They
try to solve new problems by retrieving previously
solved cases from a case-base. The process of solving

new cases contributes new information to the system,
and this new information can be used for solving other
future cases. In [15], CBR method is described in terms
of four phases. In the first phase, CBR retrieves old
cases similar to the new one. The second phase reuses
the solutions of the retrieved cases for solving the new
case. The third phase revises the solution, e.g. by a
human. Finally, the fourth phase retains the useful
information which is obtained when solving this case.
Here we focus on the retrieving and reusing phases,

and propose a novel ANMM4CBR method for classifica-
tion (see Figure 1). For feature selection, we develop a
novel ANMM method, which additively optimizes a
nonparametric margin maximum criterion. We define
this criterion based on gene pre-selection and sample
clustering to make it robust to noise and outliers. In our
CBR classifier, each class contains one case-base. For a
testing case, we retrieve similar cases from each case-
base, and combine the results of all the case-bases to
provide a classification label.
According to the notion of CBR, we can revise the

prediction results of testing samples and then add them
to the case-bases. The revising and retaining phases,
however, are not the focus of this paper and will not be
mentioned in the following descriptions. Details of the
ANMM and CBR modules are described below.

Additive Nonparametric Margin Maximum for Feature
Selection
Here we introduce an ANMM feature selection method,
which uses an additive method to optimize a nonpara-
metric margin maximum (NMM) criterion. The NMM
criterion is defined based on nearest between-class dis-
tance maximization and furthest within-cluster distance
minimization. We first describe the NMM criterion, and
then present the additive optimization method.

Figure 1 Framework of ANMM4CBR for microarray
classification. ANMM4CBR contains two modules, ANMM for
feature selection and CBR for classification. Both ANMM and CBR are
suitable for dealing with microarray data, which usually contain
noisy information and only a small number of training samples are
available.
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Nonparametric Margin Maximum (NMM) Criterion
The goal of feature selection is to identify informative
genes from thousands of available genes. The informa-
tive genes are those that have high discriminative
powers, and have low correlations between each pair of
them [16]. Selecting informative genes helps not only
overcome the curse of dimensionality problem and thus
improve the prediction accuracy, but also reveal mean-
ingful biological explanations of the dataset. Theoreti-
cally, any wrapper or filter feature selection method,
such as t-test, mutual information measurement,
etc, can be used. However, one drawback of these
approaches is that the feature selection criterion is
designed regardless of the classifier design. In [17], it
has been observed that almost all feature selection
methods have some assumptions of the distribution of
the data, and these assumptions usually affect the per-
formance of the classifiers. Therefore, it is important to
design a feature selection method that is suitable for the
classification method that will be used.
Bressan and Vitrià [17] showed that there is a close

link between nonparametric discriminant analysis
(NDA) [18] and instance-based classifiers. In that work,
a modified NDA was applied to improve the perfor-
mance of NN for face recognition. Since CBR-based
methods also belong to instance-based classifiers, we
believe that the idea of NDA also helps to improve, at
least not downgrade the performance of CBR. Our
NMM criterion is defined based on the notion of NDA.
Instead of directly using the furthest within-class dis-
tance as in the original NDA method, in our method
training samples in each class ωk are firstly grouped
into many clusters { k k

1 2, , } so that the samples in
each cluster have similar patterns. The objective of
NMM is to maximize the between-class distance of
samples while minimize the within-cluster distance. For
one sample xi Î ωk, we define its nearest between-class
neighbor as

x x x x x z zi
B

k i i k      { | , }  (1)

Similarly, its furthest within-cluster neighbor is
defined as

x C x C x x x x z C z C xi
W

i i i i      { [ ] [ ] | , [ ] [ ]} (2)

where C [x] indicates the cluster that x belongs to.
Then the nonparametric margin of xi is

  i i
B

i
W

i i
B

i i
Wx x x x     

2 2
(3)

where  i
B is the nonparametric nearest between-class

distance for xi, and  i
W is the furthest within-cluster

distance. Obviously, the larger Θi is, the more likely that
xi is correctly classified. Therefore the learning objective
of NMM is to select a subset of genes { }ht t

T
1 from F

to maximize the nonparametric margin for all the sam-
ples, i.e. to maximize

J

h x h x h x h
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where δi is the sample xi in the space of selected fea-
tures, which is represented as δi = [h1(xi), ..., hT(xi)]

T.
Not surprisingly, we find that if each class contains

only one cluster, the NMM criterion is equal to the
optimization objective of NDA (see proof 1). Since it
has been proved that there are close relationships
between NDA and instance-based classifiers such as NN
[17], we believe that our margin maximum criterion
also benefits the design of a robust CBR classifier. More-
over we replaced the furthest within-class distance with
furthest within-cluster distance, which makes our
approach more robust to outliers, considering that the
outliers that usually exist in microarray data might
make the furthest within-class distance extremely large.
Another major difference between our method and
NDA is that, NDA performs feature reduction by find-
ing a weighted combination of all the features, while
NMM aims at selecting a subset of features. This prop-
erty is important since the selected features can be used
to reveal some biological significance.
Proof 1
The Nonparametric Margin Maximum (NMM) criterion
in Equation (4) can be expanded as the following
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When each class contains only one cluster, we have
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WS  (6)

where SB and SW are between-class and within-class
scatter matrix for NDA respectively. Therefore we can
conclude that when each class contains only one cluster,
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where the left-hand side is the NMM criterion and the
right-hand side is the NDA optimization criterion. □
Feature Pre-selection and Clustering
In our method, we normalize the original data and
then perform feature pre-selection and sample cluster-
ing to define within-cluster neighbors. We use the
same normalization method as in [19], which includes
base 10 log-transformation as well as normalization to
mean 0 and variance 1. For the data that contains
negative values, we do not perform log-transformation.
In microarray data, the gene dimension is extremely

large compared to the small number of samples. Many
of these genes are not differentially expressed across
the samples of different classes and thus do not con-
tain very useful information. It is likely that too many
non-informative genes in the data will undermine the
clustering results. In order to improve the clustering
performance, we implement gene pre-selection before
clustering. Another benefit of removing some non-
informative genes is that it can drastically ease the
computational burden in subsequent processing
procedures.
Approaches that can remove non-informative genes

have been studied in many literatures, for instance t-test
[20], mutual information (MI) maximization [16], etc.
Instead of these parametric methods, we use a nonpara-
metric scoring algorithm presented in [13]. For binary
classification which involves two classes ω0 and ω1, the
score of a feature jm is

Score( ; , ) max ( ) ( ) ,    
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where〚A〛equals 1 if A is true, otherwise 0. |ω| is
the number of samples in ω.
The genes whose scores are below a threshold θp will

be removed, and the remaining genes are used for
further processing. Compared with the parametric
methods such as t-test and MI maximization, this
method is less sensitive to outliers, since it does not
rely on any statistical values (mean, standard deviation,
etc.) of the data, which can be highly affected by
outliers.
This nonparametric method can be easily generalized

to multiclass problems by considering all the possible
binary cases. For a K class problem, the score of a fea-
ture jm is

2
1 0 1

0 1
K K m k k

k k
( )

( ; , )
,

  Score    (9)

After gene pre-selection, we group samples in each
class into some clusters. Although there are many
choices of clustering approaches, hierarchical clustering
[21] is the most commonly used one for microarray ana-
lysis. The preference of hierarchical clustering in micro-
array analysis is due to its good performance [2] and,
moreover, it does not require a pre-specification of the
number of clusters.
We use the most common type of hierarchical clus-

tering. At the initial level, each sample forms its own
cluster. At each subsequent level, the two ‘nearest’ clus-
ters are combined to form one bigger cluster. We use
method = ‘furthest’ which means the distance between
two clusters is the maximum of all the distances
between any sample in one cluster and any sample in
the other cluster. The ‘furthest’ metric is used since it is
not highly sensitive to outliers compared with the other
metrics such as ‘nearest’ and ‘average’. We empirically
set a threshold θh for clustering, which means that for
each class, the clustering procedure terminates when
the distance between any two clusters is larger than θh.
Additive optimization method
Here the NMM criterion is optimized in an additive
approach, which operates iteratively. At each iteration,
one feature is selected. Assuming that until the (t - 1)-
th iteration the margin is Jt-1, at iteration t the feature ht
will be selected to maximize

J J h x h x h x h xt t t i t i
B

t i t i
W

i

N

      






1

2 2

1

( ) ( ) ( ) ( ) (10)

During the optimization procedure, however, when
one feature is selected, for each sample its nearest
between-class neighbor and furthest within-cluster
neighbor might change. In another word, the optimiza-
tion of Jt might change Jt-1, and for each sample, many
other samples might become its nearest between-class
neighbor or furthest within-cluster neighbor in subse-
quent processing. Therefore we should maintain the dis-
tance between any two samples in each iteration, which
is computationally expensive. In order to reduce compu-
tational complexity, we maximize the following formula
instead of directly optimizing Equation (4),

min ( ( ) ( )) |

max ( ( ) (

j
t i t j i j

i
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t i t
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Proof 2 shows that Equation (11) is a low bound of
Equation (4), which implies that we can maximize Equa-
tion (4) by optimizing Equation (11).
Proof 2
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With the criterion of Equation (11), at each iteration
we can independently treat each feature to select the
best one, regardless of the features that have been
selected at previous iterations. This implies that we
can test each feature on training set and select the
top-ranked ones. However, [16] has observed that sim-
ply combining the top-ranked genes often does not
form a good feature set. One reason is that the top-
ranked genes could be highly correlated, and therefore
the selected features might contain much redundant
information. In order to overcome this problem, simi-
lar in the way that the boosting method [22] does, we
assign weights { }wi i

N
1 to training samples. Initially all

samples share the same weight. When one feature is
selected, the weights are updated with the principle
that the sample that has a larger margin will get a
lower weight, and vice versa. The weights of the sam-
ples are updated by

w x w x x xt i t i t i
W

t i
B

  1( ) ( )exp{ ( ( ) ( ))}   (13)

where  t i
W

i t i t l i l t i
Bx h x h x C x C x x( ) max ( ( ) ( )) | [ ] [ ] , ( )    2

min ( ( ) ( )) |
j t i t j i jh x h x y y  2 , and a is a positive para-

meter. Algorithm flow of the additive optimization
method is shown in Figure 2.

Case-Based Reasoning Classifier
Rather than using the traditional CBR methods in which
all the samples form a single case-base, here we treat
samples in each class one case-base. For a K-class pro-
blem, there are K case-bases { }k k

K
1 . Given an input

sample x, ANMM4CBR retrieves several similar cases
from each case-base. The distance between x and a sam-
ple x’ in case-base is measured by

D x x h x h xt t

t

T

( , ) [ ( ) ( )]   

 2

1

(14)

If there are lk samples in the case-base ωk, b·lk cases
that have small distances from x will be selected as simi-
lar cases, where b is a parameter that controls the num-
ber of samples that will be retrieved from each case-
base. The distance between x and ωk, D(x, ωk) is the
average of the retrieved b·lk distances. In the
ANMM4CBR method, we calculate the distance from x
to each case-base ωk, and x belongs to the class which
relates to the minimum distance D(x, ωk).

Results and Discussion
We carried out experiments using simulated data as well
as real microarray data to test the performance of
ANMM4CBR. There are four parameters to be chosen in

Figure 2 Additive optimization of the NNM criterion. flagm indicates whether jm has been selected. It is true if jm has been selected,
otherwise false.
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ANMM4CBR: gene pre-selection threshold θp, cluster-
stopping threshold θh, weight-updating parameter a, and
the parameter b for case retrieve. We empirically set θp
and b to 0.7 and 0.3 respectively, which means the genes
with score values smaller than 0.7 will be removed in the
gene pre-selection procedure, and CBR will retrieve 0.3|ω|
cases from a case-base which contains |ω| cases. The
other two parameters, θh and a, are data-dependent.
Therefore we adopted cross-validation to choose them.
After the whole data were split into training and testing
sets, we used five-fold cross-validation on training set to
evaluate the performance of ANMM4CBR with different
values of θh and a. Then the best combination of θh and a
was selected to train an ANMM4CBR classifier using all
training samples. The tuning parameters for θh are 0.8,
0.9, ..., 1.5, and for a are 0.3, 0.4, ..., 1.0. Please see addi-
tional file 1 for the source code of the ANMM4CBR
method.

Simulation
We first consider simulated data. We used a noisy ver-
sion of the simulated data in [23]. The original data
assumes three different normal distributions for both
insignificant genes (null cases) and significant genes.
There are 72 samples (47 positive and 25 negative) in
the dataset, and out of 1000 genes there are 10 signifi-
cantly differentially expressed ones. Please refer to [23]
for more details of this data.
We compared ANMM4CBR with several typical clas-

sification methods, including support vector machine
(SVM) [7] with linear kernal, k-nearest neighbor (kNN,
we set k = 3), and LogitBoost [6]. In the above three
algorithms, only LogitBoost is a combination of feature
selection and classification. There should be feature
selection methods for SVM and kNN classification. Here
two feature selection methods were tested. One is the
Between-group to Within-group (BW) ratio method
described in [9]. The BW ratio for gene m is

BW m
yi k xk m x mki

yi k xi m x mki
( )

( ( ) ( ))

( , ( ))


 

 

 
 

2

2
(15)

where x(m) and xk(m) denote the average expression
value of gene m across all samples and across samples that
only belong to class k respectively. xi, m is the expression
value of gene m in the ith sample.〚�〛is the indicator
function which has been described in Equation (8).
Another feature selection method we used is the Mini-
mum Redundancy - Maximum Relevance (MRMR)
method proposed in [16], which has been proved very
effective for microarray data analysis. Other than simply
picking the top-ranked genes, MRMR also minimizes

redundant information in the selected genes by measuring
correlations between different genes. We used the FCQ
criterion to optimize MRMR, which means using F-test to
compute the maximum relevance VF and using Pearson
correlation coefficient to compute the minimum redun-
dancy Wc, and combining them with their quotient, max
(VF/Wc).
The simulated data was randomly and equally divided

into three parts, of which two parts were used for train-
ing and the third part was used for testing. In each
experiment we constructed a noisy training data by
assigning a randomly chosen, incorrect label to 20% of
the training samples. We use noisy data because we want
to test the performance of the algorithms confronting
noises, which is usually the case for real microarray data.
Another reason for the usage of noisy data is, we found
that if there is no noise in training data, all algorithms
used in this paper can get a 100% testing accuracy if we
choose appropriate number of features. We used the
noisy training samples to train classifiers and the test
error rates were computed by testing samples. In order
to obtain more replicable results [24], we repeated this
procedure for 100 times. Here we also investigated the
performance of ANMM4CBR method without feature
pre-selection and sample clustering.
Figure 3 shows the distribution of training samples

with top 3 selected features by different feature selection
methods. We can see that the BW method cannot well
separate the two classes, since the mis-specifications
made the data not separable by the BW criterion. In the
ANMM method, samples in each class were clustered
into many groups, which is illustrated in Figure 3(c).
We can see that the mis-specifications were clustered
into different groups with the other samples, so that
they did not exert great influence to the feature selec-
tion procedure. Figure 3(c) shows that the training sam-
ples of different classes were well separated, excluding
the mis-specifications. The ANMM result without fea-
ture pre-selection and sample clustering are listed in
Figure 3(b). The result in Figure 3(b) is even worse than
that obtained by BW, which shows that feature pre-
selection and sample clustering can really improve the
performance of ANMM in noisy data.
Boxplots of the accuracy on various methods are shown

in Figure 4. For each method, the feature number was
chosen by minimizing the average error rates. We can
see that ANMM4CBR resulted in much higher accuracy.
If we do not add noise on training data, all approaches
can get 100% testing accuracy. This shows that
ANMM4CBR is very robust when dealing with noisy
data, while the performance of the other methods will be
undermined because of the noise in training samples.
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Real Data
Data sets and experimental set up
In this section we carry out experiments on four pub-
licly available real data sets that have been widely stu-
died. Brief descriptions of these data sets are as follows.
Please refer to the original papers for more details of
each data set.
Leukemia
This data comes from a study [3] of 72 leukemia
patients using Affymetrix HuGeneFL array. It contains
47 cases of acute lymphoblastic leukemia (ALL) and 25
cases of acute myeloid leukemia (AML) with the expres-
sion levels of 7,129 genes.
Colon
The Colon data contains expression levels of 40 tumor
and 22 normal colon tissues. The data was analyzed

with an Affymetrix oligonucleotide array complementary
to more than 6,500 human genes. We used 2,000 genes
with the highest minimal intensity across the samples
selected by [25].
SRBCT
The SRBCT data [5] contains gene-expression data from
cDNA microarrays of 2308 genes. The 63 samples
include four subtypes of small, round blue cell tumors
of childhood, which are 12 neuroblastoma (NB), 20
rhabdomyosarcoma (RMS), 8 non-Hodgkin lymphoma
(NHL), and 23 Ewing family of tumors (EWS).
GCM
GCM (Global Cancer Map) [26] is a very complicated
data, which consists of 198 human tumor samples cov-
ering 14 different cancer types. The gene number is
16,063. Please refer to [26] for details of this data set.

Figure 4 Boxplots of the accuracy on simulated data. “Values” indicate the accuracy. Each column indicates different algorithms: 1 - BW
+kNN; 2 - MRMR +kNN; 3 - BW+SVM; 4 - MRMR+SVM; 5 - LogitBoost; 6 - ANMM4CBR without feature pre-selection and sample clustering; 7 -
ANMM4CBR.

Figure 3 Visualization of training samples using top 3 selected features by different feature selection methods. The feature selection
methods are: (a) BW, (b) ANMM without feature pre-selection and sample clustering, (c) ANMM. Results of MRMR were not listed due to space
limitation. Figure 4 shows that MRMR did not perform better than BW on this data. In these figures, different marker types represent samples in
different classes, and the mis-specifications are depicted with red edge. In (c) samples in different clusters are filled with different colors.

Yao and Li Algorithms for Molecular Biology 2010, 5:14
http://www.almob.org/content/5/1/14

Page 7 of 11



The procedure of each experiment was implemented
as that on the simulated data. Each data set was split
into three parts, of which two parts for training and the
left part for testing. For each method, this procedure
was repeated for 100 times, and the averages and stan-
dard deviations of accuracy were taken for performance
evaluation.
Results
Similar to that on simulated data, here we also com-
pared ANMM4CBR with SVM, kNN and LogitBoost.
BW and MRMR were used to select features for SVM
and kNN classification. Since the standard SVM is tai-
lored for binary classification, in multiclass data sets we
used the one-versus-all (OVA) [26] approach, which
firstly solves many binary problems and then combines
the results to solve the multiclass problem. Given a k
class problem, OVA trains k binary classifiers, each
focuses on classifying one class against the others. A
new sample will take the class label of the classifier with
the largest real valued output from all k classifiers. For
LogitBoost, we used the same approach of [6], in which
multiclass problems were solved by combining OVA
results in a Bayes framework.

Table 1 gives the classification results of the six meth-
ods on the four microarray data sets. The results
demonstrate that these algorithms show different perfor-
mance on different data sets. On Leukemia data, all
methods achieve comparable results, with ANMM4CBR
and MRMR+SVM perform slightly better. On Colon
data, ANMM4CBR performs better than the other
methods by a large margin. We can see that with differ-
ent number of selected features, ANMM4CBR consis-
tently achieves the highest accuracy. On SRBCT data,
the results are different with different numbers of fea-
tures. When the feature number is small, SVM and
LogitBoost perform better than ANMM4CBR; when the
feature number is large, ANMM4CBR performs better.
Table 1 also shows that, results of ANMM4CBR on
GCM are not encouraging. SVM performs better than
the other algorithms on GCM data.
We now take a closer look at the results in Table 1. We

can see that ANMM4CBR performs much better than all
the other algorithms on the Colon data, while only
achieves comparative results on the Leukemia data. This
is because Leukemia is a simple data on which many
algorithms have reported impressive results. Therefore it

Table 1 Average classification accuracy and standard deviation.

# Iteration 10 20 30 40 50

Leukemia BW+kNN 95.7 ± 1.2 96.9 ± 1.8 96.6 ± 2.2 96.6 ± 1.2 96.8 ± 1.7

MRMR+kNN 96.5 ± 2.5 96.4 ± 2.1 97.4 ± 1.7 96.9 ± 2.2 95.8 ± 2.4

BW+SVM 95.6 ± 1.3 95.7 ± 1.7 95.9 ± 2.2 96.2 ± 2.3 96.9 ± 1.2

MRMR+SVM 96.4 ± 2.5 96.8 ± 3.6 97.6 ± 2.0 97.1 ± 2.7 96.8 ± 3.4

LogitBoost 95.3 ± 2.9 96.0 ± 2.4 96.6 ± 1.8 96.6 ± 2.8 96.7 ± 1.7

ANMM4CBR 96.3 ± 2.4 97.5 ± 1.7 97.3 ± 1.8 96.6 ± 1.7 97.0 ± 2.3

Colon BW+kNN 81.2 ± 8.1 82.8 ± 7.5 83.5 ± 4.2 83.4 ± 5.3 83.6 ± 6.5

MRMR+kNN 83.7 ± 4.3 83.6 ± 7.9 84.2 ± 6.0 83.8 ± 5.9 83.5 ± 6.9

BW+SVM 84.0 ± 4.3 83.6 ± 6.4 83.6 ± 6.0 84.2 ± 7.2 84.5 ± 7.9

MRMR+SVM 85.4 ± 5.8 84.1 ± 6.6 84.0 ± 4.0 84.6 ± 7.0 84.7 ± 8.1

LogitBoost 84.4 ± 4.3 84.5 ± 8.9 83.6 ± 4.9 84.2 ± 6.8 84.1 ± 4.6

ANMM4CBR 86.3 ± 6.1 86.7 ± 5.6 86.2 ± 4.2 86.5 ± 5.6 85.6 ± 4.4

SRBCT BW+kNN (50) 94.4 ± 4.2 97.7 ± 2.1 97.9 ± 1.3 98.2 ± 1.6 98.0 ± 1.2

MRMR+kNN (50) 78.4 ± 9.0 97.4 ± 1.9 98.6 ± 1.0 98.8 ± 0.9 98.2 ± 0.8

BW+SVM (97) 94.0 ± 3.2 98.0 ± 1.4 98.4 ± 1.2 98.8 ± 0.9 99.2 ± 0.3

MRMR+SVM (95) 81.0 ± 10.5 98.2 ± 1.0 98.9 ± 1.3 99.1 ± 0.7 99.2 ± 0.2

LogitBoost (102) 94.9 ± 3.1 97.3 ± 1.8 98.0 ± 1.6 98.6 ± 1.1 98.6 ± 0.6

ANMM4CBR (50) 90.3 ± 5.5 97.3 ± 1.5 98.8 ± 1.2 99.3 ± 0.7 99.7 ± 0.3

GCM BW+kNN (50) 46.2 ± 4.7 47.4 ± 7.0 51.2 ± 4.9 52.6 ± 6.2 54.1 ± 5.8

MRMR+kNN (50) 41.1 ± 7.1 42.7 ± 8.1 51.5 ± 1.6 58.3 ± 4.9 60.5 ± 5.9

BW+SVM (254) 53.7 ± 5.1 58.1 ± 9.8 59.0 ± 6.6 66.6 ± 6.7 66.9 ± 3.6

MRMR+SVM (259) 51.0 ± 7.7 60.3 ± 7.0 61.8 ± 3.7 64.8 ± 8.2 67.8 ± 4.6

LogitBoost (273) 57.1 ± 4.9 60.1 ± 1.9 60.6 ± 4.0 62.1 ± 5.7 65.1 ± 5.4

ANMM4CBR (50) 41.1 ± 1.2 51.0 ± 8.1 57.2 ± 6.9 61.1 ± 1.4 63.3 ± 3.9

Each experiment was carried out for 100 runs. The best results in different situations are labeled as black. Here the iteration number means the number of
features used by each single classifier. In OVA case, the total number of genes may exceed the iteration number, since in OVA a multiclass problem is solved by
considering many binary ones. In the parentheses we list the average number of features selected by each method when the iteration number is 50. See Table 2
for another experiment on multiclass data set.
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is not surprising that all six algorithms in our experiment
can have similar good results. In contrast, it was reported
in [27] that the Colon data might have a sample contami-
nation problem, and therefore the much better perfor-
mance of ANMM4CBR on Colon data demonstrated its
robustness to noise in the data sets.
Although when the feature number is 40 and 50,

ANMM4CBR performs the best on SRBCT, on the two
multiclass data sets ANMM4CBR cannot achieve com-
parative results with SVM and LogitBoost. It is shown
in Table 1 that SVM and LogitBoost perform better
than ANMM4CBR, and ANMM4CBR performs better
than kNN. However, we argue that this does not indi-
cate that ANMM4CBR cannot get good results on mul-
ticlass problems. Note that the same as kNN,
ANMM4CBR can be directly used to solve a multiclass
problem. Therefore in ANMM4CBR method the num-
ber of iterations is equal to the number of selected fea-
tures. But in SVM and LogitBoost algorithms, we used
OVA method to make the final prediction, which needs
to solve k (class number) binary problems. When each
binary classifier selects s features, the total number of
selected features will be O(s × c). This means that with
the same iteration number, SVM and LogitBoost have
to use more features than ANMM4CBR and kNN.
Here we made another experiment on GCM. We

compared ANMM4CBR with MRMR+SVM, which
showed the best performance on GCM data in Table 1.
In each comparison of this experiment, the number of
features selected by ANMM4CBR was equal to the total
number of genes that are selected for all the binary clas-
sifiers. Since we performed experiment for 100 times
and in each time the total gene number may be differ-
ent, we firstly carried out SVM experiment and then
calculated the total number of genes. The results are
shown in Table 2, which demonstrate that ANMM4CBR
outperforms SVM by a large margin when they choose
the same number of genes.
Compare with MOE4CBR
Since ANMM4CBR is a CBR-based method, we would
like to compare it with other CBR methods that have been
applied to microarray classification problems. Because
both source code and data sets used in [11] are not avail-
able, we did not compare our method with the gene-CBR
method in [11]. We compared ANMM4CBR with the
mixture of experts for case-based reasoning (MOE4CBR)

method [12], which builds CBR classifiers based on the
idea of mixture of experts. We applied our ANMM4CBR
method to the same microarray data with the same
experimental set as that in [12], i.e., using the training and
testing data suggested in [3] on the Leukemia data, and
using leave-one-out cross-validation on the Lung data and
average the results obtained from 20 trials. The Lung data
contains 39 lung cancer samples with 18,117 gene expres-
sion levels. This data set is classified into two categories,
recurrence (23 samples) and nonrecurrence (16 samples).
The Lung data was not used in previous experiments
because there are missing values. The same as that in [12],
here missing values were imputed using the weighted
k-nearest neighbor method [28].
In [12], the classification accuracies on Leukemia and

Lung data are 74% and 70% respectively. 712 out of 7,129
genes were selected for Leukemia data classification and
1,811 out of 18,117 genes were selected for Lung data
classification. When the same number of genes are
selected, the classification results of ANMM4CBR are
91% on Leukemia and 75% on Lung. Moreover, on the
Leukemia data, the best result obtained by ANMM4CBR
is 94% when only 23 genes are selected. This shows that
ANMM4CBR outperforms MOE4CBR, especially on the
Leukemia data set.

Conclusions
In the present work, we proposed a novel ANMM4CBR
method for microarray classification. For feature selec-
tion, we proposed an ANMM method to additively opti-
mize a nonparametric margin maximum criterion which
was defined based on feature pre-selection and sample
clustering. For classification, we adopted a CBR method,
in which samples of each class form a case-base.
Some properties determine that the ANMM4CBR can be

well applied to microarray data classification. (1) The near-
est between-class distance maximum and furthest within-
cluster distance criterion used in ANMM makes the fea-
ture selection less sensitive to noise or outliers existing in
the data. (2) In classification phase ANMM4-CBR uses a
case-based reasoning method, which has been proved to be
suitable for life science related problems [10]. (3) In micro-
array data the sample number is too small for us to esti-
mate the accurate distribution of the data. In each step of
ANMM4CBR (including feature pre-selection, clustering,
feature selection, classification), we use nonparametric

Table 2 Comparison of MRMR+SVM and ANMM4CBR on GCM data.

s/T 10/86 20/157 30/209 40/243 50/259

SVM+MRMR 51.0 ± 3.7 60.3 ± 4.0 61.8 ± 2.4 64.8 ± 4.5 67.8 ± 3.5

ANMM4CBR 62.7 ± 4.8 66.1 ± 2.4 67.9 ± 3.5 69.1 ± 1.9 70.0 ± 2.9

s is the number of genes in each binary SVM classifier, and T indicates the total number of different genes, i.e. the gene number for ANMM4CBR. In each
situation the higher accuracy is labeled as black.
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approaches which require less restrictive assumptions
about the original data. (4) There are some links between
ANMM feature selection and CBR classifier. Furthermore,
ANMM4CBR can directly solve multiclass problems with-
out having to convert them to many binary ones.
Our future research will focus on two directions. One

is to study how to facilitate the parameters choice and
gene number selection in ANMM4CBR. We have sev-
eral parameters to tune, and it is time consuming to
select a set of optimal parameters when dealing with a
new data. Moreover in ANMM4CBR we should pre-spe-
cify the number of features to be selected. The other
direction is to further investigate the relationship
between ANMM and CBR, which was not theoretically
warranted in this paper. We believe that a better algo-
rithm can be designed by revealing the relationships
between feature selection approach and the classifier.

List of abbreviations
ANMM4CBR: additive nonparametric margin maximiza-
tion for case-based reasoning; ANMM: additive non-
parametric margin maximization; NMM: nonparametric
margin maximization; CBR: case-based reasoning; SVM:
support vector machine; NN: nearest neighbor; NDA:
nonparametric discriminant analysis; MI: mutual infor-
mation; BW: between-group to within-group; MRMR:
minimum redundancy - maximum relevance.
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