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Abstract

Background: It is reasonable to consider the thalamus a primary candidate for the
location of consciousness, given that the thalamus has been referred to as the
gateway of nearly all sensory inputs to the corresponding cortical areas. Interestingly,
in an early stage of brain development, communicative innervations between the
dorsal thalamus and telencephalon must pass through the ventral thalamus, the
major derivative of which is the thalamic reticular nucleus (TRN). The TRN occupies a
striking control position in the brain, sending inhibitory axons back to the thalamus,
roughly to the same region where they receive afferents.

Hypotheses: The present study hypothesizes that the TRN plays a pivotal role in
dynamic attention by controlling thalamocortical synchronization. The TRN is thus
viewed as a functional networking filter to regulate conscious perception, which is
possibly embedded in thalamocortical networks. Based on the anatomical
structures and connections, modality-specific sectors of the TRN and the thalamus
appear to be responsible for modality-specific perceptual representation.
Furthermore, the coarsely overlapped topographic maps of the TRN appear to be
associated with cross-modal or unitary conscious awareness. Throughout the
latticework structure of the TRN, conscious perception could be accomplished and
elaborated through accumulating intercommunicative processing across the first-
order input signal and the higher-order signals from its functionally associated
cortices. As the higher-order relay signals run cumulatively through the relevant
thalamocortical loops, conscious awareness becomes more refined and
sophisticated.

Conclusions: I propose that the thalamocortical integrative communication across
first- and higher-order information circuits and repeated feedback looping may
account for our conscious awareness. This TRN-modulation hypothesis for conscious
awareness provides a comprehensive rationale regarding previously reported
psychological phenomena and neurological symptoms such as blindsight, neglect,
the priming effect, the threshold/duration problem, and TRN-impairment resembling
coma. This hypothesis can be tested by neurosurgical investigations of
thalamocortical loops via the TRN, while simultaneously evaluating the degree to
which conscious perception depends on the severity of impairment in a TRN-
modulated network.

Min Theoretical Biology and Medical Modelling 2010, 7:10
http://www.tbiomed.com/content/7/1/10

© 2010 Min; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:minbk@bwh.harvard.edu
mailto:minbk@bwh.harvard.edu
http://creativecommons.org/licenses/by/2.0


Background
The subjective experience of consciousness is central to our everyday life. However,

whether such subjective experiences have neural correlates remains unsolved and open

to hypothesis and investigation. For instance, Lamme [1] supported the notion that feed-

back connections to the primary visual cortex are necessary for visual awareness, and

proposed that a progressive build-up of recurrent interactions results in conscious

awareness. Dehaene et al. [2], in their ‘global workspace’ model of consciousness,

suggested that conscious perception is systematically associated with parieto-frontal

activity, causing top-down amplification. On the other hand, Zeki [3] argued against a

single entity of consciousness, claiming that there are multiple hierarchical conscious-

nesses (the micro-consciousnesses). Therefore, we need a unified theory to integrate

these previous theories and provide us with a clearer understanding of all the phenom-

ena of consciousness.

In addition to regarding consciousness as a biological phenomenon, we cannot deny

that there is a genuine phenomenon of consciousness in the ordinary sense and that it

has distinctive features that should be investigated when seeking to fully characterize

it. One of the general agreements is the quality of ‘being aware.’ Hence, an informa-

tion-input mechanism can be considered essential to initiate conscious awareness (see

Appendix 1), no matter what is evoked inside or outside of the body. It then becomes

reasonable to consider the thalamus one of the primary candidates for the seat of con-

sciousness, given that the thalamus has been referred to as the gateway of nearly all

sensory inputs to the corresponding cortical areas [4]. As shown in Figure 1, the thala-

mus is a finely organized neuroanatomical structure with each modality-specific

domain sector interconnecting with other corresponding brain structures [5-7]. For

instance, the lateral geniculate nucleus (LGN) has reciprocal connections with visual

cortices [8,9], and the medial geniculate nucleus (MGN) is anatomically interconnected

with auditory cortices [10-12]. In addition, the lateral/medial ventral posterior nuclei

are reciprocally connected with primary somatosensory cortices [13,14], while the ven-

tral anterior nuclei receiving afferents from the internal globus pallidus [15] are linked

with premotor cortices [7]. All of these anatomical interconnections imply significant

functional interconnections; indeed, the thalamus has been regarded as a hub of sen-

sory-motor control.

Hypotheses
Consciousness: A mental state embodied through TRN-modulated synchronization of

thalamocortical networks

As the cortex has gradually evolved to be competent in higher cognition, the thalamus

has evolved in parallel [4]. All the thalamocortical pathways may in fact constitute a

unified and cyclic oscillatory circuit that is topographically organized [16]. Interestingly,

in an early stage of brain development, communicative innervations between the dorsal

thalamus and telencephalon must pass through the ventral thalamus [17], the major

component of which is the thalamic reticular nucleus (TRN), a sheer laminar wrapping

around the thalamus. It is worth noting that the TRN occupies a striking control posi-

tion in the brain. The cerebral cortex and thalamus connect in a reciprocal manner,

branching onto the TRN as shown in Figure 1. In turn, the TRN sends axons back to

the thalamus, roughly to the same region where they receive afferents [18]. The TRN
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provides a major inhibitory input to thalamic relay nuclei [19]. The inhibitory TRN

cells are densely innervated by collaterals from thalamocortical and corticothalamic

neurons, both of which generate strong excitatory postsynaptic potentials [20].

Synchronization within a certain neuronal ensemble is achieved by means of

GABAergic inhibitory neurons. For instance, it has been reported that neuronal syn-

chronization is completed via a GABAergic internetwork in some pace-making sources

such as the suprachiasmatic nuclei [21] and hippocampus [22]. In general, confirming

synchronization of asynchronous neural activity is a prerequisite for interpreting these

signals as physiologically and functionally associated. Synchrony in the interconnected

circuitry of the thalamus and cerebral cortex is particularly critical in conscious events

[23]. Therefore, there should be a neural controlling system that regulates globally

chaotic neural activities into a unitary conscious entity in terms of synchronization. In

the conscious state, the experiences of the internal and external milieu merge into a

temporally and spatially unitary experience [24]. McCormick [25] suggested the

Figure 1 A schematic diagram of the connections between thalamic relay nuclei and their
corresponding cortical areas (of the same color) through the thalamic reticular nucleus. Black lines
indicate corticothalamic connections, and colored lines indicate thalamocortical connections. A: anterior
thalamic nucleus, M: medial thalamic nucleus, VA: ventral anterior nucleus, VL: ventral lateral nucleus, VP:
ventral posterior nucleus, LP: lateral posterior nucleus, Pu: pulvinar, C: centromedial nucleus, P:
parafascicular nucleus, LGN: lateral geniculate nucleus, MGN: medial geniculate nucleus, TRN: thalamic
reticular nucleus (courtesy of Wolfgang Klimesch, with permission).
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possibility of a cyclical thalamocortical interaction whose key feature is the strong

activation of GABAergic neurons within the thalamus. Taken together, the findings

referenced above lead me to hypothesize that the inhibitory TRN cells play a key role

in coordinating our conscious perception through the inhibitory feedback network

across both the thalamus and the cortex. For instance, it has been suggested that TRN

neurons in absence epilepsy may work as a subcortical pacemaker responsible for

spike-wave discharges [26,27]. Intriguingly, the TRN shows axons giving off local

branches within the nucleus itself [28]. TRN cells are principally coupled via inhibitory

GABAergic synapses [29], mostly generating gamma activity [30,31]. Indeed, GABAer-

gic TRN cells demonstrate several frequencies of rhythmic oscillations [32-34]. Some

rhythms such as spindle oscillation (7-14 Hz), delta oscillation (3-5 Hz), slow oscilla-

tion (0.3-0.5 Hz), and ultraslow rhythm (0.05 Hz) are spontaneously initiated or heavily

involved in the TRN [35-38]. It has been suggested that intrinsic pacemaker alpha

activity underlies the genesis of spindle waves related to sleep [39]. However, it was

found that a large proportion of TRN cells (about 34%) discharged like clocks within a

25-60 Hz frequency bandwidth (i.e., gamma activity) [31].

When a GABAergic network induces synchronization of neural activity, coherent

gamma oscillations are observed [40]. The gamma-range (more than about 30 Hz)

synchronization is occasionally considered a key mechanism of information processing

in neural networks [41,42]. Again, the TRN is located in a particularly suitable position

for controlling the entire cerebral network. Therefore, TRN-mediated synchronization

in the thalamocortical network may result in gamma-band oscillations related to the

binding of the stimulus features into a whole [43,44]. Moreover, cortical gamma activ-

ity is concurrent with thalamic gamma activity at discrete conscious events [45]. Most

likely, neural synchronization initially driven by the TRN modulates gamma oscillations

throughout the thalamocortical loops. Empirically, in an animal study (see Appendix

2), it was proposed that such coherent firing at gamma frequencies reflects a point of

equilibrium in the TRN when the leaky K+ conductance is fully suppressed by the

metabotropic effects of monoamines or excitatory amino acids [30].

As for more empirical evidence, we may pay attention to the electrophysio-

logical dynamics of the TRN. For instance, IT (the T-type current underlying prolonged

Ca2+-dependent burst firing in GABAergic neurons of rat TRN) of the TRN shows

much slower kinetics than do thalamocortical relay cells [46], where IT is the critical

current for controlling the thalamic response mode [47]. More importantly, IT in the

TRN needs depolarization for activation. The expression of IT depends on its state of

inactivation. At hyperpolarized potentials, as during the early stages of sleep, IT becomes

deinactivated and can produce low-threshold spikes during subsequent depolarization.

At sufficiently depolarized potentials, as occur more frequently during wakeful activity,

inactivation prevents IT conductance [48]. Hence, these different kinetics and specific

necessary active conditions between the TRN and thalamic relay cells would critically

indicate that interactions between relay cells and the TRN are essential for synchroniza-

tion [49]. Apparently, if large neural ensembles of the TRN burst rhythmically, their

interconnections could facilitate continuance of subsequent synchronous firings. Consis-

tently, bilateral lesion of the rostral pole of the TRN in rats promotes thalamocortical

dysrhythmia [50].
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Indeed, TRN cells are called the pacemaker for thalamic oscillation [39,47,51-53],

and they demonstrate two firing modes: burst-spike and tonic-spike [54]. In relation

to the switch mechanism between these two firing modes, Mistry et al. [55] reported

frequency-dependent short-term modulation at glutamatergic synapses in the TRN.

They found that TRN neurons exhibited no short-term change in alpha-amino-3-

hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor-mediated excitatory

postsynaptic current amplitudes in response to stimulation at non-gamma frequencies

(less than 30 Hz), simulating background activity, but showed short-term depression in

such amplitudes at gamma frequencies (more than 30 Hz), simulating sensory trans-

mission [55]. The same study also found that intra-TRN inhibition suppresses TRN

tonic-spike selectively at non-gamma stimulus frequencies, which are indicative of

background activity. Presumably, in the absence of sensory transmission, the intra-TRN

inhibitory network controls the number of spikes fired by TRN cells, consequently

regulating the degree of inhibition exerted by the TRN cells onto thalamocortical

networks [55]. Therefore, switching between two ranges of stimulus frequencies to

TRN cells (gamma and non-gamma range) regulates two physiological modes of TRN

cells in the control of TRN output. This switch mechanism, in the TRN-mediated

model, may play a gating role in progress to conscious awareness.

As mentioned in the Background section, the thalamus is not a simple relay station in

sensory signal processing but is instead involved in many dynamic processes that signifi-

cantly alter the nature of the information relayed to the cortex [56]. Neurons in the tha-

lamic relay nuclei [57,58] and the TRN [48,59] fire in two activity modes (tonic and

burst) as mentioned above. From the viewpoint of a gate-keeping state of the thalamus,

tonic mode firing in the thalamus may be responsible for a thalamic-gate passive mode

(unconscious state), whereas burst firing may account for a thalamic-gate active mode

(conscious state) [60-62]. In keeping with such a gate-keeping mechanism, I hypothesize

that a conscious state would be established when a TRN-modulated thalamocortical net-

work activates over a certain threshold to initiate overall synchronization. In contrast, in

the sub-threshold state, sensory inputs may simply pass through the thalamus without

the generation of conscious awareness. In other words, the brain might actually receive

such unconscious sensory inputs, but those signals fail to reach the level of conscious

awareness. This interpretation is applicable to the case of implicit knowledge, which is

revealed in task performance without any corresponding phenomenal awareness [63].

Furthermore, the main part of the TRN can be divided into functionally distinct ‘sectors’

on the basis of its afferent connections with groups of thalamic nuclei and cytoarchitecto-

nically definable cortical areas [4]. Therefore, there are relatively accurate topographic

maps corresponding to the same modality in the TRN [64,65]; these cumulative maps of

the latticework [66] appear to indicate a nexus, functionally related to the thalamo-cor-

tico-thalamic pathways [67]. More significantly, the lack of clearly definable borders of the

sectors as well as a larger receptive field of the TRN [68] suggest that the TRN may be

associated with integrative information processing and even cross-modal overlapping

awareness. The experience of a unitary consciousness is plausible from the viewpoint of

the synchronization of crudely overlapped receptive maps on the laminar TRN. Similarly,

we can gain a comprehensible sense of the modal-confused symptom in which uncon-

scious priming eliminates the automatic binding of color and alphanumeric form in

synaesthesia [69]. Within the framework of a TRN-synchronizing model, a variety of
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overlapping combinations of neural ensembles for conscious perception are plausible.

These types of patterns of neural combinations for conscious awareness may lead to intra-

individual variation in conscious perception in terms of ‘qualia’ and inter-individual ‘sub-

jectivity’ in experiencing consciousness. I will discuss the topic of conscious awareness in

more detail in the following section for ‘awareness’.

Taken together, evidence thus far suggests that the TRN is central in determining

the initiation of communicative interactions between the thalamic relay nuclei and the

cerebral cortex. Consequently, it likely plays a key role in controlling our unitary con-

scious perception. Therefore, the feedback synaptic connections from the TRN imply

its potentially significant role in modulating the transmission of information in the tha-

lamocortical circuit.

Additionally, to sustain a conscious state, arousal is necessary for the threshold con-

dition of the TRN. Surely there are anatomical connections between the TRN and

brainstem cells that control the subject’s wakefulness and vigilance [47]. Moreover, an

inhibitory influence on the activity of TRN neurons is exerted by threshold stimulation

of the mesencephalic reticular formation (MRF), which is the core of the brainstem,

while supra-threshold stimulation of the MRF induces the activation of TRN neurons

[70]. Those researchers concluded that the synchronizing structure of the brainstem,

exerting a blocking impact on the MRF, facilitates the activity of TRN neurons. It is

also reported that the brainstem has relatively uniform effects on the response mode

of relay cells throughout the thalamus [71]. As mentioned earlier, the response mode

of thalamic relay cells is principally under the command of the TRN, so these findings

are still comprehensible within the framework of the TRN-mediated conception.

Taken together, previous findings indicate that the brainstem exerts substantial control

over the activity of TRN neurons, possibly to globally modulate the level of arousal for

preparing for consciousness.

Besides, since consciousness is considered a biological phenomenon, gene poly-

morphism undoubtedly contributes to fine variations in consciousness among indivi-

duals. For example, since the TRN-mediated consciousness network principally

involves GABAergic synapses, polymorphisms in several GABA-related genes have

been associated with differences in the efficiency of mental processing [72-75]. Further-

more, AVPR1a and SLC6A4 gene polymorphisms have been reported in association

with creative dance performance, which can be related to altered consciousness states

[76-78]. Indeed, consciousness is completed through many neuronal assemblies, so it is

substantially subject to diversity in genetic expression. However, the genetic effects on

consciousness seem to be relatively modest, since they interact with environment or

experience during the development of the network.

Attention: Highlighted thalamocortical synchronous activity coordinated by the TRN and

associated cortical areas

Attention possibly acts by biasing the competition among rival candidates of acti-

vated neuronal sets, particularly during their formation [79]. Therefore, an antago-

nistic target-background configuration of information processing seems to be an

efficient means to accomplish selective attention. That is, it is advantageous if there

is enhancement of neural activity associated with highlighted information processing,

while irrelevant neural activity is simultaneously inhibited. Therefore, an efficient
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and well-organized inhibitory mechanism is necessary for selective attention. As

mentioned earlier, it is noteworthy that the TRN provides a major inhibitory input

to thalamic relay nuclei [19]. Hence, the feedback synaptic connections from the

TRN imply significant control over the signal transmissions through the thalamocor-

tical network. Anatomically, specified sectors of the TRN involve their corresponding

thalamocortical connections, including even the related visceral sensory inputs [80],

which are assumed to be modulated by attention or distraction. Here, I suggest that

such finely organized TRN cells, wrapping around many of the thalamic relay nuclei,

play a pivotal role in selective attention by coordinating all thalamocortical transmis-

sions via the GABAergic network synchrony. The initial point of developing synchro-

nization may stem from a modality-specific sector of the thalamic reticular region

(e.g., the first red dot on the TRN in Figure 2A), which may be the origin of the

eventual spread of its synchronous activity throughout the entire TRN network. This

synchronization would be more promoted after the reception of positive iterating

feedback from higher-order cortices. Compared to Crick’s previous TRN hypothesis

regarding ‘attention’ [81], my current TRN hypotheses also cover consciousness, and

emphasize reiterating thalamocortical information processing in relation to conscious

awareness.

Figure 2 Schematic drawing of the TRN-modulated thalamocortical looping model of conscious
awareness. THL: thalamus, V1: the primary visual cortex. As the color of processing-flow lines gets darker
(from yellow to orange, and finally to red), more elaborated information processing is being produced by
means of iterating thalamocortical loops through the TRN. Cortical networks tie together neuronal
assemblies in widespread cortical regions, and the TRN may play a central role in organizing all of the
networks.
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As illustrated in Figure 2, the TRN-modulation model is compatible with models of

large-scale cortical networks [82,83] and of parallel distributed processing [84]. Within

these frameworks, cognitive functions are widely distributed in cortical networks and

processed with basic features such as parallel input-to-output connections and reentry

or recurrence, which can occur within and between layers of the cortical hierarchies. It

has been suggested that the operation of a large-scale network in cognitive function is

principally based on the correlation of the firing of its elements across cortical regions

[82,85,86], which is the neural manifestation of ‘binding’ [24]. Therefore, such reentry

processes propagating over all of the brain networks are not static but dynamic, which

is probably what William James called ‘the stream of consciousness’ [87].

Indeed, there is substantial evidence that cortical areas play significant roles in atten-

tion and cognition processing. For example, the prefrontal cortex, at the top of the

executive hierarchy, is critical in decision-making [88-90]. As it plays a pivotal role in

attention and working memory, the prefrontal cortex has occasionally been considered

the seat of consciousness [24]. As long as the prefrontal cortex controls cognition, its

role in consciousness is obviously important. This is particularly the case in the atten-

tive processes that lead a pattern of behavior, speech, or reasoning to its goal [24].

Among those processes, working memory is the most closely engaged with conscious-

ness in the temporal domain. This is because the prefrontal cortex houses the process

of temporal integration, which makes possible the persistence of cognitive content.

Although the prefrontal cortex receives an immense quantity of afferent influences

from the rest of the brain, the majority of these influences are, nevertheless, sometimes

processed out of consciousness. For example, the prefrontal cortex mediates uncon-

sciously triggered inhibitory control in the Go/No-Go paradigm [91]. Thus, the cortex

seems to play a subsidiary role in conscious awareness, either when selecting the infor-

mation upon which one focuses or when directing the whole neural network involved

in information processing. Presumably, the degree and distribution of cortical activity

involved in cognition determine the content of consciousness [24].

However, compared to the functional roles of individually distributed cortices, the

TRN seems to play a critical and supervising role in controlling the whole brain net-

work. Attention is eventually accomplished through cooperatively integrating informa-

tion from attention-related cortical regions (e.g., the dorsolateral prefrontal cortex

[92,93], the parietal cortex [94-97], and the orbitofrontal cortex [98,99]) and from

other sub-cortical regions such as the superior colliculus. In this respect, the inhibitory

feedback mechanism of the TRN on the thalamocortical network becomes a potential

candidate for controlling and coordinating the orientation of attention. In accordance

with this conception, TRN lesions effectively prevented perseverative behavior in rats,

while lesions of the orbitofrontal cortex failed to do so [100].

Several behavioral phenomena regarding attention are comprehensible within the fra-

mework of the TRN model. In ‘change blindness’ experiments, normal observers are

thoroughly unaware of an essential part of what is going on in their visual field. One

possible mechanism underlying the lack of awareness for events from which attention

has been exogenously diverted could be a defective integration of elementary features

for these events [101]. This interpretation is understandable from the viewpoint of the

integrative and mastery role of the TRN in attention to accomplish complete aware-

ness. Another phenomenon related to exogenous attentional orienting is ‘inhibition of
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return’ (IOR) [102,103]. With reference to the need for responding to novelty while

resisting distraction, exogenous orienting processes are good candidates for involve-

ment in drawing attention to novel events [104] by inhibiting repeated orientations

toward the same locations (i.e., IOR). As mentioned earlier, inhibitory control is the

crucial feature of the internal dynamics of the TRN model, allowing it to suppress

interference effects and promote the exploration of the visual scene. In addition, to

successfully cope with a continuously changing environment, efficient mechanisms for

‘change-detection’ are necessary. A recent study provides experimental evidence that

the TRN neurons of the rat respond more strongly to deviant stimuli than standard

stimuli, whereas the medial geniculate nucleus showed such deviance detection on a

smaller scale [105]. Therefore, the TRN seems to work more dynamically to detect

changes than thalamic relay neurons do. Probably, consistent thalamocortical feedfor-

ward-feedback processes that act on pre-existing neural representations on the TRN

interfere with new incoming signals, eventually competently detecting changes.

From the viewpoint of the TRN model, the Hebbian neural network [106] can be

conceived, for example, in terms of the object-based neural connection for selective

attention [107]. Locally and transiently synchronized neural ensembles, possibly

evoked by each tentative object (or mental target), could be seen as candidates for a

dominant signal that controls the working memory domain (see Appendix 3). There-

fore, if one of these object-based neural candidates is selected (’highlighted’) as a

mental target, we may conventionally refer to this neurophysiological phenomenon

as ‘paying attention.’ Thereby, such multiple activated neural candidates can be ana-

logous to what Zeki called the micro-consciousness [3]. This interpretation is also

consistent with Dehaene’s conception of pre-conscious processing [2]. Taking into

consideration both the TRN-mediated model and the Hebbian cell assembly, sub-

stantial synchronization in the TRN would not always be necessary. In other words,

if the input information is relatively new to the thalamocortical networks, substantial

synchronization in the TRN is explicitly expected. In contrast, for relatively familiar

signals, the Hebbian network, already established in the relevant thalamocortical

tracks, may facilitate subsequent processes, which would effectively diminish coher-

ent synchronization compared to what is expected for new signals. Therefore, it is

probable that TRN-modulated thalamocortical synchronization depends on the

familiarity of signals and that the TRN-modulation model is consistent with the

Hebbian model. Moreover, it is likely that ‘working memory’ can be thought of as

temporal mental traces of attended conscious awareness during a transient time

range around the present. The circulating model explains feasibly how working

memory is developed by any related attention. Presumably, working memory is a

type of transient active mental tracing network, which is cued by initial looping

signals reiterating over their correspondent thalamocortical circuits. Therefore, these

neural traces should be critically related to the property of initial signals for the cor-

responding thalamocortical circuit. Consistently, such an associative property is one

of the characteristics of working memory.

Through this TRN-modulation model, the concepts of capacity restriction of atten-

tion and the inability of humans to carry on simultaneous multi-attention become

understandable. The limited capacity of attention may be caused by mechanical limita-

tions in synchronizing TRN activities as a whole. Finally, such synchronization should
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yield a dominant single output signal as a unique mental representation related to the

attended object. Reasonably, this characteristic of restrictive attention is more severe

within the same modality, as the input information of each modality belongs to each

corresponding sector in the thalamic relay nuclei as well as in the TRN. Therefore, the

finely compartmental configuration of both the thalamus and the TRN is subjected to

exclusive competition for the same modal signals. Apparently, this hypothesis is also

consistent with bi-stable perception, unilateral neglect, extinction, and simultagnosia,

because the TRN in each hemisphere has no direct connection between them. Hence,

they are able to exert efficient lateral control over each hemispheric thalamocortical

loop. However, ultimately they should communicate indirectly to result in a unitary

conscious awareness, which may represent somewhat unclear emotional conscious

experiences, such as a melancholy mood. Consistently, there is a connection between

the TRN and the limbic system [66] that is related to emotion. Moreover, the phenom-

enon of ‘attentional blink’ appears to be in accord with this TRN-synchronizing model,

as the TRN network would need an absolute refractory period in which to switch

modes of synchronization in order to shift attention to other upcoming targets. There-

fore, such a refractory period in changing attention could account for ‘attentional

blink’.

In addition, the unilateral characteristic of attention is comprehensible to a certain

extent through a number of TRN-lesion studies. For instance, reduced right tecto-pul-

vinar activity was offset by over-compensatory enhancement in the TRN suppression

of left pulvinar activity [108]. Unilateral electrolytic lesions of the TRN elicited meta-

bolic depression in the ipsilateral thalamic centrolateral, mediodorsal, ventromedial,

and ventrolateral nuclei, and metabolic activation in the bilateral dorsal tegmental

nuclei [109]; and a selective excitotoxic lesion of the ipsilateral TRN induced changes

in the receptive field properties of the contralateral vental posterior medial thalamic

nuclei [110]. Furthermore, even in the study of memory impairment, the unilateral

inactivation of rats’ TRN has been shown to interfere with the acquisition of active

avoidance in the contralateral hemisphere [111]. Therefore, the gating role of the TRN

in the information flow between thalamus and cortex seems plausible in a unilateral

manner, and these anatomical and physiological features may lead to the unilateral

characteristic of attention.

Awareness: Conscious perception of an attended mental representation by strengthening

relevant neural networks through thalamocortical reiterating

It is important to note that, although attention seems to be a necessary condition for

awareness, it appears by no means to be sufficient. For example, exogenous cues pre-

sented below a subjective threshold of awareness can capture attention automatically

but without awareness [112]. Therefore, we need to identify more complementary

mechanisms underlying conscious awareness. Regarding the thalamocortical feedback

mechanism, Sherman and Guillery [67] reported that first-order thalamic relay cells

receive their driving afferents from ascending pathways and send these signals to their

corresponding cortices for the first time, whereas higher-order thalamic relay cells are

held to bring their principal messages from the corresponding cortices. Interestingly,

TRN cells send their axons back to the thalamus, particularly two branches of a single

axon connected to the first-order and the related higher-order nucleus [113]. Thus, the
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TRN can be said to act as an integrative junction of different but associated thalamo-

cortical circuits. Sherman and Guillery [67] suggested that the functional significance

of such a gathering venue may be most important for the interactions among first-

order and higher-order circuits that belong to the same modality grouping.

Based on such anatomical evidence, the present study hypothesizes that conscious

awareness may be embodied in the process of such thalamocortical iterative signal

circulation as controlled by the TRN, as depicted in Figure 2. To elaborate the degree

of conscious awareness, first-order and higher-order relay cells may interact within the

TRN, where the closest relationships between first-order and higher-order relay

circuits for any one modality are found [67]. Accordingly, the first-order and higher-

order relay circuits controlled by the TRN can yield more refined and thus higher

cognitive information, as their circulating feedbacks run over and over again in an

integrative reprocessing manner. In this sense, the compact latticework formation of

the TRN is advantageous to coordinate the overall conscious experience.

This dynamically circulating model offers one plausible understanding of the typical

characteristics of consciousness. For example, although consciousness appears to

be continuous, it actually consists of isolated steps [114,115]. According to the TRN-

modulation model, consciousness consists of each mental unit, which is an individual

thalamocortical looping mechanism, no matter what cognitive stages it involves. Such

individual mental units may behave discordantly, possibly reflected in the discrete

characteristic of consciousness. In addition, as we experience everyday life, we require

at least a minimal period to become aware of something. Indeed, in the framework

of the TRN-mediated thalamocortical looping model, minimal time is necessary for

signals to loop the circuit. This model is also in accordance with the recently proposed

hypothesis that we are only aware of changes in our underlying cognition [116];

according to the TRN-modulation model, only dynamically iterating neural signals

through thalamocortical loops eventually substantiate our conscious perception.

In line with the plausible account of characteristics of consciousness, the mechanism

of dreaming is also explainable within the framework of this circulating model. In spite

of nearly complete lack of sensory input from the real world during sleep, the looping

circuit of the TRN-centered circulating model could be activated by randomly evoked

signals within that loop, which presumably initiates to evoke a dream mechanism.

Therefore, during dreaming we can have mental experiences as vivid as those we have in

the real world. Similarly, this circulating model is consistent with ‘self-consciousness,’

because the model allows thalamocortical networks to generate signals for themselves

merely by an internally driven cue such as visual imagination (with the eyes closed).

This circulating model can explain the priming effect as well. Possibly, a priming signal

may boost or initiate the related neural activation of the TRN-mediated thalamocortical

network in advance so that a subsequent relevant input signal could advantageously

advance this warmed-up activation into more proliferated activation. The priming effect

appears therefore to be modality-specific [117], which is also a particular structural char-

acteristic of the TRN, as mentioned earlier.

Conclusions
Thus far, I have argued that the TRN-modulated thalamocortical network appears to

have evolved as the neural correlate for conscious awareness. Presumably, the
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conscious state is a TRN-modulated synchronized neural state that enables us to facili-

tate subsequent attention processes. In striking accordance with these hypotheses,

if the TRN is somehow impaired, the main symptom resembles coma (akinetic

mutism) [118]. The TRN may serve as an action coordinator for controlling our selec-

tive attention and subsequently for filtering irrelevant signal processing in conscious

perception of a target mental representation. The TRN most likely screens perceptual

representation, particularly through its modality-specific sectors. The coarse boundary

configuration of representing maps in the TRN likely enables us to experience

conscious awareness as a complete entity, which I refer to as unitary conscious aware-

ness. I presume that the framework of conscious awareness is a reiterate circuit loop-

ing over the thalamus-TRN-cortex, where the TRN would control a gate-keeping

mechanism for attention. Higher cognitive processes are likely to be achieved through

such repeated thalamocortical looping. I expect that both top-down and bottom-up

signals can communicate in the thalamocortical looping circuits and thus create a

finally unified percept by their synchrony, which is mediated substantially by the TRN.

To sum up, the TRN may work as a gatekeeper for consciousness and as a communi-

cative screen for conscious awareness. The TRN-modulation hypotheses for conscious-

ness, attention, and awareness can be summarized as follows:

[1] ‘Consciousness’ is referred to as thalamocortical response modes controlled by

the TRN and is embodied in the form of dynamically synchronized thalamocortical

networks ready for upcoming attentional processes.

[2] ‘Attention’ is neurophysiologically substantiated by a highlighted neural ensemble

among a number of synchronized thalamocortical candidates, the topographical maps

of which are projected onto the TRN.

[3] Thalamocortical looping via the TRN is necessary for the ‘conscious awareness’ of

an attended object.

We can test these hypotheses experimentally. For example, the degree of conscious

awareness could be evaluated along with the severity of the impairment of the TRN.

We can also assess the degree of modality-specific conscious perception while investi-

gating the extent of impairment in its functionally relevant thalamocortical loops. The

influence of neuroanatomical abnormal connections (whether they are on the first-

order track or on higher-order networks) could also tell us more about the significance

of iterative thalamocortical loops in accomplishing improved conscious perception.

Most likely, the phenomenon of masking [114] presents compelling evidence for the

significance of thalamocortical loops in conscious perception. Masking phenomena can

be interpreted as an interruption between the signals circulating through the thalamo-

cortical loops.

The TRN-mediated model could reconcile several major hypotheses for conscious

awareness. According to the so-called ‘global workspace’ model of consciousness [2],

incoming information becomes conscious only if three conditions are met: (1) the exis-

tence of represented information by sensory neural networks; (2) the existence of

representation long-lasting enough to gain access to a second stage of processing; and

(3) the ignition of a combination of bottom-up propagation and top-down amplifica-

tion to create a state of reverberating, coherent activity. The first condition of the

global workspace model is well in accordance with the networking conception of the

TRN-mediated model. The second condition of the global workspace model can
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be understood from the viewpoint of the thalamocortical iterative looping of the

TRN-mediated model. Likewise, the third condition of the global workspace model is

analogous to the aspect of synchronized neural activation in the TRN-mediated model.

Compared to the global workspace model, the TRN-mediated model seems more

plausible in the following respects. The model-specific sectors on the TRN provide us

with a deeper understanding of modality-specific conscious awareness. In addition,

although the prefrontal cortex is an important center for conscious awareness in the

global workspace model generally, the prefrontal cortex is sometimes not necessary to

produce a kind of modality-specific awareness in the TRN-mediated model. Based

on the TRN-mediated model, the TRN is responsible for controlling thalamocortical

networks to be consciously processed, and the prefrontal cortex may work for the

conscious evaluation of highlighted thalamocortical networks.

As shown in Figure 2, the concept of locally synchronized loops such as in the occi-

pital, frontal, or parietal region is consistent in all the three models (Dahaene’s,

Lamme’s, and the present TRN model). These locally activating networks indicate

either corticocortical regional networks or any subunit of TRN-mediated thalamocorti-

cal assemblies. On the other hand, the distributed firing patterns in the global work-

space model [2] are characteristic of the processing stage, when the TRN is initiating

to globally control and organize all the locally activating neural networks to bring

about the completion of conscious awareness. That is, the TRN invigorates a specific

neural ensemble to be consciously processed and simultaneously suppresses other irre-

levant neural activations.

In particular, as Lamme [1] emphasized the importance of feedback connections to

the primary visual cortex in terms of visual awareness, the TRN model also highlights

the significance of feedback signals from the primary sensory cortex to accomplish

conscious awareness. Furthermore, Lamme and Roelfsema [119] proposed the necessity

of recurrent processing in relation to consciousness. This notion is exactly what the

TRN-mediated model has highlighted as iterative looping processes for conscious

awareness.

As discussed so far, the TRN model does not underestimate the significance of corti-

cal roles in conscious awareness. It simply highlights the physiological significance of

the central roles of the TRN, such as controlling, screening, and accumulating neural

signals through thalamocortical loops during conscious awareness. Most likely, the cor-

tical layers communicate regularly through their corticocortical connections [120]. In

addition, the cortices provide their own substantial contribution to the development of

consciousness. That is, they may elaborate not-yet-matured information into highly

processed information while managing previous information held in a certain form in

the cortical network. For example, the dorsolateral prefrontal cortex is assumed to be

the neural correlate for integrating discrete cycles of conscious perception [116,121].

However, the TRN-modulation model of consciousness can account for more mental

experiences while including corticocortical communication within its framework; they

are not mutually exclusive. Through the TRN-modulation model, it becomes easier to

understand why there are such complicated (seemingly randomized but logically asso-

ciated) topographic distributions across many cortical areas during conscious aware-

ness. The receptive maps projected on each sector of the TRN are overlapped and may

be intercommunicative within the latticework structure of the TRN. Moreover,
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‘blindsight’ phenomena [122] seem less paradoxical from the viewpoint of the

TRN-modulation model; with blindsight, the TRN and the thalamus cannot receive

any feedback signals from the V1 (primary visual cortex). Such signals from the pri-

mary sensory cortex are necessary to accomplish conscious awareness according to the

TRN-modulation model. In other words, visual thalamic nuclei such as the LGN or

pulvinar would passively receive continuous input from the retina, but without return-

ing signals from the V1, resulting in unconscious perception.

In addition, the possibility that thalamic relay mixtures such as intralaminar or mid-

line thalamic nuclei play a role in integrating information processes for consciousness

cannot be excluded, as expected in the TRN. However, compared to the TRN, they

appear to make different contributions, because they are connected principally with

the striatum apart from the cerebral cortex [123]. Furthermore, the striatum is con-

nected to the TRN in an unusual manner, such that the external segment of the globus

pallidus projects onto the TRN without branching on the motor thalamus [124]. More-

over, there is no innervation to the TRN from the internal segment of the globus palli-

dus, which projects onto the thalamus [125]. These findings imply that the thalamus

and the TRN are regulated differently in terms of motor control. Presumably, the con-

sciousness of voluntary movement and that of sensory processing are different in their

neural correlates. Indeed, since the prefrontal cortex receives afferents from thalamus,

hypothalamus, limbic structures, and brainstem [126], presumably conveying informa-

tion about motivation and intention of movement, and influences movement only

indirectly through projections to basal ganglia, secondary motor cortices, and cerebel-

lum [127], the prefrontal cortex does not seem to be the center of willful motion, but

is rather considered as the temporal and executive organization of willful motion [24].

Therefore, we need a more plausible neural controller for initiating and supervising

the consciousness of voluntary movement, irrespective of whether it is a whole neural

network or a small neural assembly. Given the issue of motion free-will and the

remaining questions regarding the functions of thalamic relay mixtures or higher-order

relay circuits, further development of the TRN-mediated consciousness model requires

further experimental investigation. For example, the interactive relationship between

the TRN and higher-order relay cells may be a key feature for screening mental repre-

sentations to be selected as an attended target and consequently for manifesting

conscious awareness of it, as both the TRN and higher-order thalamic relay cells

receive feedback signals from the corresponding cortices, where more elaborated infor-

mation might be uploaded and kept. This crucial relationship requires clarification in

further studies. In spite of these remaining challenges, the sophisticated but logically

connected thalamocortical circuits passing through the TRN and its inhibitory control

function continue to reinforce the significance of the TRN-mediating model of

consciousness.

Appendix
1. To clarify the descriptions used throughout this paper, I tentatively use the term

‘consciousness’ as a general mental state of being capable of awareness. In addition,

the term ‘awareness’ is used to represent a specific mental state of being acquainted

with something in a conscious manner (conscious perception).
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2. Some empirical evidence regarding the neurophysiology of the TRN used in this

paper is based on animal studies; hence, there are limitations regarding the general-

ization of the TRN-modulation hypothesis of human consciousness. However, as

the human TRN might have evolved from the TRN of animals, I believe that such

implications concerning our consciousness have considerable value for future

studies.

3. It is another question as to which brain region is responsible for deciding what

to attend to. This is perhaps controlled by top-down signals from higher cognitive

stages (e.g., the frontal cortex). This issue remains controversial and open to

investigation.
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