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Abstract

Background: Metabolomics helps to identify links between environmental exposures and intermediate biomarkers
of disturbed pathways. We previously reported variations in phosphatidylcholines in male smokers compared with
non-smokers in a cross-sectional pilot study with a small sample size, but knowledge of the reversibility of smoking
effects on metabolite profiles is limited. Here, we extend our metabolomics study with a large prospective study
including female smokers and quitters.

Methods: Using targeted metabolomics approach, we quantified 140 metabolite concentrations for 1,241 fasting
serum samples in the population-based Cooperative Health Research in the Region of Augsburg (KORA) human
cohort at two time points: baseline survey conducted between 1999 and 2001 and follow-up after seven years.
Metabolite profiles were compared among groups of current smokers, former smokers and never smokers, and
were further assessed for their reversibility after smoking cessation. Changes in metabolite concentrations from
baseline to the follow-up were investigated in a longitudinal analysis comparing current smokers, never smokers
and smoking quitters, who were current smokers at baseline but former smokers by the time of follow-up. In
addition, we constructed protein-metabolite networks with smoking-related genes and metabolites.

Results: We identified 21 smoking-related metabolites in the baseline investigation (18 in men and six in women,
with three overlaps) enriched in amino acid and lipid pathways, which were significantly different between current
smokers and never smokers. Moreover, 19 out of the 21 metabolites were found to be reversible in former
smokers. In the follow-up study, 13 reversible metabolites in men were measured, of which 10 were confirmed to
be reversible in male quitters. Protein-metabolite networks are proposed to explain the consistent reversibility of
smoking effects on metabolites.

Conclusions: We showed that smoking-related changes in human serum metabolites are reversible after smoking
cessation, consistent with the known cardiovascular risk reduction. The metabolites identified may serve as
potential biomarkers to evaluate the status of smoking cessation and characterize smoking-related diseases.
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Background
Smoking is responsible for 90% of all lung cancers,
accounts for 25% of cancer deaths worldwide [1-3] and
is a significant risk factor for cardiovascular disease
(CVD) [4-7]. The benefits of smoking cessation are
remarkable. Risk of CVD is reduced in former smokers
(FS) compared with current smokers (CS) [8-10]; mor-
tality and future cardiac events both decline in FS
[11,12]. Nevertheless, for cancers, especially for adeno-
carcinoma, the risk remains high in FS compared with
never smokers (NS) [13,14]. Studies have made attempts
to find the molecular basis for the influence of smoking
and smoking cessation on cardiovascular risks. For
instance, smoking is associated with the increase of sev-
eral CVD-related inflammatory markers, for example, c-
reactive protein and fibrinogen [15-17], and smoking
cessation could largely reduce the level of these markers
[18]. However, there is also evidence that other molecu-
lar changes associated with smoking are permanent, for
example, loss of heterozygosity and hypermethylation in
the promoter regions of cancer-related genes [19-23].
The metabolomics approach provides a functional read-

out of activities located downstream of the gene expres-
sion level that are more closely related to the physiological
status [24] and, thus, may be particularly useful for the
study of environmental influences, namely the ‘exposome’
[25]. Studying a strong environmental factor, for example
a lifestyle-related exposure to smoking, may be considered
a very powerful approach for understanding the links
between environmental exposure and the metabolome. In
human lung epithelial cells, it has been shown that meta-
bolite concentration changes in various pathways, for
example, the urea cycle and polyamine metabolism and
lipid metabolism under smoke exposure [26]. In a pilot
study with 283 male participants from the Cooperative
Research in the Region of Augsburg (KORA) F3 in Ger-
many, we have shown that levels of diacyl-phosphatidyl-
cholines (PCs) were higher in 28 CS compared with 101
NS, except for acyl-alkyl-PCs [1]. The reduced ratios of
acyl-alkyl-to diacyl-PCs in CS may be regulated by the
enzyme alkyl-dihydroxyacetone phosphate in both ether
lipid and glycerophospholipid pathways [1]. However, little
has been reported about the reversibility of the metabolite
profile upon smoking cessation, which is important for
comprehensive understanding of smoking effects. It is also
known that metabolite profile is different between men
and women [25], but whether lifestyle factors such as
smoking may induce different metabolite patterns in men
and women is still unknown.
In this study, we analyzed the association between

smoking and the concentration of metabolites in 1,241
serum samples from the KORA baseline survey 4 (S4)
and follow-up (F4) study, aiming to extend the knowl-
edge of smoking-associated metabolites beyond our pilot

study by including female CS at two time points over
seven years, to investigate whether smoking-associated
changes in metabolite profile are reversible after smok-
ing cessation, and to provide insights into the patho-
physiological consequences of smoking in protein-
metabolite networks.

Methods
Ethics statement
Written informed consent was obtained from KORA S4
and F4 participants. The KORA study was approved by
the ethics committee of the Bavarian Medical Association
in Munich, Germany.

Study population
The KORA surveys are population-based studies con-
ducted in the Region of Augsburg in Germany [27,28].
Four surveys were conducted with 18,079 participants
recruited from 1984 to 2001. The S4 consists of 4,261
individuals (25 to 74 years old) examined from 1999 to
2001. From 2006 to 2008, 3,080 participants (with an age
range of 32 to 81 years) took part in the F4 survey. Each
participant completed a lifestyle questionnaire providing
information on a number of parameters including smok-
ing status (current, former, never). Serum samples for
metabolomics analysis were collected in parallel in the
KORA S4 and F4 survey as described elsewhere [29-31].
For metabolite profiles, serum samples from 1,614 peo-

ple aged 55 to 74 years old were available [29]. Participants
with non-fasting status (N = 216) or missing values (N =
22) were excluded from the analysis. We further excluded
145 people in KORA S4 and 116 people in the longitudi-
nal data of KORA S4 ® F4, whose spouses were CS, to
rule out passive smoking effects. Furthermore, metabolite
concentrations of serum samples from 1,036 participants
were measured in both KORA S4 and F4.

Metabolite measurements
Liquid handling of serum samples (10 μl) was performed
with Hamilton star robot (Hamilton Bonaduz AG, Bona-
duz, Switzerland) and prepared for quantification using
the AbsoluteIDQ P180 and P150 kits (BIOCRATES Life
Science AG, Innsbruck, Austria) for the KORA S4 and F4
surveys, respectively. This allowed simultaneous quantifi-
cation of 188 or 163 metabolites using liquid chromato-
graphy and flow injection analysis mass spectrometry as
described previously [32,33]. The complete analytical
process was monitored by quality control steps, reference
samples and the MetIQ software package, which is an
integral part of the Absolute IDQ kit.
Because the two datasets were generated by different

platforms, different quality control processes were intro-
duced. The metabolite data quality control procedure for
the KORA S4 samples was described in our recently
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published work [29]. There were 140 metabolites that
passed the two quality controls: one hexose, 21 amino
acids, eight biogenic amines, 21 acylcarnitines, 13 sphingo-
myelins (SMs), eight lysoPCs, 33 diacyl-PCs (PC aa Cx:y)
and 35 acyl-alkyl-PCs (PC ae Cx:y). Lipid side chain com-
position is abbreviated as Cx:y, where × denotes the num-
ber of carbons in the side chain and y the number of
double bonds. The precise position of the double bonds
and the distribution of the carbon atoms in different fatty
acid side chains cannot be determined with this technol-
ogy. Concentrations of all analyzed metabolites are
reported in μmol/L (μM). The data cleaning procedure for
the KORA F4 samples has previously been described in
detail [24,30]. In total, 121 metabolites were measured in
both S4 and F4, and used for the prospective study.

Statistical analysis
Differences in population characteristics (CS, FS and
NS) were tested by a two-tailed student’s t-test. The
metabolite concentrations were log transformed for nor-
malization. We tested cross-sectional association of each
metabolite with smoking using logistic regression mod-
els adjusted for age, body mass index (BMI) and alcohol
consumption (see Figure 1). To correct for multiple test-
ing, false discovery rate (FDR) was calculated using the
Benjamini-Hochberg method [34] and the cut-off for
statistical significance was set at FDR <0.05.
Linear regression models were used to investigate

whether smoking intensities measured in pack years and
cessation time are associated with metabolite concentra-
tions. In the case of CS, the years of smoking were cal-
culated as the time period from starting smoking until
the start of the survey. Pack year was calculated as the
number of cigarettes per day multiplied by smoking
duration and divided by 20 [35]. Cessation time (in
years) was calculated according to the questionnaire.
The models contained the log-transformed metabolite
concentrations as the dependent variable and the smok-
ing intensities as the explanatory variable, with age, BMI
and alcohol consumption as covariates. Every unit
change of one covariate corresponds to a relative change
of the metabolite concentration by Δ (%):

� = (exp(βi)− 1)× 100%

where bi indicates the estimate of ith covariate in the
model.
To assess the role of smoking cessation for the quit-

ters, who were CS at S4 but FS at F4, we fitted the lin-
ear mixed models to the longitudinal data of KORA S4
® F4. The models contained the fixed effect of smoking
status (CS, FS and NS), age, BMI and alcohol consump-
tion with a random effect assigned to each participant.
All calculations were performed in R (version 2.14.1).

Network and pathway analysis
We retrieved protein-protein interactions from the data-
bases of the Search Tool for the Retrieval of Interacting
Genes/Proteins [36] and the relationships between
enzymes and metabolites from the Human Metabolome
Database [37] to construct protein-metabolite networks
containing links between metabolites, enzymes and
smoking-related genes. Genes and metabolites were con-
nected allowing for at most one intermediate enzyme by
Dijkstra’s algorithm [38], and optimized by eliminating
edges with Search Tool for the Retrieval of Interacting
Genes/Proteins scores less than 0.7. Each edge in the
networks was manually checked. We have implemented
this method in our previous studies [29,39]. The analysis
was performed using the R package igraph [40]. The
network was visualized using Cytoscape [41]. Pathway
analysis was performed by MetaboAnalyst [42].

Results
Characteristics of participants of the cross-sectional KORA
S4
Participants were divided into three groups according to
their self-reported smoking status. Population character-
istics are shown in Table 1. On average, CS were two to
three years younger and had a lower BMI than FS and
NS. Male CS showed higher alcohol consumption than
male NS, but there was no significant difference observed
in women. Furthermore, the statistics showed differences
in lifestyle factors between men and women. Alcohol
consumption was higher in men than women (P = 1.5e-11

(CS); P = 2.2e-18 (FS); P = 9.5e-17 (NS)), and smoking
intensity (in pack years) was higher in male than in
female CS (P = 6.0e-6).

Metabolomic differences between current, former and
never smokers
We identified 18 metabolites in men and six in women
that were significantly different (FDR <0.05) between CS
and NS. Three metabolites (PC ae C34:3, PC aa C36:1
and glutamate) were identified in both men and women
showing the same pattern of variation (higher or lower)
(Table 2). Compared with FS and NS, in male CS the
concentrations of four unsaturated diacyl-PCs (PC aa
C34:1, PC aa C36:1, PC aa C38:3 and PC aa C40:4) and
five amino acids (arginine, aspartate, glutamate, ornithine
and serine) were higher, whereas three saturated diacyl-
PCs, one lysoPC and four acyl-alkyl-PCs, as well as
kynurenine showed lower concentrations. In female CS,
we found higher levels of carnitine and PC aa C32:1, and
a lower level of hydroxysphingomyeline (SM (OH))
C22:2.
Among the 21 smoking-related metabolites (18 in men

and six in women), 19 were found to be reversible (that
is, significant difference between FS and CS but without
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Table 1 Characteristics of cross-sectional KORA S4.

Current
smoker

Former
smoker

Never
smoker

Pa

Current versus former
smoker

Current versus never
smoker

Male (N = 646)

N (%) 125 (19.3%) 321 (49.7%) 200 (31.0%)

Age (years) 62.2 ±5.3 65.3 ± 5.3 64.1 ± 5.6 7.9e-08 3.0e-03

BMI (kg/m2) 27.0 ±3.6 28.9 ±3.6 27.8 ±3.4 1.5e-06 6.5e-02

Alcohol consumption (g/
day)

27.5 ±29.0 24.1 ±24.3 20.5 ±21.3 0.25 0.02

Pack yearsb 39.3 ±22.4

Quit timec (years) 23.6 ±12.6

Female (N = 595)

N (%) 70 (11.8%) 130 (21.8%) 395 (66.4%)

Age (years) 61.3 ±5.2 64.0 ±5.2 64.6 ±5.3 7.5e-04 5.9e-06

BMI (kg/m2) 27.2 ±4.5 28.7 ±5.0 28.5 ±4.6 0.029 0.02

Alcohol consumption (g/
day)

6.5 ±10.9 10.0 ±12.8 7.5 ±11.1 0.042 0.48

Pack yearsb 25.8 ±15.3

Quit timec (years) 20.9 ±13.1

The study characteristics of KORA S4 are shown separately for current, former and never smokers. Values are shown as mean ±SD when appropriate. aP-values
are calculated by student’s t-test; bcalculated as the number of cigarettes consumed per day × years of smoking/20; c the time till the survey is conducted since
the person has stopped smoking. BMI: body mass index.
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Figure 1 Flow diagram illustrating the analysis strategy. CS: current smokers; FS: former smokers; NS: never smokers.
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significant difference between FS and NS; FDR <0.05).
No irreversible metabolite was observed (that is, signifi-
cant difference between FS and NS). Serine and PC aa
C32:3 in men were not classified because their concen-
trations were not significantly different between CS and
FS or between FS and NS (Table 2). A heat map repre-
senting the concentration profiles of the 21 identified
metabolites in CS, FS and NS is shown in Figure 2,
demonstrating the reversibility of metabolites after
smoking cessation.
In women, SM (OH) C22:2 was significantly associated

with cessation time (FDR <0.05); however, there was no
such significant metabolite in men (Table S1 in Additional
file 1), indicating a non-linear relationship between cessa-
tion time and the reversion of metabolite profile. In addi-
tion, we grouped the FS by stratified cessation years (0 to
10, 11 to 20, 21 to 30, 31 to 40, over 40 years). For some
metabolites (for example, PC ae C38:0, PC aa C36:0 and

ornithine), the greatest change of concentration occurred
within the first 10 years of cessation compared with CS
(Figure 3).
Within CS, we found kynurenine and PC ae C34:3, PC

ae C38:0 and PC ae C38:6 in men, and PC aa C36:1 in
women showing significant association with pack years.
In the linear regression model, pack years showed a nega-
tive relation (parameter estimation b <0) to these five
metabolites (Table 3) (for example, one pack year
increase will lead to a decrease of the kynurenine level in
CS by 0.33%).

Prospective change of metabolite profiles (from KORA
baseline S4 to follow-up F4)
The prospective dataset included 40 CS, 432 NS and 49
quitters (people who were CS in KORA S4 but FS in
KORA F4) (Table 4). Among the 16 reversible metabolites
in men, 13 (except kynurenine, glutamate and aspartate)

Table 2 Smoking-related metabolites in KORA S4.

Metabolites CS versus NS CS versus FS FS versus NS

Odds ratio (95% CI) P Odds ratio (95% CI) P Odds ratio (95% CI) P

Men (125 versus 200) (125 versus 321) (321 versus 200)

Arginine 1.7 (1.3, 2.2) 2.6e-05a 1.3 (1.0, 1.6) 0.03a 1.2 (1.0, 1.5) 0.03

Aspartate 1.6 (1.2, 2.0) 2.5e-04a 1.4 (1.1, 1.7) 4.7e-03a 1.1 (0.9, 1.3) 0.36

Glutamate 1.6 (1.2, 2.0) 6.2e-04a 1.4 (1.1, 1.9) 0.02a 1.0 (0.8, 1.3) 0.88

Ornithine 1.4 (1.2, 1.9) 2.2e-03a 1.3 (1.1, 1.7) 8.3e-03a 1.0 (0.9, 1.2) 0.78

Serine 1.4 (1.1, 1.8) 3.5e-03a 1.2 (1.0, 1.5) 0.12 1.1 (0.9, 1.4) 0.25

Kynurenine 0.6 (0.5, 0.9) 3.2e-03a 0.7 (0.5, 0.9) 2.3e-03a 1.0 (0.8, 1.2) 0.88

PC aa C32:3 0.7 (0.5, 0.9) 6.4e-03a 0.8 (0.6, 1.0) 0.07 0.9 (0.7, 1.0) 0.12

PC aa C34:1 1.7 (1.3, 2.2) 2.0e-04a 1.7 (1.3, 2.2) 2.5e-05a 0.9 (0.8, 1.1) 0.49

PC aa C36:0 0.6 (0.5, 0.8) 3.5e-04a 0.6 (0.5, 0.8) 2.7e-04a 1.0 (0.8, 1.2) 0.72

PC aa C36:1 1.6 (1.2, 2.0) 9.4e-04a 1.6 (1.3, 2.0) 8.2e-05a 0.9 (0.8, 1.1) 0.33

PC aa C38:0 0.7 (0.5, 0.9) 2.1e-03a 0.6 (0.5, 0.8) 1.2e-04a 1.0 (0.9, 1.3) 0.64

PC aa C38:3 1.5 (1.1, 1.9) 3.4e-03a 1.3 (1.1, 1.7) 0.01a 1.0 (0.8, 1.2) 0.85

PC aa C40:4 1.5 (1.2, 2.0) 3.4e-03a 1.4 (1.1, 1.8) 3.6e-03a 1.0 (0.8, 1.2) 0.86

PC ae C34:3 0.5 (0.4, 0.7) 3.3e-06a 0.6 (0.5, 0.8) 6.0e-05a 0.9 (0.7, 1.1) 0.23

PC ae C38:0 0.7 (0.5, 0.9) 2.1e-03a 0.6 (0.5, 0.8) 6.7e-04a 1.0 (0.8, 1.2) 0.94

PC ae C38:6 0.7 (0.5, 0.9) 4.8e-03a 0.7 (0.5, 0.8) 6.6e-04a 1.0 (0.8, 1.2) 0.97

PC ae C40:6 0.6 (0.5, 0.8) 8.8e-04a 0.7 (0.5, 0.8) 8.9e-04a 0.9 (0.8, 1.1) 0.33

lysoPC a C18:2 0.7 (0.5, 0.9) 3.3e-03a 0.8 (0.6, 0.9) 0.046a 0.9 (0.7, 1.1) 0.23

Women (70 versus 395) (70 versus 130) (130 versus 395)

carnitine 1.8 (1.4, 2.4) 4.3e-05a 1.5 (1.1, 2.1) 0.01a 1.1 (0.9, 1.4) 0.32

Glutamate 1.7 (1.3, 2.2) 1.2e-04a 1.8 (1.3, 2.5) 1.1e-03a 0.9 (0.7, 1.1) 0.17

PC aa C32:1 1.5 (1.1, 1.9) 2.1e-03a 1.4 (1.0, 2.0) 0.03a 1.1 (0.9, 1.4) 0.24

PC aa C36:1 1.6 (1.2, 2.0) 1.1e-03a 1.5 (1.1, 2.0) 0.02a 1.0 (0.8, 1.2) 0.87

PC ae C34:3 0.6 (0.4, 0.8) 7.7e-04a 0.6 (0.4, 0.8) 2.5e-03a 1.0 (0.8, 1.2) 0.94

SM (OH) C22:2 0.6 (0.5, 0.8) 2.1e-03a 0.6 (0.4, 0.9) 4.9e-03a 0.9 (0.7, 1.1) 0.35

Results of pair wise comparison by logistic regression of metabolites on smoking status adjusted for age, body mass index and alcohol consumption. Men and
women were analyzed separately. We present all results with a false discovery rate (FDR) below 0.05 (in the comparison between CS and NS, the FDR was
calculated by P-value adjusted for all 140 metabolites; for CS versus FS and FS versus NS, the FDR was calculated by P-value adjusted for the number of
metabolites significantly different between CS and NS). Smoking-related metabolites found in both men and women are in bold. aa: diacyl-; ae: acyl-alkyl-; CI:
confidence interval; CS: current smokers; FS: former smokers; NS: never smokers; PC: phosphatidylcholine; lysoPC: acyl-phosphatidylcholine; SM (OH):
hydroxysphingomyeline. aFDR <0.05.
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were also measured in KORA F4 using a different kit (see
Methods). We employed a linear mixed effect model to
investigate the effects of smoking cessation on metabolite
concentrations. Among these 13 metabolites, 10 metabo-
lites showed a significant variation in quitters, with a period
of smoking cessation from one to seven years, which

indicated a reverting process. The arginine level decreased
by 11.3% and ornithine by 14.8% in quitters compared with
CS, whereas PC aa C36:0 increased by 18.5%. Figure 4
shows the prospective changes of the significant metabo-
lites. For women, the same analysis was conducted.
Because the number of female quitters was small (N = 10),

NS (N
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)

CS (N
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25
)

FS (N
=3
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NS (N
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lysoPC a C18:2
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PC aa C32:1
SM (OH) C22:2
PC ae C34:3

Figure 2 Heat maps of smoking-related metabolites in (A) men and (B) women. The heat map shows mean residues of smoking-related
metabolites in CS, FS and NS and the reversibility after smoking cessation. The color of each cell in the heat map represents the relative mean
concentration of each metabolite in NS, FS or CS. The number of samples in each group is provided. The bar besides the metabolite names
indicates the reversibility of these metabolites after smoking cessation. aa: diacyl-; ae: acyl-alkyl-; C0: carnitine; CS: current smokers; FS: former
smokers; lysoPC: acyl-phosphatidylcholine; NS: never smokers; PC: phosphatidylcholine; SM (OH): hydroxysphingomyeline.

Xu et al. BMC Medicine 2013, 11:60
http://www.biomedcentral.com/1741-7015/11/60

Page 6 of 14



five metabolites that were measured in both KORA S4 and
F4 showed borderline significance (P <0.05). However,
none of these metabolites was found to be significant con-
sidering FDR <0.05 (see Table 5).

Smoking effects on metabolic network
Enrichment analysis of the 21 identified smoking-related
metabolites on Kyoto Encyclopedia of Genes and Genomes
pathways showed enrichment in a set of amino acid and
lipid metabolism pathways (ether lipid, glycerophospholipid,

arginine and proline metabolism). In addition, we analyzed
the impact of the smoking-related metabolites in each path-
way by measuring their structural importance (see Meth-
ods). These metabolites had high betweenness centrality
and a strong impact on the enriched pathways (Figure 5
and Table S2 in Additional file 2).
To systematically investigate how the effects of smoking

propagate over the metabolic networks, we evaluated the
association between 175 smoking-related genes, previously
reported [23], and the 21 smoking-related metabolites we

Arginine 6 Ornithine

PC ae

PC ae PC ae

M
et

ab
ol

ite
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on
ce

nt
r

NSCS NSCS

FS FS
Figure 3 Metabolite concentration variations in relation to smoking cessation time. Taking NS as baseline, figures show the mean
residuals of metabolites in different groups of CS and FS, giving the trend of metabolite variation with cessation time. FS were grouped by
stratified cessation time (≤10, 11 to 20, 21 to 30, 31 to 40, 41+). Residuals were calculated by linear regression model (regression of metabolite
concentration on age, body mass index and alcohol consumption). aa: diacyl-; ae: acyl-alkyl-; CS: current smokers; FS: former smokers; NS: never
smokers; PC: phosphatidylcholine.
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found in this study by analyzing protein-metabolite net-
works (see Methods). In men, 15 metabolites (lysoPC a
C18:2, PC aa C32:3,PC aa C34:1, PC aa C36:0, PC aa C36:1,
PC aa C38:0, PC aa C38:3, PC aa C40:4, PC ae C34:3, PC

ae C38:0, PC ae C38:6, PC ae C40:6, arginine, glutamate
and serine) were found to be linked with 11 genes (ADH7,
AKR1B1, DHRS3, FTL, GALE, GPC1, KRAS, S100A10,
SLC7A11, SULF1, PLA2G10) by related enzymes. In
women, four metabolites (PC aa C36:1, PC ae C34:3, PC aa
C32:1 and glutamate) were closely linked with nine genes
(ADH7, AKR1B1, DHRS3, FTL, GALE, GPC1, S100A10,
SULF1, PLA2G10) (Figure 6A and Table S3 in Additional
file 3). Similar to enrichment analysis, the network in men
and in women could be generally divided into glyceropho-
spholipids and tightly associated proteins as well as amino
acids and the associated genes and enzymes. A description
of the protein-metabolite and protein-protein interactions
was listed in Table S3 in Additional file 3.
The smoking effects on the networks were reversible.

With regards to gene expressions, with the exception of
SULF1 and PLA2G10, all changes in the networks were
reversible after smoking cessation [23]. All changes in
metabolites in the network were also reversible, except
serine.

Discussion
In this study, we have used an ‘omics’ approach to
investigate the association of metabolite concentrations
with smoking, delineated the reversion of metabolite
variations after smoking cessation and demonstrated the
results using protein-metabolite networks. We identified
strong associations of various metabolites with smoking,
and confirmed part of the findings of our pilot study
[1]. Among the 23 smoking-related metabolites identi-
fied in the pilot study, 11 metabolites were measured in
this study, five of which (four unsaturated diacyl-PCs
and one acyl-alkyl-PC) were validated in men, based on
about five-fold larger CS samples. Consistent patterns of
smoking effects on metabolite profile were observed in
the current study. Among all the smoking-related meta-
bolites, in CS we found higher unsaturated diacyl-PCs,
but lower acyl-alkyl-PCs and saturated diacyl-PCs,
which may indicate generally increased levels of unsatu-
rated fatty acids in CS. Unsaturated fatty acids are more

Table 3 Smoking intensity (pack years) related to
metabolites

Metabolites b estimate of pack year Δ (%) P

(95% confidence interval)×10-3

Men

Arginine -1.1 (-3.6, 1.4) -0.11% 0.38

Aspartate 2.9 (-1.4, 7.1) 0.29% 0.20

Glutamate 2.9 (-1.2, 6.9) 0.29% 0.17

Ornithine -2.4 (-5.2, 0.3) -0.24% 0.09

Serine 1.1 (-1.3, 3.6) 0.11% 0.37

Kynurenine* -3.3 (-6.1, -0.5) -0.33% 0.02

PC aa C32:3 -1.4 (-4.3, 1.4) -0.14% 0.33

PC aa C34:1 -0.9 (-3.5, 1.6) -0.09% 0.48

PC aa C36:0 -2.3 (-4.9, 0.4) -0.23% 0.09

PC aa C36:1 -1.4 (-4.6, 1.8) -0.14% 0.39

PC aa C38:0 -2.1 (-4.9, 0.7) -0.21% 0.15

PC aa C38:3 1.2 (-1.7, 4.1) 0.12% 0.43

PC aa C40:4 1.3 (-2.5, 5.1) 0.13% 0.51

PC ae C34:3* -3.7 (-6.4, -0.9) -0.37% 0.01

PC ae C38:0* -3.6 (-6.6, -0.5) -0.36% 0.02

PC ae C38:6* -2.6 (-5.1, -0.1) -0.26% 0.04

PC ae C40:6 -1.7 (-4.4, 1.0) -0.17% 0.22

lysoPC a C18:2 -3.1 (-6.5, 0.3) -0.31% 0.07

Women

Carnitine 1.1 (-4.3, 6.5) 0.11% 0.70

PC aa C32:1 0.2 (-10.5, 10.9) 0.02% 0.97

PC aa C36:1* 6.9 (0.6, 13.2) 0.69% 0.04

PC ae C34:3 -2.7 (-7.7, 2.2) -0.27% 0.54

SM (OH) C22:2 -2.8 (-7.7, 2.2) -0.28% 0.28

Glutamate 2.2 (-7.8, 12.2) 0.22% 0.67

Results of linear regression of smoking intensity (pack years) on metabolite
concentrations in men and women, adjusted for age, body mass index and
alcohol consumption. All smoking-related metabolites presented in Table 2
are listed (*P <0.05). aa: diacyl-; ae: acyl-alkyl-; CS: current smokers; FS: former
smokers; lysoPC: acyl-phosphatidylcholine; NS: never smokers; PC:
phosphatidylcholine; SM (OH): hydroxysphingomyeline.

Table 4 Characteristics of the prospective dataset (KORA S4 ® F4).

Current smoker Former smoker Never smoker

Men (N = 207)

N (%) 31 (15.0%) 30 (14.5%) 146 (70.5%)

Age at S4 (years) 60.2 ±5.3 63.0 ±5.0 63.0 ±5.5

Alcohol consumption (S4/F4)(g/day) 27.7 ±28.2/20.4 ±28.7 29.6 ±31.6/19.3 ±21.1 22.2 ±22.8/20.2 ±19.5

BMI (S4/F4) (kg/m2) 26.8 ±2.9/26.9 ±3.3 28.5 ±3.8/28.9 ±3.9 27.6 ±3.3/27.8 ±3.4

Women (N = 314)

N (%) 18 (5.7%) 10 (3.2%) 286 (91.1%)

Age at S4 61.0 ±5.1 59.5 ±3.1 63.6 ±5.1

Alcohol consumption (S4/F4)(g/day) 7.6 ±11.6/7.4 ±11.8 4.7 ±6.7/10.7 ±14.1 7.6 ±11.2/7.3 ±11.4

BMI (S4/F4) (kg/m2) 27.9 ±5.1/27.7 ±5.3 26.9 ±3.9/27.4 ±5.1 28.6 ±4.5/28.9 ±4.7

Population characteristics were calculated based on 207 men and 314 women who participated in both the KORA S4 and F4 study. Values are provided as mean
± SD. BMI: body mass index.
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vulnerable to lipid peroxidation and influence the risk of
different diseases [43,44].

Smoking-related metabolites and cardiovascular disease
The study results implied the potential of metabolomics
in revealing the role of an environmental factor, for
example a smoking lifestyle, in the pathogenesis and
prognosis of CVD.
One study on the peripheral blood metabolite profile

showed an association of coronary artery disease and urea
cycle-related metabolites, including arginine and glutamate
[45], which were also identified in our study as smoking-
related metabolites. By scrutinizing the smoking-related
metabolites in metabolic pathways, we found further sup-
port for the pathophysiological relation between these
metabolites and CVD. Previous findings indicated that the
glutamate transporter in human lung epithelial cells,
encoded by the SLC7A11 gene, is activated in CS [23,46],
which increases the transportation of glutamate and sub-
sequently raises the levels of the downstream metabolites,
arginine and ornithine (Figure 6B). The activation of the
cysteine-glutamate transporter (encoded by SLC7A11) and
the increased glutamate level as a response to oxidative
stress is also of great importance to endothelial dysfunc-
tion involved at all stages of atherosclerotic plaque evolu-
tion, which leads to CVD [47,48].
Ether lipid and glycerophospholipid metabolisms are

associated with smoking [1,49]. The decreased level of
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Table 5 Association of reversible metabolites with
smoking status change in the prospective dataset (KORA
S4 ® F4)

b estimate of smoking status
(95% confidence interval)

P

Men

Arginine -0.12 (-0.18, -0.06) 1.4e-04a

Ornithine -0.16 (-0.24, -0.08) 2.1e-04a

PC aa C34:1 -0.09 (-0.15, -0.03) 3.3e-03a

PC aa C36:0 0.17 (0.09, 0.25) 6.4e-05a

PC aa C36:1 -0.12 (-0.18, -0.05) 8.5e-04a

PC aa C38:0 0.14 (0.06, 0.22) 3.0e-04a

PC aa C38:3 -0.04 (-0.11, 0.02) 1.7e-01

PC aa C40:4 -0.11 (-0.18, -0.03) 6.0e-03

PC ae C34:3 0.14 (0.06, 0.21) 3.5e-04a

PC ae C38:0 0.13 (0.05, 0.21) 1.8e-03a

PC ae C38:6 0.11 (0.04, 0.18) 1.5e-03a

PC ae C40:6 0.08 (0.01, 0.15) 2.1e-02

lysoPC a C18:2 0.03 (-0.06, 0.11) 5.2e-01

Women

Carnitine -0.12 (-0.20, -0.05) 1.4e-03

PC aa C32:1 -0.18 (-0.32, -0.03) 2.1e-03

PC aa C36:1 -0.11 (-0.20, -0.02) 2.0e-02

PC ae C34:3 0.09 (-0.02, 0.19) 0.95

SM (OH) C22.2 0.12 (0.02, 0.22) 1.9e-02

Result of smoking status on metabolite concentrations using linear mixed
model for S4 ® F4 longitudinal data, adjusted for age, BMI, and alcohol
consumption. PC: phosphatidylcholine; aa: diacyl-; ae: acyl-alkyl-; lysoPC:
acyl-phosphatidylcholine; SM (OH): hydroxysphingomyeline. a FDR<0.05.
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lysoPC a C18:2 reflects the inhibition of upstream synth-
esis and activation of downstream hydrolysis. As shown in
Figure 6C, upregulation of S100A10 and GPC1 inhibits
cytosolic phospholipase A2, which plays a role in the
synthesis of lyso-PCs. The lysophospholipase I isoform,
which hydrolyses lysoPC into glycerophosphocholine, is
upregulated in CS [23]. Interestingly, one recent study
showed that a disorder of phosphatidylcholine metabolism
would promote CVD [50], which may establish a link
between smoking-related phosphatidylcholine variation
and cardiovascular events. For example, the phosphatidyl-
choline hydroperoxide will promote angiogenesis in
endothelial cells that are associated with atherosclerotic
development [51].
The reversibility of metabolite concentrations in a

small time window may reveal a reduced risk of smok-
ing-related diseases after stopping smoking. Concentra-
tions of arginine and glutamate that are associated with
both smoking and coronary artery diseases quickly
returned to normal levels (within seven years) after
smoking cessation, which is in line with epidemiological
findings that the smoking effects on CVD are quickly and
largely reduced after smoking cessation [8,9,52]. The
reversed glutamate level indicates reduced oxidative
stress after smoking cessation, and the reversion of argi-
nine and ornithine reflects a reversion of functioning in
the urea cycle. Our findings provide metabolic insight
into the reduced risk of CVD after smoking cessation
and provide support for the remarkable benefits people
would gain by stopping smoking.

Concordance of reversibility in metabolic network
The protein-metabolite interaction network shows that
the reversibility of metabolite concentrations also coin-
cided with gene expression (Figure 6A). Arginine and
glutamate were quickly reversed after smoking cessation,
which was in line with the quick reversibility of SLC7A11
expression. Expression of enzyme coding genes for the
hydrolysis of diacyl-PCs and acyl-alkyl-PCs, for instance
lysophospholipase, cytosolic phospholipase A2 and S100
calcium binding protein A2, were quickly reversible and
smoking-related diacyl-PCs and acyl-alkyl PCs shared the
same reverse pattern.

Gender-specific effects of smoking
In this study, we found gender-specific effects of smoking
on metabolite profiles (Table S1 in Additional file 1).
This result supports the assumption that differences in
smoking effects on men and women are not solely based
on smoking intensity but are also gender-specific. Gluta-
mate was higher in both male and female CS, however,
the levels of arginine and ornithine were only higher in
male CS. According to a previous study of the metabolo-
mic and genetic biomarkers on sexual dimorphisms [30],
the CPS1 gene, which regulates the formation of arginine,
has a gender-specific manner in certain single nucleotide
polymorphisms, with stronger effects in women than in
men. The gender-specific genetic effect might cause a
lower efficiency in women in regard to the transforma-
tion of extra glutamate to citrulline (Figure 6C).

Strengths and limitations
We used a systematic targeted metabolomics approach
with 140 metabolites in a large population-based cohort.
Analyzing the effects of smoking and smoking cessation
in this prospective manner (follow-up of seven years)
provides more power to investigate smoking effects by
ruling out individual differences. However, our study is
based on a limited range and number of metabolites and
cannot fully represent the whole metabolome. Thus, an
improved metabolomics technique measuring more
metabolites is urgently needed for a comprehensive
understanding of both reversible and permanent effects
of smoking on human metabolism. It would be interest-
ing for future studies to also include data on other envir-
onmental factors such as diet and lifestyle, which are
known to have effects on the human metabolome [53,54].

Conclusions
Our study shows the power of the metabolomics approach
in investigating the molecular signature of lifestyle-related
environmental exposures. We demonstrated that smoking
is associated with concentration variations in amino acids,
ether lipid and glycerophospholipid metabolism at an
‘omics’ level. The smoking-related changes in the human
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serum metabolite profile are reversible after stopping
smoking. This indicates the remarkable benefits of smok-
ing cessation and provides a link to CVD benefits. Further-
more, linking metabolomic knowledge to other ‘omics’
approaches, for example, transcriptomics, may have the
potential to identify novel biomarkers as well as new risk
assessment tools.

Additional material

Additional file 1: Table S1: Cessation time-related metabolites in FS. FDR
was calculated by P-value adjusted for the number of smoking-related
metabolites with Benjamini-Hochberg method. aa: diacyl-; ae: acyl-alkyl-;
C0: carnitine; FS: former smokers; lysoPC: acyl-phosphatidylcholine; PC:
phosphatidylcholine; SM (OH): hydroxysphingomyeline.

Additional file 2: Table S2: Enrichment and impact of smoking-
related metabolites in Kyoto Encyclopedia of Genes and Genomes
pathways. Table shows the enrichment and impact scores of smoking-
related metabolites in Kyoto encyclopedia of Genes and Genomes
pathways. The pathway analysis consists of enrichment and a structural
impact analysis both based on Kyoto Encyclopedia of Genes and
Genomes database. The -log (P) was considered as the enrichment score.
Impact, scored between 0 and 1, indicated the pathway topological
importance of the metabolites. In particular, the parameter Total is the
total number of compounds in the pathway; the parameter Hits is the
actual number of metabolites with significant variations in the pathway;
the Raw P was the original P-value calculated from the enrichment
analysis; the FDR was calculated as the P-value adjusted using Benjamini-
Hochberg method.

Additional file 3: Table S3: Links between smoking-related
metabolites, enzymes and genes. The table describes the links showed
in Figure 6 of the main text. The smoking-related metabolites, enzymes
and genes are listed in the first and second columns. The score of
interaction is given according to the definition by the Search Tool for
the Retrieval of Interacting Genes/Proteins [1]. A reference for each link
and a short description is provided. The Column of reaction shows the
possible biochemical reaction of the corresponding link or the type of
protein interaction. The enzymes includes, phospholipase A2, membrane
associated (GIIC sPLA2), cytosolic phospholipase A2 (cPLA2), group 10
secretory phospholipase A2 (PLA2G10), lysophospholipase I (LYPLA1),
apolipoprotein A-V (APOA5), uteroglobin (SCGB1A1), lecithin retinol
acyltransferase (LRAT), nitric oxide synthase 1 (NOS1), solute carrier family
3 member 2 (SLC3A2), serine dehydratase (SDH), 3-hydroxybutyrate
dehydrogenase, type 1 (BDH). The smoking-related gene/protein
includes, S100 calcium binding protein A10 (S100A10), glypican 1 (GPC1),
sulfatase 1 (SULF1), alcohol dehydrogenase 7 (ADH7), dehydrogenase
member 3 (DHRS3), aldose reductase (AKR1B1), acetoacetyl-CoA
synthetase (AACS), V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
(KRAS), solute carrier family 7 (SLC7A11) and three enzyme listed above,
PLA2G10, LYPLA1, SCGB1A1. The links in the network for male and
female CS are combined and listed together. Smoking-related genes are
show in italic. aa: diacyl-; ae: acyl-alkyl-; C0: carnitine; lysoPC: acyl-
phosphatidylcholine; PC: phosphatidylcholine; SM (OH):
hydroxysphingomyeline.

Abbreviations
aa: diacyl-; ae: acyl-alkyl-; BMI: body mass index; CS: current smokers; CVD:
cardiovascular disease; FDR: false discovery rate; FS: former smokers; lysoPC:
acyl-phosphatidylcholine; NS: never smokers; PC: phosphatidylcholine; SM:
sphingomyeline; SM (OH): hydroxysphingomyeline.
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