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Abstract

Background: Infectious disease outbreaks in communities can be controlled by early detection and effective
prevention measures. Assessing the relative importance of each individual community member with respect to
these two processes requires detailed knowledge about the underlying social contact network on which the
disease can spread. However, mapping social contact networks is typically too resource-intensive to be a practical
possibility for most communities and institutions.

Methods: Here, we describe a simple, low-cost method - called collocation ranking - to assess individual
importance for early detection and targeted intervention strategies that are easily implementable in practice. The
method is based on knowledge about individual collocation which is readily available in many community settings
such as schools, offices, hospitals, and so on. We computationally validate our method in a school setting by
comparing the outcome of the method against computational predictions based on outbreak simulations on an
empirical high-resolution contact network. We compare collocation ranking to other methods for assessing the
epidemiological importance of the members of a population. To this end, we select subpopulations of the school
population by applying these assessment methods to the population and adding individuals to the subpopulation
according to their individual rank. Then, we assess how suited these subpopulations are for early detection and
targeted intervention strategies.

Results: Likelihood and timing of infection during an outbreak are important features for early detection and
targeted intervention strategies. Subpopulations selected by the collocation ranking method show a substantially
higher average infection probability and an earlier onset of symptoms than randomly selected subpopulations.
Furthermore, these subpopulations selected by the collocation ranking method were close to the optimum.

Conclusions: Our results indicate that collocation ranking is a highly effective method to assess individual
importance, providing critical low-cost information for the development of sentinel surveillance systems and
prevention strategies.
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Background
Social network analysis has become an important tool to
assess infectious disease spread in communities [1-3]. In
a social network model of disease spread, the network
ties between individuals are considered to be relevant for

the transmission of the disease whose spread is modeled.
For many infectious diseases, including some of the dis-
eases with the greatest pandemic potential, such as influ-
enza, disease transmission is assumed to require spatio-
temporal proximity of individuals. Spatio-temporal proxi-
mity is typically approximated by network ties, where it is
assumed that social contacts (family, friends, co-workers,
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and so on) capture the majority of potential disease
transmission events.
The predictive power of social network topology on the

dynamics of infectious disease spread has been confirmed
empirically [1,3-6]. It is well established that both high
individual contact rates as well as a high dispersion in
population’s contact distribution results in increased dis-
ease transmission within the population [7-9]. In many
host-pathogen systems, it is a minority of individuals that
contributes the most to infectious disease spread [8]. In
addition, the position of individuals in a social network
has been shown to correlate well with the likelihood and
timing of infectious disease onset [1,3,10].
These findings immediately suggest an important role

for social network analysis in the development of sentinel
surveillance systems and targeted mitigation strategies.
Sentinel surveillance is most efficient when disease out-
breaks can be detected as early as possible. Mitigation
strategies such as targeted vaccination are most efficient
when each unit of resource (for example, vaccination
dose) leads to the maximal case count reduction possible.
Combined, these two methods can significantly mitigate
infectious disease spread and thus reduce the morbidity
and mortality associated with the disease.
Unfortunately, mapping social networks is very

resource-intensive, and thus generally not a practical
option in most communities. However, most commu-
nities do have information about the location of their
members over time. For example, educational commu-
nities such as schools have detailed information about
the location of their members in the form of rosters and
schedules. From these readily available data sources, one
can calculate the overall collocation time of each com-
munity member, that is, the cumulative time each indivi-
dual is potentially exposed to other individuals. On a
population-level, time-use surveys have been shown to be
good proxies for contact data [11]. We suggest that also
on a detailed community-level such a collocation mea-
sure can serve as a very good proxy indicator of the net-
work measures that are associated with both increased
infection likelihood and early infection during an out-
break. As a consequence, this method has the potential
to be a simple, low-cost method to assess individual
importance for early detection and targeted intervention
strategies that are easily implementable in practice with-
out the need to map social networks.
In this paper, we test how well collocation ranking can

identify subpopulations suited for early detection and tar-
geted intervention strategies. We compare the performance
of the collocation ranking method (as defined by two
benchmarks) to the performance achieved by other, partly
network-based, methods. We further compare its perfor-
mance to randomly selected subpopulations and the best
possible subpopulations according to the two benchmarks.

Methods
We challenge various indicators for selecting subpopula-
tions for early detection and targeted intervention with
computational influenza outbreak simulations that are
based on empirical high-resolution contact and location
data collected with wireless sensor technology at a US
high school.
First, we describe the data that were used for our ana-

lyses. Then, we define two benchmarks according to
which the proposed collocation ranking method and the
other indicators are evaluated. Next, we describe all indi-
cators that are tested in this paper. Finally, we describe
the outbreak simulation model and how the performance
tests were set up.
Both the empirical data and the simulation model are

described in detail elsewhere [12]. Therefore, both are
only described briefly here.
All simulations and analyses were coded in and executed

by Python (Version 2.7.2, 32-bit, Enthought Python
Distribution). Figures were created with R (Version 2.13.0)
and the ggplot2 library.

Ethics statement
The data collection was approved by the Stanford Univer-
sity Institutional Review Board on 24 July 2009. Written
informed consent was obtained from all participants.

Contact and location data
The data that we use in this paper were collected at a US
high school during one school day with wireless sensor
technology. A total of 789 individuals or 94% of the school
population, including students, teachers, and staff, partici-
pated in the study. The participants wore small wireless
sensors (so-called motes) that detect and log radio signals
broadcast by other nearby motes. We refer to the motes
that were worn by participants as mobile motes. Further,
stationary motes were attached to fixed locations through-
out the school campus to keep track of the participants’
locations. As a consequence, the dataset contains two
types of records. Close proximity interactions (CPIs) are
records that indicate two participating individuals standing
face-to-face with a distance of less than three meters at a
certain point in time. Location records are records that
indicate the presence of an individual nearby a stationary
mote (location information is at the level of rooms). A
detailed description on how information and noise were
separated in the data is provided in the supplementary
material (see Additional file 1). Data were collected at time
intervals of 20 seconds.

Schedule data
In many communities, full individual schedule data (that
is, the schedule of each individual) is readily available to
community health services. During an outbreak, this
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data could be used to calculate the collocation rank for
all community members. For various reasons, it was not
possible to obtain full individual schedule data from the
school, but it was possible to obtain aggregated schedule
data. We then reconstructed individual schedule data
from a combination of the mote data and the aggregated
schedule data. The aggregated schedule data file con-
tains the following information about each class taught
at the school during the mote deployment: (i) who
taught the class, (ii) the room in which the class was
taught, (iii) the period of the class, and (iv) the number
of students who were signed up for the class. The aggre-
gated schedule data combined with the high resolution
location data allows us to reconstruct individual sche-
dules with high fidelity. The algorithm for matching
aggregated schedule and individual location data is
further described in the supplementary material (see
Additional file 1).

Benchmarks
The core idea is to identify simple indicators that allow
the identification of subpopulations of the entire school
population that are maximally relevant in prevention
and surveillance efforts. Both prevention and surveil-
lance efforts should target individuals who are more
likely to become infected than others. In addition, these
efforts should be targeted at individuals who become
infected early during an outbreak, allowing for early
detection of outbreaks (surveillance) and early response
(prevention).
We define two simple benchmarks to test the accuracy

of any indicator to be evaluated:
1. The first benchmark B1 is the average probability Pi

of the individuals i of a subpopulation S to become
infected. We use an empirical probability Pi that is
defined as the ratio of the number of simulation runs n
in which individual i in subpopulation S became
infected and the total number of simulation runs N .
Note that simulation runs in which i is the index case
are ignored (see test setting section below). A subpopu-
lation has been optimally identified if B1 is maximal.
2. For the second benchmark, we calculate the ratio ti/Pi

for every individual i in subpopulation S , where ti is the
average simulation time step at which the individual
became symptomatic. Then, the second benchmark B2 is
defined as the average of these ratios. The division by Pi is
necessary to take into account that early detection of a
symptomatic individual is more relevant when the infec-
tion probability of that individual is high. The time of the
onset of symptoms has more practical relevance than
the time of infection, because symptomatic cases can be
identified more easily than pre-or asymptomatic carriers.
A subpopulation has been optimally identified if B2 is
minimal.

Rank indicators
Several indicators are evaluated with respect to their ability
to select subpopulations with optimal benchmark results.
Thus, a good indicator would select subpopulations that
have high B1 values and low B2 values. The basic principle
of subpopulation formation is the same for all indicators:
the individuals are ranked according to their individual
respective indicator value (from high to low values). Then,
subpopulations are formed by selecting individuals from
high to low ranks until the target subpopulation size is
reached. We use the following rank indicators:
Presence
The presence indicator measures the total time an indivi-
dual attends classes according to the schedule, and it is

defined as
7∑

p=1

t(p) · T(p, i), where p is an index pointing to

one of the seven periods of the surveyed high school day,
t(p) is the official duration of period p, and T(p,i)=1 if indi-
vidual i had a scheduled class during period p , and T(p,i)
=0 if not.
Collocation
The collocation indicator measures the cumulative time
each individual is potentially exposed to other individuals

during classes, and it is defined as
7∑

p=1

t(p) · ω(p, i). Here,

ω(p,i) denotes the number of students signed up for the
class that individual i is taking during period p , and t(p) is
the official duration of period p. If i has no class during
that period, ω(p,i)=0. The collocation indicator - like the
presence indicator - is only based on schedule data.
Degree
We use the actor degree centrality CD(i) [13], which is one
of the network indices that is frequently used in network
epidemiology to identify the most important individuals in
a transmission network [12,14-18]. The actor degree cen-
trality of an individual i is defined as the number of con-
tact partners of i - here determined by the presence of at
least one CPI - during the measurement period.

The difference between this indicator and the previous
one is that only contacts of more than 10 minutes of accu-
mulated duration during the measurement period are con-
sidered. The cut-off of 10 minutes was chosen arbitrarily,
but a sensitivity analysis shows that the indicator’s perfor-
mance changes only slightly when the cut-off is changed
to 5, 15, or 20 minutes (see Additional file 1).
Strength
The strength of an individual i stands for the cumulative

contact duration of i, and it is defined as

∑

j∈J�{i}

w(i, j).

Thereby, JΔ{i} is the set containing the entire school popula-
tion except i , and w(i,j) stands for the accumulated contact
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duration of individuals i and j. Strength is an enhancement
of the degree concept and can be interpreted as a weighted
degree [19].
There are other network measures which are frequently

used to identify pivotal individuals in a social network,
for instance, closeness centrality or betweenness central-
ity. These measures, however, have been shown to be
comparably good or even worse than the degree in indi-
cating individuals who are important for disease spread
[17,18]. For this reason we concentrate on the simpler,
but still powerful, centrality indicators described above.

Model of influenza spread
We use an individual-based model of influenza spread to
assess the importance of the members of the school popu-
lation with respect to disease spread. The model is pub-
lished and described in detail in [12], but briefly, we
assume that the infection is introduced by one index case
at the beginning of a simulation run and that all subse-
quent infections happen within the school population, that
is, there are no further introductions from outside. The
time step duration is half a day. The model is a suscepti-
ble, exposed, infectious, recovered (SEIR)-type model. The
probability to switch from the susceptible to the exposed
state is 1-(1-0.003)w, where w is the accumulated contact
time the susceptible individual has spent with infectious
individuals while at school (in CPI records) [20]. The
duration of the exposed state follows a Weibull distribu-
tion with an offset of half a day; the power parameter is
2.21, the scale parameter is 1.10 [21]. After that period in
the exposed state, every individual will be in the infectious
state for exactly one time step before turning into home
confinement and, finally, recovering. To allow for the fact
that the onset of influenza symptoms is typically sudden
and that affected individuals will be dismissed quickly, we
reduce the duration of contacts by 75% during the single
time step at school.

Test setting
Each member of the school population could be the
index case of an outbreak and introduce the infection
from outside the school. Therefore, we initialize 100
independent runs for each member of the school popu-
lation being the index case that introduces the infection.
This results in a total of 78,900 simulation runs that
build the basis of our analyses.
For all simulation runs, we keep track of which indivi-

duals got infected and when they became symptomatic
during the course of the simulation run. This allows us
to calculate the two benchmarks defined above.

Results
In order to assess the performance of the collocation indi-
cator, we selected subpopulations of various sizes on the

basis of the collocation indicator and compared their
benchmarks to randomly selected subpopulations, optimal
subpopulations, and subpopulations selected on the basis
of the other indicators described in the Methods section.
An optimal subpopulation stands for a subpopulation
selected in such a way that it achieves the best possible
benchmark value for the given population.

First benchmark: average infection probability
The subpopulations that were selected on the basis of the
collocation indicator constantly show a substantially
higher average infection probability B1 than randomly
selected subpopulations of the same size (Figure 1a).
Given a subpopulation of ten percent of the entire school
population, collocation ranking resulted in 1.43 to 1.62
times better results than randomly composed subpopula-
tions that were between the 10th and the 90th percentile.
Given a subpopulation of twenty percent of the entire
school population, collocation ranking resulted in 1.29 to
1.41 times better results than randomly composed subpo-
pulations that were between the 10th and the 90th
percentile.
Most subpopulations selected on the basis of rank indi-

cators achieved consistently better benchmark results
than random subpopulations, and all of them outcom-
peted random composition over a large range of subpo-
pulation sizes. The performance of subpopulations
selected on the basis of the collocation indicator was bet-
ter than the performance of subpopulations selected on
the basis of the presence and the degree indicator, but
worse than the performance of subpopulations selected
on the basis of the degree (>10 minutes) and the strength
indicator (Figure 1b). For subpopulations smaller than
40% of the entire population, those selected on the basis
of the collocation indicator achieved benchmark values
that were only about 10% below the optimum.

Second benchmark: ratio of average infection time and
probability
The qualitative picture for the second benchmark was
very similar to that of the first benchmark. However,
differences between the various subpopulations were
more pronounced.
For subpopulations that represent between 2% and

90% of the entire population, the subpopulation selected
on the basis of the collocation indicator performed con-
sistently 2.5 or more times better than the median of
the random subpopulations. For almost the entire range
of subpopulation sizes, the benchmarks of the subpopu-
lation selected on the basis of the collocation indicator
were at least twice as low as the benchmarks of 90% of
the random subpopulations (Figure 2a).
For small subpopulations up to approximately 22%,

collocation ranking outcompeted ranking by degree.
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Figure 1 Performance of collocation ranking: first benchmark. Subfigures 1a and 1b are based on the first benchmark, which is the average
probability of individuals in a given subpopulation to become infected during an outbreak, B1. The abscissa shows the percentage of the
population selected for prevention or surveillance efforts. The ordinate shows the ratio of the B1 of the collocation indicator and the B1 of any
other indicator, that is, ordinate values >1 indicate that the collocation indicator performs better than the other indicator it is compared to.
Subfigure 1a compares the B1 value of the 10th, 25th, 50th, 75th, and 90th percentile of 100,000 randomly selected subpopulations to the B1 of
subpopulations selected by the collocation indiciator. Subfigure 1b compares B1 of all indicators defined in the Methods section, as well as the
optimal B1 , to the B1 of the collocation indicator.

Figure 2 Performance of collocation ranking: second benchmark. Subfigures 2a and 2b are based on the second benchmark. The abscissa
shows the percentage of the population selected for prevention or surveillance efforts. The ordinate shows the ratio of the B2 of a given
indicator and the B2 of the collocation indicator, that is, ordinate values >1 indicate that the collocation indicator performs better than the other
indicator it is compared to. Subfigure 2a compares the B2 value of the 10th, 25th, 50th, 75th, and 90th percentile of 100,000 randomly selected
subpopulations to the B2 of subpopulations selected by the collocation indicator. Subfigure 2b compares B2 of all indicators defined in the
Methods section, as well as the optimal B2, to the B2 of the collocation indicator.
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Further, collocation ranking was almost always better or
as good as ranking by presence (Figure 2b).

Further analyses
Additional analyses, in particular how the role of members
of the school population (that is, whether the individual is
a student, a teacher, or a staff member) is related to indivi-
dual importance, are provided in Additional file 1.

Discussion
Social networks have proven to be useful for understand-
ing and predicting infectious disease dynamics. There is a
discussion on how detailed network data must be in order
to be useful in epidemiological applications [6,14,22].
However, even mapping low-detail social contact networks
is typically too resource-intensive to be a practical possibi-
lity for most communities and institutions. What is
needed instead are low-cost proxies for individual network
properties that can serve as epidemiological predictors.
Spatial distance measures, for example, have recently been
found to be significant predictors of social ties (among
other predictors) [23], and it is therefore reasonable to
expect that spatial proxies can also serve as useful epide-
miological predictors. The collocation ranking method
presented here is based on spatio-temporal considerations,
and our results suggest that it may effectively identify sub-
populations suited for sentinel surveillance systems and
prevention strategies.
Current methods to identify subpopulations for sentinel

surveillance systems and prevention strategies typically
rely on demographic variables such as age (for example,
children and young adults in influenza surveillance sys-
tems [24-26]) and geographic location (for example,
administrative units in invasive meningococcal disease sur-
veillance systems [27-29]). These methods work because
there is sufficient variance of such demographic variables
at the societal level. However, at the level of communities
and institutions such as schools, there is often too little
variance to make these methods applicable. Furthermore,
because demographic variables are not direct proxies for
transmission routes, they may fail to identify individuals
with high transmission potential who fall outside of the
targeted range of the demographic variable. In contrast,
the collocation ranking indicator proposed here is a direct
proxy of potential disease transmission events as given by
the contact network.
Random selection serves as a null model method in the

absence of epidemiologically relevant information about a
population. The collocation ranking method significantly
outcompetes the random method. As expected, some net-
work indicators, such as the strength, were able to out-
compete the collocation ranking method to identify
subpopulations for early detection or targeted intervention
strategies. This is not surprising because strength is

essentially a direct measure of exposure, and it can thus
serve as an indicator that can identify subpopulations
which are almost identical to the optimal subpopulation.
Nevertheless, measuring strength is resource-intensive,
while collocation ranking is not.
Our research is not without limitations. The first limita-

tion is that we rely on widely used computational simula-
tion models of disease spread, rather than validating our
method in an empirical setting. Our simulation model is
based on high-resolution contact network data [12] as well
as established disease transmission parameters [20,21], but
ideally, any benchmark would be based on empirical out-
break data instead of simulated data. However, infection
transmission is a highly stochastic process, requiring mul-
tiple outbreaks for a robust evaluation of the collocation
ranking method presented above.
Limitations and uncertainties of our model are, in parti-

cular, the following: (i) There is still debate on the relative
importance of the different potential pathways of influenza
transmission [30-32]. Most models of influenza spread
assume transmission by close contact, but there is the pos-
sibility that other transmission pathways are more impor-
tant than currently thought. (ii) We model the spread
between members of the school population during school
hours, but we do not capture potentially infectious con-
tacts between school members during their leisure time.
(iii) We assumed that the probability of being an index
case is homogeneous. In reality, this is most likely not the
case. (iv) We also assumed that all individuals are fully
susceptible. In reality, individuals differ in their serostatus
and (partial) immunity is linked to patterns of previous
exposure. (v) It might be that an ongoing epidemic
changes the contact behavior not only of the symptomatic
individuals, but also of the healthy ones who continue to
attend school. Such potential behavior changes are not
reflected in our model.
Another limitation is that the data to test our method

were collected in one school only. Moreover, the data
covers only one school day. While the method worked
very well in this setting, the generalizability to other set-
tings remains to be established.
Finally, we had to reconstruct individual schedules from

aggregated schedules and mote data. Reconstructions may
be incomplete (compare with Additional file 1), and the
real course of a school day may differ from the scheduled
sequence of classes. While it is important to recognize
that we currently cannot conclusively validate our method,
our simulation results indicate that the collocation method
is an effective, low-cost tool that warrants further research.

Conclusions
Social networks have proven to be useful predictors of
infectious disease outbreak dynamics. From a practical per-
spective, social network information can be highly valuable
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for the development of sentinel surveillance systems and
prevention strategies because people’s positions within the
network correlate with their likelihood and timing of infec-
tion during an outbreak. The disadvantage of network-
based approaches is that they are highly resource-intensive
and, thus, can not be applied to every situation of interest.
Hence, simple proxies, such as the collocation ranking
method presented here, that fulfill the same purpose are
needed. Subpopulations identified by the collocation rank-
ing method are significantly better suited for sentinel sur-
veillance systems and prevention strategies than randomly
selected subpopulations. Some network-based ranking
methods were slightly better for identifying such subpopu-
lations than collocation ranking. The collocation ranking
method, however, is a low-cost method that still manages
to identify subpopulations that are very close to the opti-
mum. The data requirement of the method is very low,
and typically readily available in many community settings,
such as schools, offices, hospitals, and so on in the form of
rosters/schedules.
Our results suggest that the collocation ranking

method may effectively identify subpopulations suited for
sentinel surveillance systems and prevention strategies.

Additional material

Additional file 1: Supplementary information. This additional file
contains further information on (i) the data collection, (ii) how the
locations of study participants were derived from the data, and (iii) how
the individual schedules of students and teachers were reconstructed.
The file further provides supplementary analyses which are not included
in the main document. In particular, it contains figures that show (i) how
well the five indicators define subpopulations according to a third
benchmark (the average time to the onset of symptoms), (ii) how
sensitive the outcome of the degree indicator reacts to various contact
duration cut-offs, (iii) how predictive the role of an individual is for the
likelihood and timing of infection, (iv) what the relationship between the
five indicators is, and (v) how well the collocation indicator captures the
number of infections that are induced by a certain index case.
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